Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 313
Filtrar
4.
J Hazard Mater ; 417: 126031, 2021 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-34020355

RESUMO

1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane (TBECH), as an emerging brominated flame retardant (EBFR) pollutant, has been often observed in the air, and to comprehend its fate in the environment is still challenging due to the diversity of its stereoisomers. In this work, the environmental transformation behavior and potential toxicological implications of TBECH stereoisomers under the oxidation of OH· in the gas phase were investigated by computational chemistry. Our results indicate the complexity of the TBECH transformation reactions and the diversity of its transformation products in the atmosphere. Although the reactions of TBECH enantiomers with OH· exhibit highly consistency, it is obvious that the reactions of the four diastereoisomers of TBECH with OH· and their subsequent reactions have both specificity and similarity. The dehydrogenation intermediates produced by H-abstraction of OH· in the initial reactions may undergo oxidative debromination, hydroxylation and decomposition reactions, leading to the transformation into low bromine and monohydroxy substituted compounds, as well as debrominated or unbrominated unsaturated fatty ketones. The toxicity assessments show that all transformation products are less toxic to aquatic organisms than TBECH, but some of them are still classified at toxic or harmful levels. More importantly, some transformation products still exhibit carcinogenic and teratogenic activity. To our knowledge, this study provides, for the first time, a deep insight into the transformation mechanism, kinetics, and environmental impacts of atmospheric TBECH by theoretical calculations.


Assuntos
Retardadores de Chama , Radical Hidroxila , Bromo , Cicloexanos/toxicidade , Retardadores de Chama/toxicidade , Cinética , Estereoisomerismo
5.
Reprod Toxicol ; 102: 43-55, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33848595

RESUMO

The brominated flame retardants (BFRs), 1,2-dibromo-4-(1,2 dibromoethyl)cyclohexane (TBECH) and 2,3-dibromopropyl-2,4,6-tribromophenyl ether (DPTE) bind to the androgen receptor (AR). in vitro bioassays have shown that TBECH is a potent androgen agonist while DPTE is a potent AR antagonist. Both TBECH and DPTE alter gene expression associated with AR regulation. However, it remains to be determined if TBECH and DPTE can affect the prostate. For this reason, we exposed CD1 mice to a 1:1 mixture of TBECH diastereomers α and ß, a 1:1 mixture of γ and δ, and to DPTE, and tested their effects on prostate growth, histology and gene expression profiles. Castrated mice were used to study the androgenic effects of TBECHαß and TBECHγδ while the antagonistic effects of DPTE were studied in non-castrated mice. We observed that testosterone and TBECHγδ increased body and prostate weights while TBECHαß affected neither of them; and that DPTE had no effect on body weight but reduced prostate weight drastically. Histomorphometric analysis of the prostate revealed epithelial and glandular alterations in the TBECHγδ group comparable to those in testosterone group while alterations in the TBECHαß group were less pronounced. DPTE displayed androgen antagonist activity reminiscent of castration. The transcription profile of the prostate was altered by castration and exposure to testosterone and to TBECHγδ reversed several of these changes. Testosterone and TBECHγδ also regulated the expression of several androgen responsive genes implicated in prostate growth and cancer. While DPTE resulted in a drastic reduction in prostate weight, it only affected a small number of genes. The results indicate that TBECHγδ and DPTE are of high human health concern as they may contribute to changes in prostate growth, histology and function.


Assuntos
Cicloexanos/toxicidade , Disruptores Endócrinos/toxicidade , Retardadores de Chama/toxicidade , Hidrocarbonetos Bromados/toxicidade , Próstata/efeitos dos fármacos , Antagonistas de Androgênios , Antagonistas de Receptores de Andrógenos , Androgênios , Animais , Linhagem Celular Tumoral , Disruptores Endócrinos/metabolismo , Expressão Gênica/efeitos dos fármacos , Halogenação , Humanos , Masculino , Camundongos , Organogênese/efeitos dos fármacos , Próstata/crescimento & desenvolvimento , Próstata/metabolismo , Receptores Androgênicos/metabolismo
6.
Toxicol Lett ; 345: 24-33, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33857583

RESUMO

As demonstrated for bisphenol AF (BPAF), the electrostatic halogen bond based on the London dispersion force of halogen atoms was found to be a major driving force of their bifunctional ERα-agonist and ERß-antagonist activities. Because similar electronic effects are anticipated for hydrocarbon groups (alkyl or aryl groups), we hypothesized that bisphenol compounds consisting of such groups also work bifunctionally. In the present study, we examined bisphenol AP (BPAP), B (BPB), and Z (BPZ). After recognizing their considerably strong receptor binding affinities, we evaluated the abilities of BPAP, BPB, and BPZ to activate ERα and ERß in a luciferase reporter gene assay. These bisphenols were fully active for ERα but completely inactive for ERß. When we examined their inhibitory activities for 17ß-estradiol in ERß by two different qualitative and quantitative analytical methods, we found that those bisphenols worked as definite antagonists. Consequently, they were established as bifunctional ERα-agonists and ERß-antagonists. The present structure-activity analyses revealed that the dispersion force works not only on the halogens but also on the hydrocarbon groups, and that it is a major driving force of bifunctional ERα-agonist and ERß-antagonist activities.


Assuntos
Compostos Benzidrílicos/toxicidade , Cicloexanos/toxicidade , Disruptores Endócrinos/toxicidade , Antagonistas de Estrogênios/toxicidade , Receptor alfa de Estrogênio/agonistas , Receptor beta de Estrogênio/antagonistas & inibidores , Estrogênios/toxicidade , Fenóis/toxicidade , Compostos Benzidrílicos/química , Compostos Benzidrílicos/metabolismo , Sítios de Ligação , Cicloexanos/química , Cicloexanos/metabolismo , Disruptores Endócrinos/química , Disruptores Endócrinos/metabolismo , Antagonistas de Estrogênios/química , Antagonistas de Estrogênios/metabolismo , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Estrogênios/química , Estrogênios/metabolismo , Células HeLa , Humanos , Estrutura Molecular , Fenóis/química , Fenóis/metabolismo , Ligação Proteica , Relação Estrutura-Atividade
7.
PLoS One ; 16(3): e0248960, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33770117

RESUMO

Novel antiviral agents for influenza, which poses a substantial threat to humans, are required. Cyclobakuchiols A and B have been isolated from Psoralea glandulosa, and cyclobakuchiol C has been isolated from P. corylifolia. The structural differences between cyclobakuchiol A and C arise due to the oxidation state of isopropyl group, and these compounds can be derived from (+)-(S)-bakuchiol, a phenolic isoprenoid compound present in P. corylifolia seeds. We previously reported that bakuchiol induces enantiospecific anti-influenza A virus activity involving nuclear factor erythroid 2-related factor 2 (Nrf2) activation. However, it remains unclear whether cyclobakuchiols A-C induce anti-influenza A virus activity. In this study, cyclobakuchiols A, B, and C along with cyclobakuchiol D, a new artificial compound derived from cyclobakuchiol B, were synthesized and examined for their anti-influenza A virus activities using Madin-Darby canine kidney cells. As a result, cyclobakuchiols A-D were found to inhibit influenza A viral infection, growth, and the reduction of expression of viral mRNAs and proteins in influenza A virus-infected cells. Additionally, these compounds markedly reduced the mRNA expression of the host cell influenza A virus-induced immune response genes, interferon-ß and myxovirus-resistant protein 1. In addition, cyclobakuchiols A-D upregulated the mRNA levels of NAD(P)H quinone oxidoreductase 1, an Nrf2-induced gene, in influenza A virus-infected cells. Notably, cyclobakuchiols A, B, and C, but not D, induced the Nrf2 activation pathway. These findings demonstrate that cyclobakuchiols have anti-influenza viral activity involving host cell oxidative stress response. In addition, our results suggest that the suitably spatial configuration between oxidized isopropyl group and phenol moiety in the structure of cyclobakuchiols is required for their effect.


Assuntos
Antivirais/síntese química , Antivirais/farmacologia , Técnicas de Química Sintética , Cicloexanos/síntese química , Cicloexanos/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Animais , Antivirais/química , Sobrevivência Celular/efeitos dos fármacos , Cicloexanos/química , Cicloexanos/toxicidade , Cães , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Processamento de Imagem Assistida por Computador , Vírus da Influenza A/crescimento & desenvolvimento , Interferon beta/genética , Interferon beta/metabolismo , Células Madin Darby de Rim Canino , Proteínas de Resistência a Myxovirus/genética , Proteínas de Resistência a Myxovirus/metabolismo , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Proteínas Virais/metabolismo
8.
Environ Res ; 195: 110497, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33232751

RESUMO

Following the ban of many historically-used flame retardants (FRs), numerous replacement chemicals have been produced and used in products, with some being identified as environmental contaminants. One of these replacement flame retardants is 1,2-dibromo-4-(1,2-dibromoethyl)-cyclohexane (DBE-DBCH; formerly abbreviated as TBECH), which to date has not been identified for risk assessment and potential regulation. DBE-DBCH technical mixtures consist largely of α- and ß-diastereomers with trace amounts of γ- and δ-DBE-DBCH. The α- and ß-isomers are known contaminants in various environmental media. While current global use and production volumes of DBE-DBCH are unknown, recent studies identified that DBE-DBCH concentrations were among the highest of the measured bromine-based FRs in indoor and urban air in Europe. Yet our mass balance fugacity model and modeling of the physical-chemical properties of DBE-DBCH estimated only 1% partitioning to air with a half-life of 2.2 d atmospherically. In contrast, our modeling characterized DBE-DBCH adsorbing strongly to suspended particulates in the water column (~12%), settling onto sediment (2.5%) with minimal volatilization, but with most partitioning and adsorbing strongly to soil (~85%) with negligible volatilization and slow biodegradation. Our modeling further predicted that organisms would be exposed to DBE-DBCH through partitioning from the dissolved aquatic phase, soil, and by diet, and given its estimated logKow (5.24) and a half-life of 1.7 d in fish, DBE-DBCH is expected to bioaccumulate into lipophilic tissues. Low concentrations of DBE-DBCH are commonly measured in biota and humans, possibly because evidence suggests rapid metabolism. Yet toxicological effects are evident at low exposure concentrations: DBE-DBCH is a proven endocrine disruptor of sex and thyroid hormone pathways, with in vivo toxic effects on reproductive, metabolic, and other endpoints. The objectives of this review are to identify the current state of knowledge concerning DBE-DBCH through an evaluation of its persistence, potential for bioaccumulation, and characterization of its toxicity, while identifying areas for future research.


Assuntos
Retardadores de Chama , Animais , Bioacumulação , Cicloexanos/toxicidade , Europa (Continente) , Retardadores de Chama/toxicidade , Humanos
9.
Sci Rep ; 10(1): 14473, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32879392

RESUMO

Gliotoxin (GT) and fumagillin (FUM) are mycotoxins most abundantly produced by Aspergillus fumigatus during the early stages of infection to cause invasive aspergillosis (IA). Therefore, we hypothesized that GT and FUM could be the possible source of virulence factors, which we put to test adopting in vitro monoculture and the novel integrated multiple organ co-culture (IdMOC) of A549 and L132 cell. We found that (i) GT is more cytotoxic to lung epithelial cells than FUM, and (ii) GT and FUM act synergistically to inflict pathology to the lung epithelial cell. Reactive oxygen species (ROS) is the master regulator of the cytotoxicity of GT, FUM and GT + FUM. ROS may be produced as a sequel to mitochondrial damage and, thus, mitochondria are both the source of ROS and the target to ROS. GT-, FUM- and GT + FUM-induced DNA damage is mediated either by ROS-dependent mechanism or directly by the fungal toxins. In addition, GT, FUM and GT + FUM may induce protein accumulation. Further, it is speculated that GT and FUM inflict epithelial damage by neutrophil-mediated inflammation. With respect to multiple organ cytotoxicity, GT was found to be cytotoxic at IC50 concentration in the following order: renal epithelial cells < type II epithelial cells < hepatocytes < normal lung epithelial cells. Taken together, GT and FUM alone and in combination contribute to exacerbate the damage of lung epithelial cells and, thus, are involved in the progression of IA.


Assuntos
Cicloexanos/toxicidade , Ácidos Graxos Insaturados/toxicidade , Gliotoxina/toxicidade , Inflamação/metabolismo , Aspergilose Pulmonar Invasiva/metabolismo , Células A549 , Aspergillus fumigatus/patogenicidade , Cicloexanos/metabolismo , Células Epiteliais/microbiologia , Células Epiteliais/patologia , Ácidos Graxos Insaturados/metabolismo , Gliotoxina/metabolismo , Humanos , Inflamação/induzido quimicamente , Inflamação/microbiologia , Inflamação/patologia , Aspergilose Pulmonar Invasiva/induzido quimicamente , Aspergilose Pulmonar Invasiva/microbiologia , Aspergilose Pulmonar Invasiva/patologia , Pulmão/microbiologia , Pulmão/patologia , Micotoxinas/toxicidade , Neutrófilos/metabolismo , Neutrófilos/patologia , Espécies Reativas de Oxigênio , Sesquiterpenos/metabolismo , Sesquiterpenos/toxicidade
12.
Environ Toxicol ; 35(2): 159-166, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31696622

RESUMO

Tetrabromoethylcyclohexane (TBECH) has been linked to endocrine disruption, hepatotoxicity, and reproductive toxicity. However, its immunotoxicity remains largely unknown. In the present study, RAW 264.7 cells, mouse macrophage cell line, were exposed to TBECH. MTT assays showed that TBECH significantly enhanced lactate dehydrogenase (LDH) release in RAW 264.7 cells. The mRNA expression of some proapoptotic genes was upregulated by TBECH. Accordingly, TBECH elevated caspase-3 activity. In addition, TBECH upregualted the mRNA levels of some pro-inflammatory cytokines, whereas it downregulated LPS-stimulated mRNA expression of these cytokines. Moreover, TBECH downregulated the mRNA expression of selected antigen presenting-related genes. Furthermore, TBECH increased reactive oxygen species level, reduced glutathione content and the activities of superoxide dismutase and catalase, and upregulated the mRNA expression of selected oxidative stress-related genes. The obtained data demonstrated that TBECH exhibits immunotoxicity in macrophages, and will help to evaluate its health risks.


Assuntos
Cicloexanos/toxicidade , Citocinas/metabolismo , Retardadores de Chama/toxicidade , Macrófagos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Catalase/metabolismo , Glutationa/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Estresse Oxidativo/genética , Células RAW 264.7 , Superóxido Dismutase/metabolismo
13.
Toxins (Basel) ; 12(1)2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31861936

RESUMO

Fumagillin is a mycotoxin produced, above all, by the saprophytic filamentous fungus Aspergillus fumigatus. This mold is an opportunistic pathogen that can cause invasive aspergillosis, a disease that has high mortality rates linked to it. Its ability to adapt to environmental stresses through the production of secondary metabolites, including several mycotoxins (gliotoxin, fumagillin, pseurotin A, etc.) also seem to play an important role in causing these infections. Since the discovery of the A. fumigatus fumagillin in 1949, many studies have focused on this toxin and in this review we gather all the information currently available. First of all, the structural characteristics of this mycotoxin and the different methods developed for its determination are given in detail. Then, the biosynthetic gene cluster and the metabolic pathway involved in its production and regulation are explained. The activity of fumagillin on its target, the methionine aminopeptidase type 2 (MetAP2) enzyme, and the effects of blocking this enzyme in the host are also described. Finally, the applications that this toxin and its derivatives have in different fields, such as the treatment of cancer and its microsporicidal activity in the treatment of honeybee hive infections with Nosema spp., are reviewed. Therefore, this work offers a complete review of all the information currently related to the fumagillin mycotoxin secreted by A. fumigatus, important because of its role in the fungal infection process but also because it has many other applications, notably in beekeeping, the treatment of infectious diseases, and in oncology.


Assuntos
Aspergillus fumigatus/química , Cicloexanos/toxicidade , Ácidos Graxos Insaturados/toxicidade , Micotoxinas/toxicidade , Animais , Abelhas , Cicloexanos/química , Ácidos Graxos Insaturados/biossíntese , Ácidos Graxos Insaturados/química , Humanos , Micotoxinas/biossíntese , Micotoxinas/química , Sesquiterpenos/química , Sesquiterpenos/toxicidade
15.
PLoS One ; 14(10): e0223909, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31622418

RESUMO

On January 2014 approximately 10,000 gallons of crude 4-Methylcyclohexanemethanol (MCHM) and propylene glycol phenol ether (PPH) were accidentally released into the Elk River, West Virginia, contaminating the tap water of around 300,000 residents. Crude MCHM is an industrial chemical used as flotation reagent to clean coal. At the time of the spill, MCHM's toxicological data were limited, an issue that has been addressed by different studies focused on understanding the immediate and long-term effects of MCHM on human health and the environment. Using S. cerevisiae as a model organism we study the effect of acute exposure to crude MCHM on metabolism. Yeasts were treated with MCHM 550 ppm in YPD for 30 minutes. Polar and lipid metabolites were extracted from cells by a chloroform-methanol-water mixture. The extracts were then analyzed by direct injection ESI-MS and by GC-MS. The metabolomics analysis was complemented with flux balance analysis simulations done with genome-scale metabolic network models (GSMNM) of MCHM treated vs non-treated control. We integrated the effect of MCHM on yeast gene expression from RNA-Seq data within these GSMNM. A total of 215 and 73 metabolites were identified by the ESI-MS and GC-MS procedures, respectively. From these 26 and 23 relevant metabolites were selected from ESI-MS and GC-MS respectively, for 49 unique compounds. MCHM induced amino acid accumulation, via its effects on amino acid metabolism, as well as a potential impairment of ribosome biogenesis. MCHM affects phospholipid biosynthesis, with a potential impact on the biophysical properties of yeast cellular membranes. The FBA simulations were able to reproduce the deleterious effect of MCHM on cellular growth and suggest that the effect of MCHM on ubiquinol:ferricytochrome c reductase reaction, caused by the under-expression of CYT1 gene, could be the driven force behind the observed effect on yeast metabolism and growth.


Assuntos
Cicloexanos/toxicidade , Metaboloma/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Poluentes Químicos da Água/toxicidade , Proteínas Fúngicas/genética , Cromatografia Gasosa-Espectrometria de Massas , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Análise do Fluxo Metabólico , Metabolômica/métodos , Modelos Biológicos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Análise de Sequência de RNA , West Virginia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA