Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Microbiol ; 9(5): 1282-1292, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38459206

RESUMO

The bacterial flagellum is a macromolecular protein complex that harvests energy from uni-directional ion flow across the inner membrane to power bacterial swimming via rotation of the flagellar filament. Rotation is bi-directional, with binding of a cytoplasmic chemotactic response regulator controlling reversal, though the structural and mechanistic bases for rotational switching are not well understood. Here we present cryoelectron microscopy structures of intact Salmonella flagellar basal bodies (3.2-5.5 Å), including the cytoplasmic C-ring complexes required for power transmission, in both counter-clockwise and clockwise rotational conformations. These reveal 180° movements of both the N- and C-terminal domains of the FliG protein, which, when combined with a high-resolution cryoelectron microscopy structure of the MotA5B2 stator, show that the stator shifts from the outside to the inside of the C-ring. This enables rotational switching and reveals how uni-directional ion flow across the inner membrane is used to accomplish bi-directional rotation of the flagellum.


Assuntos
Proteínas de Bactérias , Microscopia Crioeletrônica , Flagelos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Flagelos/metabolismo , Flagelos/química , Flagelos/ultraestrutura , Corpos Basais/metabolismo , Corpos Basais/química , Modelos Moleculares , Rotação , Conformação Proteica , Salmonella/metabolismo , Salmonella/química , Salmonella typhimurium/metabolismo , Salmonella typhimurium/química
2.
Proc Natl Acad Sci U S A ; 119(40): e2204294119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161893

RESUMO

The tripartite attachment complex (TAC) couples the segregation of the single unit mitochondrial DNA of trypanosomes with the basal body (BB) of the flagellum. Here, we studied the architecture of the exclusion zone filament (EZF) of the TAC, the only known component of which is p197, that connects the BB with the mitochondrial outer membrane (OM). We show that p197 has three domains that are all essential for mitochondrial DNA inheritance. The C terminus of p197 interacts with the mature and probasal body (pro-BB), whereas its N terminus binds to the peripheral OM protein TAC65. The large central region of p197 has a high α-helical content and likely acts as a flexible spacer. Ultrastructure expansion microscopy (U-ExM) of cell lines exclusively expressing p197 versions of different lengths that contain both N- and C-terminal epitope tags demonstrates that full-length p197 alone can bridge the ∼270-nm distance between the BB and the cytosolic face of the OM. Thus U-ExM allows the localization of distinct domains within the same molecules and suggests that p197 is the TAC subunit most proximal to the BB. In addition, U-ExM revealed that p197 acts as a spacer molecule, as two shorter versions of p197, with the repeat domain either removed or replaced by the central domain of the Trypanosoma cruzi p197 ortholog reduced the distance between the BB and the OM in proportion to their predicted molecular weight.


Assuntos
Replicação do DNA , DNA Mitocondrial , Genoma Mitocondrial , Membranas Mitocondriais , Proteínas de Protozoários , Trypanosoma brucei brucei , Corpos Basais/química , DNA Mitocondrial/genética , Epitopos/química , Flagelos/química , Membranas Mitocondriais/química , Proteínas de Protozoários/química , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/genética
3.
Nat Commun ; 12(1): 4469, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294704

RESUMO

The basal body of the bacterial flagellum is a rotary motor that consists of several rings (C, MS and LP) and a rod. The LP ring acts as a bushing supporting the distal rod for its rapid and stable rotation without much friction. Here, we use electron cryomicroscopy to describe the LP ring structure around the rod, at 3.5 Å resolution, from Salmonella Typhimurium. The structure shows 26-fold rotational symmetry and intricate intersubunit interactions of each subunit with up to six partners, which explains the structural stability. The inner surface is charged both positively and negatively. Positive charges on the P ring (the part of the LP ring that is embedded within the peptidoglycan layer) presumably play important roles in its initial assembly around the rod with a negatively charged surface.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/ultraestrutura , Flagelos/química , Flagelos/ultraestrutura , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/ultraestrutura , Proteínas de Bactérias/fisiologia , Corpos Basais/química , Corpos Basais/fisiologia , Corpos Basais/ultraestrutura , Microscopia Crioeletrônica , Flagelos/fisiologia , Modelos Moleculares , Proteínas Motores Moleculares/fisiologia , Movimento/fisiologia , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Subunidades Proteicas , Salmonella typhimurium/química , Salmonella typhimurium/fisiologia , Salmonella typhimurium/ultraestrutura , Eletricidade Estática
4.
mBio ; 11(3)2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32518185

RESUMO

Sperm flagellar protein 1 (Spef1, also known as CLAMP) is a microtubule-associated protein involved in various microtubule-related functions from ciliary motility to polarized cell movement and planar cell polarity. In Trypanosoma brucei, the causative agent of trypanosomiasis, a single Spef1 ortholog (TbSpef1) is associated with a microtubule quartet (MtQ), which is in close association with several single-copied organelles and is required for their coordinated biogenesis during the cell cycle. Here, we investigated the interaction network of TbSpef1 using BioID, a proximity-dependent protein-protein interaction screening method. Characterization of selected candidates provided a molecular description of TbSpef1-MtQ interactions with nearby cytoskeletal structures. Of particular interest, we identified a new basal body protein TbSAF1, which is required for TbSpef1-MtQ anchorage to the basal bodies. The results demonstrate that MtQ-basal body anchorage is critical for the spatial organization of cytoskeletal organelles, as well as the morphology of the membrane-bound flagellar pocket where endocytosis takes place in this parasite.IMPORTANCETrypanosoma brucei contains a large array of single-copied organelles and structures. Through extensive interorganelle connections, these structures replicate and divide following a strict temporal and spatial order. A microtubule quartet (MtQ) originates from the basal bodies and extends toward the anterior end of the cell, stringing several cytoskeletal structures together along its path. In this study, we examined the interaction network of TbSpef1, the only protein specifically located to the MtQ. We identified an interaction between TbSpef1 and a basal body protein TbSAF1, which is required for MtQ anchorage to the basal bodies. This study thus provides the first molecular description of MtQ association with the basal bodies, since the discovery of this association ∼30 years ago. The results also reveal a general mechanism of the evolutionarily conserved Spef1/CLAMP, which achieves specific cellular functions via their conserved microtubule functions and their diverse molecular interaction networks.


Assuntos
Corpos Basais/metabolismo , Microtúbulos/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Corpos Basais/química , Microtúbulos/genética , Trypanosoma brucei brucei/química
5.
J Biol Chem ; 295(3): 729-742, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31819011

RESUMO

The basal body in the human parasite Trypanosoma brucei is structurally equivalent to the centriole in animals and functions in the nucleation of axonemal microtubules in the flagellum. T. brucei lacks many evolutionarily conserved centriolar protein homologs and constructs the basal body through unknown mechanisms. Two evolutionarily conserved centriole/basal body cartwheel proteins, TbSAS-6 and TbBLD10, and a trypanosome-specific protein, BBP65, play essential roles in basal body biogenesis in T. brucei, but how they cooperate in the regulation of basal body assembly remains elusive. Here using RNAi, endogenous epitope tagging, immunofluorescence microscopy, and 3D-structured illumination super-resolution microscopy, we identified a new trypanosome-specific protein named BBP164 and found that it has an essential role in basal body biogenesis in T. brucei Further investigation of the functional interplay among BBP164 and the other three regulators of basal body assembly revealed that BBP164 and BBP65 are interdependent for maintaining their stability and depend on TbSAS-6 and TbBLD10 for their stabilization in the basal body. Additionally, TbSAS-6 and TbBLD10 are independent from each other and from BBP164 and BBP65 for maintaining their stability in the basal body. These findings demonstrate that basal body cartwheel proteins are required for stabilizing other basal body components and uncover that regulation of protein stability is an unusual control mechanism for assembly of the basal body in T. brucei.


Assuntos
Corpos Basais/metabolismo , Microtúbulos/metabolismo , Proteínas de Protozoários/genética , Trypanosoma brucei brucei/genética , Animais , Axonema/química , Axonema/genética , Axonema/metabolismo , Corpos Basais/química , Corpos Basais/parasitologia , Centríolos/química , Centríolos/genética , Centríolos/parasitologia , Flagelos/química , Flagelos/genética , Flagelos/parasitologia , Humanos , Microtúbulos/química , Microtúbulos/parasitologia , Estabilidade Proteica , Proteínas de Protozoários/química , Interferência de RNA , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/patogenicidade
6.
Sci Rep ; 8(1): 14678, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30279523

RESUMO

The transcription factor FOXJ1 is essential for the formation of motile cilia throughout the animal kingdom. Target genes therefore likely constitute an important part of the motile cilia program. Here, we report on the analysis of one of these targets, Fam183b, in Xenopus and mice. Fam183b encodes a protein with unknown function which is conserved from the green algae Chlamydomonas to humans. Fam183b is expressed in tissues harbouring motile cilia in both mouse and frog embryos. FAM183b protein localises to basal bodies of cilia in mIMCD3 cells and of multiciliated cells of the frog larval epidermis. In addition, FAM183b interacts with NUP93, which also localises to basal bodies. During frog embryogenesis, Fam183b was dispensable for laterality specification and brain development, but required for ciliogenesis and motility of epidermal multiciliated cells and nephrostomes, i.e. the embryonic kidney. Surprisingly, mice homozygous for a null allele did not display any defects indicative of disrupted motile ciliary function. The lack of a cilia phenotype in mouse and the limited requirements in frog contrast with high sequence conservation and the correlation of gene expression with the presence of motile cilia. This finding may be explained through compensatory mechanisms at sites where no defects were observed in our FAM183b-loss-of-function studies.


Assuntos
Cílios/fisiologia , Proteínas do Citoesqueleto/metabolismo , Células Epidérmicas/fisiologia , Locomoção , Animais , Corpos Basais/química , Proteínas do Citoesqueleto/genética , Fatores de Transcrição Forkhead/metabolismo , Técnicas de Inativação de Genes , Camundongos , Camundongos Knockout , Xenopus , Proteínas de Xenopus/metabolismo
7.
Methods Mol Biol ; 1593: 119-131, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28389949

RESUMO

The bacterial flagellum is a large assembly of about 30 different proteins and is divided into three parts: filament, hook, and basal body. The machineries for its crucial functions, such as torque generation, rotational switch regulation, protein export, and assembly initiation, are all located around the basal body. Although high-resolution structures of the filament and hook have already been revealed, the structure of the basal body remains elusive. Recently, the purification protocol for the MS ring, which is the core ring of the basal body, has been improved for the structural study of the MS ring by electron cryomicroscopy (cryoEM) and single particle image analysis. The structure of intact basal body has also been revealed in situ at a resolution of a few nanometers by electron cryotomography (ECT) of minicells. Here, we describe the methods for the MS ring purification, Salmonella minicell culture, and cryoEM/ECT data collection and image analysis.


Assuntos
Proteínas de Bactérias/química , Corpos Basais/química , Flagelos/química , Salmonella typhimurium/química , Estruturas da Membrana Celular/química , Microscopia Crioeletrônica/métodos
8.
mBio ; 8(1)2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28049148

RESUMO

The basal body shares similar architecture with centrioles in animals and is involved in nucleating flagellar axonemal microtubules in flagellated eukaryotes. The early-branching Trypanosoma brucei possesses a motile flagellum nucleated from the basal body that consists of a mature basal body and an adjacent pro-basal body. Little is known about the basal body proteome and its roles in basal body biogenesis and flagellar axoneme assembly in T. brucei Here, we report the identification of 14 conserved centriole/basal body protein homologs and 25 trypanosome-specific basal body proteins. These proteins localize to distinct subdomains of the basal body, and several of them form a ring-like structure surrounding the basal body barrel. Functional characterization of representative basal body proteins revealed distinct roles in basal body duplication/separation and flagellar axoneme assembly. Overall, this work identified novel proteins required for basal body duplication and separation and uncovered new functions of conserved basal body proteins in basal body duplication and separation, highlighting an unusual mechanism of basal body biogenesis and inheritance in this early divergent eukaryote. IMPORTANCE: The basal body in the early-branching protozoan Trypanosoma brucei nucleates flagellum assembly and also regulates organelle segregation, cell morphogenesis, and cell division. However, the molecular composition and the assembly process of the basal body remain poorly understood. Here, we identify 14 conserved basal body proteins and 25 trypanosome-specific basal body proteins via bioinformatics, localization-based screening, and proximity-dependent biotin identification. We further localized these proteins to distinct subdomains of the basal body by using fluorescence microscopy and superresolution microscopy, discovered novel regulators of basal body duplication and separation, and uncovered new functions of conserved basal body proteins in basal body duplication and separation. This work lays the foundation for dissecting the mechanisms underlying basal body biogenesis and inheritance in T. brucei.


Assuntos
Corpos Basais/química , Corpos Basais/metabolismo , Biogênese de Organelas , Proteoma/análise , Proteínas de Protozoários/análise , Trypanosoma brucei brucei/fisiologia , Axonema/metabolismo , Flagelos/metabolismo , Locomoção , Trypanosoma brucei brucei/metabolismo
9.
Methods Cell Biol ; 136: 269-83, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27473914

RESUMO

Primary cilia are cellular antennae that receive and transduce extracellular cues. These microtubule-rich structures are comprised of at least three distinct ciliary compartments: basal bodies, transition zone, and axoneme. Septins have been implicated in cilia function at the transition zone, but accumulating evidence suggests that they localize predominantly within the axoneme. Here, we describe three fixation conditions that preserve the substructure of primary cilia and demonstrate known ciliary proteins that localize to these distinct ciliary substructures. Finally, we show immunostaining and live microscopy methods to detect septins within the axoneme.


Assuntos
Técnicas de Cultura de Células/métodos , Cílios/ultraestrutura , Microscopia de Fluorescência/métodos , Septinas/isolamento & purificação , Axonema/química , Axonema/ultraestrutura , Corpos Basais/química , Corpos Basais/ultraestrutura , Linhagem Celular , Cílios/química , Humanos , Microtúbulos/química , Microtúbulos/ultraestrutura , Septinas/química
10.
J Bacteriol ; 197(11): 1921-30, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25825427

RESUMO

UNLABELLED: Flagellar biogenesis in Helicobacter pylori is regulated by a transcriptional hierarchy governed by three sigma factors, RpoD (σ(80)), RpoN (σ(54)), and FliA (σ(28)), that temporally coordinates gene expression with the assembly of the flagellum. Previous studies showed that loss of flagellar protein export apparatus components inhibits transcription of flagellar genes. The FlgS/FlgR two-component system activates transcription of RpoN-dependent genes though an unknown mechanism. To understand better the extent to which flagellar gene regulation is coupled to flagellar assembly, we disrupted flagellar biogenesis at various points and determined how these mutations affected transcription of RpoN-dependent (flaB and flgE) and FliA-dependent (flaA) genes. The MS ring (encoded by fliF) is one of the earliest flagellar structures assembled. Deletion of fliF resulted in the elimination of RpoN-dependent transcripts and an ∼4-fold decrease in flaA transcript levels. FliH is a cytoplasmic protein that functions with the C ring protein FliN to shuttle substrates to the export apparatus. Deletions of fliH and genes encoding C ring components (fliM and fliY) decreased transcript levels of flaB and flgE but had little or no effect on transcript levels of flaA. Transcript levels of flaB and flgE were elevated in mutants where genes encoding rod proteins (fliE and flgBC) were deleted, while transcript levels of flaA was reduced ∼2-fold in both mutants. We propose that FlgS responds to an assembly checkpoint associated with the export apparatus and that FliH and one or more C ring component assist FlgS in engaging this flagellar structure. IMPORTANCE: The mechanisms used by bacteria to couple transcription of flagellar genes with assembly of the flagellum are poorly understood. The results from this study identified components of the H. pylori flagellar basal body that either positively or negatively affect expression of RpoN-dependent flagellar genes. Some of these basal body proteins may interact directly with regulatory proteins that control transcription of the H. pylori RpoN regulon, a hypothesis that can be tested by examining protein-protein interactions in vitro.


Assuntos
Proteínas de Bactérias/genética , Corpos Basais/química , Flagelos/genética , Helicobacter pylori/genética , RNA Polimerase Sigma 54/genética , Fator sigma/genética , Transcrição Gênica , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Corpos Basais/metabolismo , Flagelos/química , Flagelos/metabolismo , Regulação Bacteriana da Expressão Gênica , Helicobacter pylori/química , Helicobacter pylori/metabolismo , RNA Polimerase Sigma 54/química , RNA Polimerase Sigma 54/metabolismo , Fator sigma/química , Fator sigma/metabolismo
11.
Structure ; 23(1): 161-172, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25533490

RESUMO

The type III secretion system (T3SS) is a large macromolecular assembly found at the surface of many pathogenic Gram-negative bacteria. Its role is to inject toxic "effector" proteins into the cells of infected organisms. The molecular details of the assembly of this large, multimembrane-spanning complex remain poorly understood. Here, we report structural, biochemical, and functional analyses of PrgK, an inner-membrane component of the prototypical Salmonella typhimurium T3SS. We have obtained the atomic structures of the two ring building globular domains and show that the C-terminal transmembrane helix is not essential for assembly and secretion. We also demonstrate that structural rearrangement of the two PrgK globular domains, driven by an interconnecting linker region, may promote oligomerization into ring structures. Finally, we used electron microscopy-guided symmetry modeling to propose a structural model for the intimately associated PrgH-PrgK ring interaction within the assembled basal body.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Corpos Basais/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Via Secretória , Corpos Basais/química , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Modelos Moleculares , Multimerização Proteica , Estrutura Secundária de Proteína , Salmonella typhimurium , Vesículas Secretórias/química , Vesículas Secretórias/metabolismo
12.
Mol Microbiol ; 91(6): 1214-26, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24450479

RESUMO

The bacterial flagellar export apparatus is required for the construction of the bacterial flagella beyond the cytoplasmic membrane. The membrane-embedded part of the export apparatus, which consists of FlhA, FlhB, FliO, FliP, FliQ and FliR, is located in the central pore of the MS ring formed by 26 copies of FliF. The C-terminal cytoplasmic domain of FlhA is located in the centre of the cavity within the C ring made of FliG, FliM and FliN. FlhA interacts with FliF, but its assembly mechanism remains unclear. Here, we fused yellow fluorescent protein (YFP) and cyan fluorescent protein (CFP) to the C-termini of FliF and FlhA and investigated their subcellular localization by fluorescence microscopy. The punctate pattern of FliF-YFP localization required FliG but neither FliM, FliN, FlhA, FlhB, FliO, FliP, FliQ nor FliR. In contrast, FlhA-CFP localization required FliF, FliG, FliO, FliP, FliQ and FliR. The number of FlhA-YFP molecules associated with the MS ring was estimated to be about nine. We suggest that FlhA assembles into the export gate along with other membrane components during the MS ring complex formation in a co-ordinated manner.


Assuntos
Proteínas de Bactérias/metabolismo , Corpos Basais/química , Corpos Basais/metabolismo , Proteínas de Membrana/metabolismo , Salmonella/química , Salmonella/metabolismo , Proteínas de Bactérias/análise , Proteínas de Bactérias/genética , Genes Reporter , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Microscopia de Fluorescência , Ligação Proteica , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA