Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 629
Filtrar
1.
Sci Rep ; 14(1): 21663, 2024 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-39289429

RESUMO

Knowledge on the occurrence and behaviour of baleen whales around sub-Antarctic regions is limited, and usually based on short, seasonal sighting research from shore or research vessels and whaling records, neither of which provide accurate and comprehensive year-round perspectives of these animals' ecology. We investigated the seasonal acoustic occurrence and diel vocalizing pattern of baleen whales around the sub-Antarctic Prince Edward Islands (PEIs) using passive acoustic monitoring data from mid-2021 to mid-2023, detecting six distinct baleen whale songs from Antarctic blue whales, Madagascan pygmy blue whales, fin whales, Antarctic minke whales, humpback whales, and sei whales. Antarctic blue and fin whales were detected year-round whereas the other species' songs were detected seasonally, including a new Antarctic minke whale bio-duck song sub-type described here for the first time. Antarctic minke and sei whales were more vocally active at night-time whereas the other species had no clear diel vocalizing patterns. Random forest models identified month and/or sea surface temperature as the most important predictors of all baleen whale acoustic occurrence. These novel results highlight the PEIs as a useful habitat for baleen whales given the number of species that inhabit or transit through this region.


Assuntos
Acústica , Estações do Ano , Vocalização Animal , Baleias , Animais , Vocalização Animal/fisiologia , Regiões Antárticas , Baleias/fisiologia , Ilhas , Ecossistema
3.
Nat Commun ; 15(1): 7708, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256348

RESUMO

The Southern Ocean ecosystem has undergone extensive changes in the past two centuries driven by industrial sealing and whaling, climate change and commercial fishing. However, following the end of commercial whaling, some populations of whales in this region are recovering. Baleen whales are reliant on Antarctic krill, which is also the largest Southern Ocean fishery. Since 1993, krill catch has increased fourfold, buoyed by nutritional supplement and aquaculture industries. In this Perspective, we approximate baleen whale consumption of Antarctic krill before and after whaling to examine if the ecosystem can support both humans and whales as krill predators. Our back-of-the-envelope calculations suggest that current krill biomass cannot support both an expanding krill fishery and the recovery of whale populations to pre-whaling sizes, highlighting an emerging human-wildlife conflict. We then provide recommendations for enhancing sustainability in this region by reducing encounters with whales and bolstering the krill population.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Euphausiacea , Pesqueiros , Baleias , Animais , Regiões Antárticas , Humanos , Baleias/fisiologia , Mudança Climática , Biomassa , Oceanos e Mares
4.
Mol Ecol Resour ; 24(8): e14012, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39188115

RESUMO

Marine mammals play a fundamental role in the functioning of healthy marine ecosystems and are important indicator species. Studying their biology, distributions, behaviour and health are still technically and logistically demanding for researchers. However, the efforts and commitment have not been in vain, since we are witnessing constant and exponential advancement in the study of these animals, thanks to technological progress in numerous fields. These include miniaturization and performance of biologger tags, which are equipped with sensors for measuring physiological parameters, hydrophones, accelerometers, time-depth records and spatial locations; the use of high throughput 'Next Generation' Sequencing to gain genetic information about communities and individual species from nucleic acids in environmental samples at miniscule concentrations; through, to the possibility of monitoring species with autonomous aerial and underwater vehicles. In parallel advances in computing and statistical modelling frameworks support the analysis of increasingly large and complex data sets. In this issue, O'Mahony et al. (2024) draw from at least two of these innovations: (a) the collection of biological material retrieved from large whales' blows using a modified drone and (b) the use of the samples to infer a wide spectrum of genetic information (both nuclear and mitochondrial) about the target animal/population. The methodology is not completely novel, but the study shows an impressive advancement in the amount of data obtained compared to preceding studies using the same approach. In the wake of these promising results, future perspectives are evaluated in relation to alternative sampling methodologies currently in use. It is possible to speculate that, in the next few years, the combination of non-invasive molecular profiling and enhanced drone technology (e.g. assembling increasingly smaller components, thus expanding capacity for autonomous operation) will open up perspectives that were unimaginable at the beginning of this millennium.


Assuntos
Baleias , Animais , Baleias/genética , Baleias/fisiologia
5.
Sci Rep ; 14(1): 14211, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902303

RESUMO

Southern right whales (SRWs, Eubalaena australis) have been observed feeding both at and below the surface (< 10 m) in Golfo Nuevo (42°42' S, 64°30' W), Península Valdés, Argentina, an area traditionally recognized as calving ground. In addition, we documented diving feeding behavior in SRWs during their stay in this gulf, which has not been previously described. We assessed this behavior using suction-cup-attached video-imaging tags (CRITTERCAMs) on individual whales. A total of eight CRITTERCAM deployments were successful, and feeding events were documented in all SRWs successfully equipped with CRITTERCAMs. The highest speeds occurred during the ascent phase, and the average diving time was 6 min 45 s ± 3 min 41 s for SRWs. Concurrently, zooplankton samples were collected from the subsurface and bottom of the water in areas where tagged whales dived to assess differences in composition, abundance, and biomass. Copepods dominated the upper layer, while euphausiids were more abundant in the deeper sample. Furthermore, zooplankton total biomass was five times higher at depth (2515.93 mg/m3) compared to the subsurface (500.35 mg/m3). Differences in zooplankton characteristics between depths, combined with CRITTERCAM videos, indicated that SRWs exploit high concentrations of organisms near the seafloor during daytime feeding dives. This study provides baseline insights into how SRWs utilize Península Valdés during their stay in the area.


Assuntos
Comportamento Alimentar , Baleias , Zooplâncton , Animais , Argentina , Zooplâncton/fisiologia , Baleias/fisiologia , Comportamento Alimentar/fisiologia , Mergulho , Comportamento Predatório/fisiologia
6.
Sci Rep ; 14(1): 14857, 2024 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937635

RESUMO

Social information is predicted to enhance the quality of animals' migratory decisions in dynamic ecosystems, but the relative benefits of social information in the long-range movements of marine megafauna are unknown. In particular, whether and how migrants use nonlocal information gained through social communication at the large spatial scale of oceanic ecosystems remains unclear. Here we test hypotheses about the cues underlying timing of blue whales' breeding migration in the Northeast Pacific via individual-based models parameterized by empirical behavioral data. Comparing emergent patterns from individual-based models to individual and population-level empirical metrics of migration timing, we find that individual whales likely rely on both personal and social sources of information about forage availability in deciding when to depart from their vast and dynamic foraging habitat and initiate breeding migration. Empirical patterns of migratory phenology can only be reproduced by models in which individuals use long-distance social information about conspecifics' behavioral state, which is known to be encoded in the patterning of their widely propagating songs. Further, social communication improves pre-migration seasonal foraging performance by over 60% relative to asocial movement mechanisms. Our results suggest that long-range communication enhances the perceptual ranges of migrating whales beyond that of any individual, resulting in increased foraging performance and more collective migration timing. These findings indicate the value of nonlocal social information in an oceanic migrant and suggest the importance of long-distance acoustic communication in the collective migration of wide-ranging marine megafauna.


Assuntos
Migração Animal , Animais , Migração Animal/fisiologia , Ecossistema , Baleias/fisiologia , Comunicação Animal , Estações do Ano , Comportamento Social
7.
Mar Environ Res ; 199: 106569, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38861888

RESUMO

Irish waters are under increasing pressure from anthropogenic sources including the development of offshore renewable energy, vessel traffic and fishing activity. Spatial planning requires robust datasets on species distribution and the identification of important habitats to inform the planning process. Despite limited survey effort, long-term citizen science data on whale presence are available and provide an opportunity to fill information gaps. Using presence-only data as well as a variety of environmental variables, we constructed seasonal ensemble species distribution models based on five different algorithms for minke whales, fin whales, humpback whales, sei whales, and blue whales. The models predicted that the coastal waters off the south and west of Ireland are particularly suitable for minke, fin and humpback whales. Offshore waters in the Porcupine Seabight area were identified as a relevant habitat for fin whales, sei whales and blue whales. We combined model outputs with data on maritime traffic, fishing activity and offshore wind farms to measure the exposure of all the species to these pressures, identifying areas of concern. This study serves as a baseline for the species presence in Irish waters over the last two decades to help develop appropriate marine spatial plans in the future.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Irlanda , Monitoramento Ambiental , Baleias/fisiologia , Balaenoptera/fisiologia , Jubarte/fisiologia , Baleia Comum/fisiologia , Pesqueiros/estatística & dados numéricos
8.
PLoS One ; 19(6): e0304744, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38833504

RESUMO

Passive acoustic monitoring is an essential tool for studying beaked whale populations. This approach can monitor elusive and pelagic species, but the volume of data it generates has overwhelmed researchers' ability to quantify species occurrence for effective conservation and management efforts. Automation of data processing is crucial, and machine learning algorithms can rapidly identify species using their sounds. Beaked whale acoustic events, often infrequent and ephemeral, can be missed when co-occurring with signals of more abundant, and acoustically active species that dominate acoustic recordings. Prior efforts on large-scale classification of beaked whale signals with deep neural networks (DNNs) have approached the class as one of many classes, including other odontocete species and anthropogenic signals. That approach tends to miss ephemeral events in favor of more common and dominant classes. Here, we describe a DNN method for improved classification of beaked whale species using an extensive dataset from the western North Atlantic. We demonstrate that by training a DNN to focus on the taxonomic family of beaked whales, ephemeral events were correctly and efficiently identified to species, even with few echolocation clicks. By retrieving ephemeral events, this method can support improved estimation of beaked whale occurrence in regions of high odontocete acoustic activity.


Assuntos
Acústica , Aprendizado de Máquina , Vocalização Animal , Baleias , Animais , Baleias/fisiologia , Baleias/classificação , Vocalização Animal/fisiologia , Redes Neurais de Computação
9.
PLoS One ; 19(6): e0303834, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38837960

RESUMO

We derive an equation that applies for the wing-beat frequency of flying animals and to the fin-stroke frequency of diving animals like penguins and whales. The equation states that the wing/fin-beat frequency is proportional to the square root of the animal's mass divided by the wing area. Data for birds, insects, bats, and even a robotic bird-supplemented by data for whales and penguins that must swim to stay submerged-show that the constant of proportionality is to a good approximation the same across all species; thus the equation is universal. The wing/fin-beat frequency equation is derived by dimensional analysis, which is a standard method of reasoning in physics. We finally demonstrate that a mathematically even simpler expression without the animal mass does not apply.


Assuntos
Voo Animal , Asas de Animais , Animais , Asas de Animais/fisiologia , Asas de Animais/anatomia & histologia , Voo Animal/fisiologia , Nadadeiras de Animais/fisiologia , Quirópteros/fisiologia , Baleias/fisiologia , Spheniscidae/fisiologia , Aves/fisiologia , Modelos Biológicos , Natação/fisiologia , Insetos/fisiologia
10.
Glob Chang Biol ; 30(6): e17366, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38847450

RESUMO

Changes in body size have been documented across taxa in response to human activities and climate change. Body size influences many aspects of an individual's physiology, behavior, and ecology, ultimately affecting life history performance and resilience to stressors. In this study, we developed an analytical approach to model individual growth patterns using aerial imagery collected via drones, which can be used to investigate shifts in body size in a population and the associated drivers. We applied the method to a large morphological dataset of gray whales (Eschrichtius robustus) using a distinct foraging ground along the NE Pacific coast, and found that the asymptotic length of these whales has declined since around the year 2000 at an average rate of 0.05-0.12 m/y. The decline has been stronger in females, which are estimated to be now comparable in size to males, minimizing sexual dimorphism. We show that the decline in asymptotic length is correlated with two oceanographic metrics acting as proxies of habitat quality at different scales: the mean Pacific Decadal Oscillation index, and the mean ratio between upwelling intensity in a season and the number of relaxation events. These results suggest that the decline in gray whale body size may represent a plastic response to changing environmental conditions. Decreasing body size could have cascading effects on the population's demography, ability to adjust to environmental changes, and ecological influence on the structure of their community. This finding adds to the mounting evidence that body size is shrinking in several marine populations in association with climate change and other anthropogenic stressors. Our modeling approach is broadly applicable across multiple systems where morphological data on megafauna are collected using drones.


Assuntos
Tamanho Corporal , Mudança Climática , Baleias , Animais , Feminino , Masculino , Baleias/fisiologia , Ecossistema , Modelos Biológicos , Oceano Pacífico
11.
Sci Rep ; 14(1): 11212, 2024 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755300

RESUMO

The sei whale (Balaenoptera borealis) is an important species among baleen whales in the North Pacific and plays a significant role in the ecosystem. Despite the importance of this species, information regarding its migration patterns and breeding locations remains limited. To enhance the understanding of the phenology of North Pacific sei whales, we deployed satellite-monitored tags on these whales in the western and central North Pacific from 2017 to 2023. We fitted 55 sei whale tracks to a state-space model to describe the whales' seasonal movements at feeding grounds and their migratory behavior. The whales typically leave their feeding grounds between November and December, with migration pathways extending from off Japan to the west of the Hawaiian Islands. These southward transits converge in the waters of the Marshall Islands and north of Micronesia between 20° N and 7° N, which appear to be breeding grounds. After a brief stay at these breeding grounds, the whales migrate northward from January to February, reaching their feeding grounds around 30°N by March. To the best of our knowledge, this is the first study to present the phenology of feeding and breeding seasons and the migration pattern of North Pacific sei whales.


Assuntos
Migração Animal , Estações do Ano , Animais , Migração Animal/fisiologia , Oceano Pacífico , Balaenoptera/fisiologia , Ecossistema , Reprodução/fisiologia , Cruzamento , Baleias/fisiologia
12.
Sci Rep ; 14(1): 9352, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654001

RESUMO

The nearshore waters of the Northern California Current support an important seasonal foraging ground for Pacific Coast Feeding Group (PCFG) gray whales. We examine gray whale distribution, habitat use, and abundance over 31 years (1992-2022) using standardized nearshore (< 5 km from shore) surveys spanning a large swath of the PCFG foraging range. Specifically, we generated density surface models, which incorporate detection probability into generalized additive models to assess environmental correlates of gray whale distribution and predict abundance over time. We illustrate the importance of coastal upwelling dynamics, whereby increased upwelling only yields higher gray whale density if interspersed with relaxation events, likely because this combination optimizes influx and retention of nutrients to support recruitment and aggregation of gray whale prey. Several habitat features influence gray whale distribution, including substrate, shelf width, prominent capes, and river estuaries. However, the influence of these features differs between regions, revealing heterogeneity in habitat preferences throughout the PCFG foraging range. Predicted gray whale abundance fluctuated throughout our study period, but without clear directional trends, unlike previous abundance estimates based on mark-recapture models. This study highlights the value of long-term monitoring, shedding light on the impacts of variable environmental conditions on an iconic nearshore marine predator.


Assuntos
Ecossistema , Baleias , Animais , Baleias/fisiologia , California , Dinâmica Populacional , Oceano Pacífico , Densidade Demográfica , Estações do Ano
13.
Sci Rep ; 14(1): 9815, 2024 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684814

RESUMO

Kelp forest trophic cascades have been extensively researched, yet indirect effects to the zooplankton prey base and gray whales have not been explored. We investigate the correlative patterns of a trophic cascade between bull kelp and purple sea urchins on gray whales and zooplankton in Oregon, USA. Using generalized additive models (GAMs), we assess (1) temporal dynamics of the four species across 8 years, and (2) possible trophic paths from urchins to kelp, kelp as habitat to zooplankton, and kelp and zooplankton to gray whales. Temporal GAMs revealed an increase in urchin coverage, with simultaneous decline in kelp condition, zooplankton abundance and gray whale foraging time. Trophic path GAMs, which tested for correlations between species, demonstrated that urchins and kelp were negatively correlated, while kelp and zooplankton were positively correlated. Gray whales showed nuanced and site-specific correlations with zooplankton in one site, and positive correlations with kelp condition in both sites. The negative correlation between the kelp-urchin trophic cascade and zooplankton resulted in a reduced prey base for gray whales. This research provides a new perspective on the vital role kelp forests may play across multiple trophic levels and interspecies linkages.


Assuntos
Cadeia Alimentar , Kelp , Ouriços-do-Mar , Baleias , Zooplâncton , Animais , Zooplâncton/fisiologia , Kelp/fisiologia , Baleias/fisiologia , Ouriços-do-Mar/fisiologia , Ecossistema , Oregon
14.
PLoS One ; 19(3): e0300658, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512955

RESUMO

Visual observation data collected by protected species observers (PSOs) is required per regulations stipulated in Notices to Lessees (NTLs) and geophysical survey Permits (Form BOEM-0328) issued to seismic operators in the Gulf of Mexico (GOM). Here, data collected by certified and trained PSOs during seismic surveys conducted between 2002-2015 were compiled and analyzed to assess utility in assessing marine mammal responses to seismic noise and effectiveness of required mitigation measures. A total of 3,886 agency-required bi-weekly PSO Effort and Sightings reports were analyzed comprising 598,319 hours of PSO visual effort and 15,117 visual sighting records of marine mammals. The observed closest point of approach (CPA) distance was statistically compared across five species groupings for four airgun activity levels (full, minimum source, ramp up, silent). Whale and dolphin detections were significantly farther from airgun array locations during full power operations versus silence, indicating some avoidance response to full-power operations. Dolphin CPA distances were also significantly farther from airguns operating at minimum source than silence. Blackfish were observed significantly farther from the airgun array during ramp up versus both full and minimum source activities. Blackfish were observed significantly closer to the airgun array during silent activities versus at full, minimum source, and ramp up activities. Beaked whales had the largest mean CPA for detection distance compared to all other species groups. Detection distances for beaked whales were not significantly differences between full and silent operations; however, the sample size was very low. Overall results are consistent with other studies indicating that marine mammals may avoid exposure to airgun sounds based on observed distance from the seismic source during specified source activities. There was geographic variability in sighting rates associated with specific areas of interest within the GOM. This study demonstrates that agency required PSO reports provide a robust and useful data set applicable to impact assessments; management, policy and regulatory decision making; and qualitative input for regional scientific, stock assessment and abundance studies. However, several improvements in content and consistency would facilitate finer-scale analysis of some topics (e.g., effort associated with specific activities, observer biases, sound field estimation) and support statistical comparisons that could provide further insight into marine mammal responses and mitigation efficacy.


Assuntos
Acústica , Golfinhos , Animais , Golfo do México , Som , Baleias/fisiologia
15.
Nature ; 627(8004): 579-585, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38480878

RESUMO

Understanding how and why menopause has evolved is a long-standing challenge across disciplines. Females can typically maximize their reproductive success by reproducing for the whole of their adult life. In humans, however, women cease reproduction several decades before the end of their natural lifespan1,2. Although progress has been made in understanding the adaptive value of menopause in humans3,4, the generality of these findings remains unclear. Toothed whales are the only mammal taxon in which menopause has evolved several times5, providing a unique opportunity to test the theories of how and why menopause evolves in a comparative context. Here, we assemble and analyse a comparative database to test competing evolutionary hypotheses. We find that menopause evolved in toothed whales by females extending their lifespan without increasing their reproductive lifespan, as predicted by the 'live-long' hypotheses. We further show that menopause results in females increasing their opportunity for intergenerational help by increasing their lifespan overlap with their grandoffspring and offspring without increasing their reproductive overlap with their daughters. Our results provide an informative comparison for the evolution of human life history and demonstrate that the same pathway that led to menopause in humans can also explain the evolution of menopause in toothed whales.


Assuntos
Evolução Biológica , Menopausa , Modelos Biológicos , Baleias , Animais , Feminino , Bases de Dados Factuais , Longevidade/fisiologia , Menopausa/fisiologia , Reprodução/fisiologia , Baleias/classificação , Baleias/fisiologia , Humanos
16.
Curr Biol ; 34(8): 1794-1800.e3, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38552627

RESUMO

Extant baleen whales (Mysticeti) uniquely use keratinous baleen for filter-feeding and lack dentition, but the fossil record clearly shows that "toothed" baleen whales first appeared in the Late Eocene.1 Globally, only two Eocene mysticetes have been found, and both are from the Southern Hemisphere: Mystacodon selenensis from Peru, 36.4 mega-annum (Ma) ago1,2 and Llanocetus denticrenatus from Antarctica, 34.2 Ma ago.3,4 Based on a partial skull from the lower part of the Lincoln Creek Formation in Washington State, USA, we describe the Northern Hemisphere's geochronologically earliest mysticete, Fucaia humilis sp. nov. Geology, biostratigraphy, and magnetostratigraphy places Fucaia humilis sp. nov. in the latest Eocene (ca. 34.5 Ma ago, near the Eocene/Oligocene transition at 33.9 Ma ago), approximately coeval with the oldest record of fossil kelps, also in the northeastern Pacific.5 This observation leads to our hypothesis that the origin and development of a relatively stable, nutrient-rich kelp ecosystem5,6 in the latest Eocene may have fostered the radiation of small-sized toothed mysticetes (Family Aetiocetidae) in the North Pacific basin, a stark contrast to the larger Llanocetidae (whether Mystacodon belongs to llanocetids or another independent clade remains unresolved) with the latest Eocene onset of the Antarctic Circumpolar Current in the Southern Hemisphere.7,8,9 Our discovery suggests that disparate mechanisms and ecological scenarios may have nurtured contrasting early mysticete evolutionary histories in the Northern and Southern hemispheres.


Assuntos
Fósseis , Baleias , Fósseis/anatomia & histologia , Animais , Baleias/anatomia & histologia , Baleias/fisiologia , Evolução Biológica , Crânio/anatomia & histologia , Washington
17.
Nature ; 627(8002): 123-129, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383781

RESUMO

Baleen whales (mysticetes) use vocalizations to mediate their complex social and reproductive behaviours in vast, opaque marine environments1. Adapting to an obligate aquatic lifestyle demanded fundamental physiological changes to efficiently produce sound, including laryngeal specializations2-4. Whereas toothed whales (odontocetes) evolved a nasal vocal organ5, mysticetes have been thought to use the larynx for sound production1,6-8. However, there has been no direct demonstration that the mysticete larynx can phonate, or if it does, how it produces the great diversity of mysticete sounds9. Here we combine experiments on the excised larynx of three mysticete species with detailed anatomy and computational models to show that mysticetes evolved unique laryngeal structures for sound production. These structures allow some of the largest animals that ever lived to efficiently produce frequency-modulated, low-frequency calls. Furthermore, we show that this phonation mechanism is likely to be ancestral to all mysticetes and shares its fundamental physical basis with most terrestrial mammals, including humans10, birds11, and their closest relatives, odontocetes5. However, these laryngeal structures set insurmountable physiological limits to the frequency range and depth of their vocalizations, preventing them from escaping anthropogenic vessel noise12,13 and communicating at great depths14, thereby greatly reducing their active communication range.


Assuntos
Evolução Biológica , Baleias , Animais , Humanos , Baleias/fisiologia , Som
18.
Gene ; 901: 148167, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38224921

RESUMO

Toothed whales have developed specialized echolocation abilities that are crucial for underwater activities. Acoustic fat bodies, including the melon, extramandibular fat body, and intramandibular fat body, are vital for echolocation. This study explores the transcriptome of acoustic fat bodies in toothed whales, revealing some insight into their evolutionary origins and ecological significance. Comparative transcriptome analysis of acoustic fat bodies and related tissues in a harbor porpoise and a Pacific white-sided dolphin reveals that acoustic fat bodies possess characteristics of both muscle and adipose tissue, occupying an intermediate position. The melon and extramandibular fat body exhibit specific muscle-related functions, implying an evolutionary connection between acoustic fat bodies and muscle tissue. Furthermore, we suggested that the melon and extramandibular fat body originate from intramuscular adipose tissue, a component of white adipose tissue. The extramandibular fat body has been identified as an evolutionary homolog of the masseter muscle, supported by the specific expression of MYH16, a pivotal protein in masticatory muscles. The intramandibular fat body, located within the mandibular foramen, shows possibilities of the presence of several immune-related functions, likely due to its proximity to bone marrow. Furthermore, this study sheds light on leucine modification in the catabolic pathway, which leads to the accumulation of isovaleric acid in acoustic fat bodies. Swallowing without chewing, a major toothed whale feeding ecology adaptation, makes the masticatory muscle redundant and leads to the formation of the extramandibular fat body. We propose that the intramuscular fat enlargement in facial muscles, which influences acoustic fat body development, is potentially related to the substantial reorganization of head morphology in toothed whales during aquatic adaptation.


Assuntos
Ecolocação , Corpo Adiposo , Animais , Crânio , Acústica , Ecolocação/fisiologia , Músculos , Baleias/anatomia & histologia , Baleias/fisiologia
19.
Anat Rec (Hoboken) ; 307(3): 633-657, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37548999

RESUMO

Toothed whales utilize specialized nasal structures such as the lipid-rich melon to produce sound and propagate it into the aquatic environment. Very little nasal morphology of mesoplodont beaked whales has been described in the literature, and the anatomy of the melon and associated musculature of Gervais' beaked whale (Mesoplodon europaeus) remains undescribed. Heads of three (n = 3) Gervais' beaked whales were examined in detail via dissection as well as computed tomography (CT) and magnetic resonance imaging (MRI). Two additional Gervais' beaked whale individuals (n = 2) were studied via archived CT and MRI scans. Representative transverse dissection sections of the melon were processed for polarized light imaging to verify the presence of tendons inserting into the melon tissue. Three-dimensional (3D) CT reconstructions of the melon, rostral muscles, and associated structures were performed to assess morphology and spatial relationships. In all individuals, the melon's main body demonstrated a bilaterally asymmetrical, curvilinear geometry. This curvilinear shape was defined by a pattern of alternating asymmetry in the medial rostral muscles that projected into the melon's tissue. In transverse polarized light imaging, a network of tendons originating from these asymmetrical rostral muscle projections was observed permeating the melon's lipid tissue. This curvilinear melon morphology and associated asymmetrical musculature suggest a means of lengthening the lipid pathway within a relatively short dimensional footprint. In addition, the species-specific arrangement of muscular projections suggests complex fine-tuning of the melon's geometry during echolocation. Further studies may lend additional insight into the function of this unusual melon morphology.


Assuntos
Ecolocação , Baleias , Humanos , Animais , Baleias/fisiologia , Tendões , Músculos , Lipídeos
20.
Proc Natl Acad Sci U S A ; 120(43): e2307340120, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37844245

RESUMO

Echolocation, the detection of objects by means of sound waves, has evolved independently in diverse animals. Echolocators include not only mammals such as toothed whales and yangochiropteran and rhinolophoid bats but also Rousettus fruit bats, as well as two bird lineages, oilbirds and swiftlets. In whales and yangochiropteran and rhinolophoid bats, positive selection and molecular convergence has been documented in key hearing-related genes, such as prestin (SLC26A5), but few studies have examined these loci in other echolocators. Here, we examine patterns of selection and convergence in echolocation-related genes in echolocating birds and Rousettus bats. Fewer of these loci were under selection in Rousettus or birds compared with classically recognized echolocators, and elevated convergence (compared to outgroups) was not evident across this gene set. In certain genes, however, we detected convergent substitutions with potential functional relevance, including convergence between Rousettus and classic echolocators in prestin at a site known to affect hair cell electromotility. We also detected convergence between Yangochiroptera, Rhinolophidea, and oilbirds in TMC1, an important mechanosensory transduction channel in vertebrate hair cells, and observed an amino acid change at the same site within the pore domain. Our results suggest that although most proteins implicated in echolocation in specialized mammals may not have been recruited in birds or Rousettus fruit bats, certain hearing-related loci may have undergone convergent functional changes. Investigating adaptations in diverse echolocators will deepen our understanding of this unusual sensory modality.


Assuntos
Quirópteros , Ecolocação , Animais , Quirópteros/fisiologia , Filogenia , Evolução Molecular , Mamíferos/genética , Audição/genética , Baleias/fisiologia , Aves/genética , Ecolocação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA