Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.434
Filtrar
1.
Int J Nanomedicine ; 19: 5781-5792, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38882546

RESUMO

Background: While nanoplatform-based cancer theranostics have been researched and investigated for many years, enhancing antitumor efficacy and reducing toxic side effects is still an essential problem. Methods: We exploited nanoparticle coordination between ferric (Fe2+) ions and telomerase-targeting hairpin DNA structures to encapsulate doxorubicin (DOX) and fabricated Fe2+-DNA@DOX nanoparticles (BDDF NPs). This work studied the NIR fluorescence imaging and pharmacokinetic studies targeting the ability and biodistribution of BDDF NPs. In vitro and vivo studies investigated the nano formula's toxicity, imaging, and synergistic therapeutic effects. Results: The enhanced permeability and retention (EPR) effect and tumor targeting resulted in prolonged blood circulation times and high tumor accumulation. Significantly, BDDF NPs could reduce DOX-mediated cardiac toxicity by improving the antioxidation ability of cardiomyocytes based on the different telomerase activities and iron dependency in normal and tumor cells. The synergistic treatment efficacy is enhanced through Fe2+-mediated ferroptosis and the ß-catenin/p53 pathway and improved the tumor inhibition rate. Conclusion: Harpin DNA-based nanoplatforms demonstrated prolonged blood circulation, tumor drug accumulation via telomerase-targeting, and synergistic therapy to improve antitumor drug efficacy. Our work sheds new light on nanomaterials for future synergistic chemotherapy.


Assuntos
Doxorrubicina , Telomerase , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Animais , Humanos , Telomerase/metabolismo , Linhagem Celular Tumoral , Camundongos , DNA/química , DNA/farmacocinética , DNA/administração & dosagem , Distribuição Tecidual , Nanopartículas/química , Neoplasias/tratamento farmacológico , Ferroptose/efeitos dos fármacos , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/administração & dosagem , Camundongos Endogâmicos BALB C , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética
2.
ACS Appl Bio Mater ; 7(6): 3746-3757, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38775109

RESUMO

The existing manufacturing protocols for CAR-T cell therapies pose notable challenges, particularly in attaining a transient transfection that endures for a significant duration. To address this gap, this study aims to formulate a transfection protocol utilizing multiple lipid-based nanoparticles (LNPs) administrations to enhance transfection efficiency (TE) to clinically relevant levels. By systematically fine-tuning and optimizing our transfection protocol through a series of iterative refinements, we have accomplished a remarkable one-order-of-magnitude augmentation in TE within the immortalized T-lymphocyte Jurkat cell line. This enhancement has been consistently observed over 2 weeks, and importantly, it has been achieved without any detrimental impact on cell viability. In the subsequent phase of our study, we aimed to optimize the gene delivery system by evaluating three lipid-based formulations tailored for DNA encapsulation using our refined protocol. These formulations encompassed two LNPs constructed from ionizable lipids and featuring systematic variations in lipid composition (iLNPs) and a cationic lipoplex (cLNP). Our findings showcased a notable standout among the three formulations, with cLNP emerging as a frontrunner for further refinement and integration into the production pipeline of CAR-T therapies. Consequently, cLNP was scrutinized for its potential to deliver CAR-encoding plasmid DNA to the HEK-293 cell line. Confocal microscopy experiments demonstrated its efficiency, revealing substantial internalization compared to iLNPs. By employing a recently developed confocal image analysis method, we substantiated that cellular entry of cLNP predominantly occurs through macropinocytosis. This mechanism leads to heightened intracellular endosomal escape and mitigates lysosomal accumulation. The successful expression of anti-CD19-CD28-CD3z, a CAR engineered to target CD19, a protein often expressed on the surface of B cells, was confirmed using a fluorescence-based assay. Overall, our results indicated the effectiveness of cLNP in gene delivery and suggested the potential of multiple administration transfection as a practical approach for refining T-cell engineering protocols in CAR therapies. Future investigations may focus on refining outcomes by adjusting transfection parameters like nucleic acid concentration, lipid-to-DNA ratio, and incubation time to achieve improved TE and increased gene expression levels.


Assuntos
Lipídeos , Teste de Materiais , Nanopartículas , Tamanho da Partícula , Transfecção , Humanos , Transfecção/métodos , Nanopartículas/química , Lipídeos/química , Células Jurkat , Materiais Biocompatíveis/química , Sobrevivência Celular/efeitos dos fármacos , DNA/administração & dosagem , DNA/química , Linfócitos T/metabolismo , Linfócitos T/citologia , Receptores de Antígenos Quiméricos/metabolismo
3.
Biomater Adv ; 161: 213904, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38805763

RESUMO

Engineered calcium carbonate (CaCO3) particles are extensively used as drug delivery systems due to their availability, biological compatibility, biodegradability, and cost-effective production. The synthesis procedure of CaCO3 particles, however, suffers from poor reproducibility. Furthermore, reducing the size of CaCO3 particles to <100 nm requires the use of additives in the reaction, which increases the total reaction time. Here we propose on-chip synthesis and loading of nanoscaled CaCO3 particles using microfluidics. After the development and fabrication of a microfluidic device, we optimized the synthesis of CaCO3 NPs by varying different parameters such as flow rates in the microfluidic channels, concentration of reagents, and the reaction time. To prove the versatility of the used synthesis route, we performed single and double loading of CaCO3 NPs with various compounds (Doxorubicin, Cy5 or FITC conjugated with BSA, and DNA) using the same microfluidic device. Further, the on-chip loaded CaCO3 NPs were used as carriers to transfer compounds to model cells. We have developed a microfluidic synthesis method that opens up a new pathway for easy on-chip fabrication of functional nanoparticles for clinical use.


Assuntos
Carbonato de Cálcio , Dispositivos Lab-On-A-Chip , Nanopartículas , Carbonato de Cálcio/química , Nanopartículas/química , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Humanos , Microfluídica/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Portadores de Fármacos/química , Tamanho da Partícula , DNA/química , DNA/administração & dosagem
4.
Int J Nanomedicine ; 19: 4235-4251, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38766661

RESUMO

Purpose: In recent years, microfluidic technologies have become mainstream in producing gene therapy nanomedicines (NMeds) following the Covid-19 vaccine; however, extensive optimizations are needed for each NMed type and genetic material. This article strives to improve LNPs for pDNA loading, protection, and delivery, while minimizing toxicity. Methods: The microfluidic technique was optimized to form cationic or neutral LNPs to load pDNA. Classical "post-formulation" DNA addition vs "pre" addition in the aqueous phase were compared. All formulations were characterized (size, homogeneity, zeta potential, morphology, weight yield, and stability), then tested for loading efficiency, nuclease protection, toxicity, and cell uptake. Results: Optimized LNPs formulated with DPPC: Chol:DOTAP 1:1:0.1 molar ratio and 10 µg of DOPE-Rhod, had a size of 160 nm and good homogeneity. The chemico-physical characteristics of cationic LNPs worsened when adding 15 µg/mL of pDNA with the "post" method, while maintaining their characteristics up to 100 µg/mL of pDNA with the "pre" addition remaining stable for 30 days. Interestingly, neutral LNPs formulated with the same method loaded up to 50% of the DNA. Both particles could protect the DNA from nucleases even after one month of storage, and low cell toxicity was found up to 40 µg/mL LNPs. Cell uptake occurred within 2 hours for both formulations with the DNA intact in the cytoplasm, outside of the lysosomes. Conclusion: In this study, the upcoming microfluidic technique was applied to two strategies to generate pDNA-LNPs. Cationic LNPs could load 10x the amount of DNA as the classical approach, while neutral LNPs, which also loaded and protected DNA, showed lower toxicity and good DNA protection. This is a big step forward at minimizing doses and toxicity of LNP-based gene therapy.


Assuntos
Cátions , DNA , Plasmídeos , Plasmídeos/administração & dosagem , Plasmídeos/química , Humanos , Cátions/química , DNA/química , DNA/administração & dosagem , Terapia Genética/métodos , Microfluídica/métodos , Tamanho da Partícula , Nanomedicina , COVID-19/prevenção & controle , Lipossomos/química , Transfecção/métodos , Nanopartículas/química , SARS-CoV-2 , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/química , Compostos de Amônio Quaternário/química , Ácidos Graxos Monoinsaturados
5.
J Control Release ; 369: 765-774, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593976

RESUMO

The combination of chemotherapy and gene therapy holds great promise for the treatment and eradication of tumors. However, due to significant differences in physicochemical properties between chemotherapeutic agents and functional nucleic acid drugs, direct integration into a single nano-agent is hindered, impeding the design and construction of an effective co-delivery nano-platform for synergistic anti-tumor treatments. In this study, we have developed an mRNA-responsive two-in-one nano-drug for effective anti-tumor therapy by the direct self-assembly of 2'-fluoro-substituted antisense DNA against P-glycoprotein (2'F-DNA) and chemo drug paclitaxel (PTX). The 2'-fluoro modification of DNA could significantly increase the interaction between the therapeutic nucleic acid and the chemotherapeutic drug, promoting the successful formation of 2'F-DNA/PTX nanospheres (2'F-DNA/PTX NSs). Due to the one-step self-assembly process without additional carrier materials, the prepared 2'F-DNA/PTX NSs exhibited considerable loading efficiency and bioavailability of PTX. In the presence of endogenous P-glycoprotein mRNA, the 2'F-DNA/PTX NSs were disassembled. The released 2'F-DNA could down-regulate the expression of P-glycoprotein, which decreased the multidrug resistance of tumor cells and enhanced the chemotherapy effect caused by PTX. In this way, the 2'F-DNA/PTX NSs could synergistically induce the apoptosis of tumor cells and realize the combined anti-tumor therapy. This strategy might provide a new tool to explore functional intracellular co-delivery nano-systems with high bioavailability and exhibit potential promising in the applications of accurate diagnosis and treatment of tumors.


Assuntos
Terapia Genética , Paclitaxel , RNA Mensageiro , RNA Mensageiro/administração & dosagem , Paclitaxel/administração & dosagem , Paclitaxel/farmacologia , Paclitaxel/química , Humanos , Animais , Terapia Genética/métodos , Linhagem Celular Tumoral , Camundongos Nus , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/farmacologia , Camundongos Endogâmicos BALB C , DNA/administração & dosagem , Nanopartículas/química , Feminino
6.
Biomaterials ; 308: 122559, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38583366

RESUMO

Lipid nanoparticles (LNPs) have recently emerged as successful gene delivery platforms for a diverse array of disease treatments. Efforts to optimize their design for common administration methods such as intravenous injection, intramuscular injection, or inhalation, revolve primarily around the addition of targeting ligands or the choice of ionizable lipid. Here, we employed a multi-step screening method to optimize the type of helper lipid and component ratios in a plasmid DNA (pDNA) LNP library to efficiently deliver pDNA through intraduodenal delivery as an indicative route for oral administration. By addressing different physiological barriers in a stepwise manner, we down-selected effective LNP candidates from a library of over 1000 formulations. Beyond reporter protein expression, we assessed the efficiency in non-viral gene editing in mouse liver mediated by LNPs to knockdown PCSK9 and ANGPTL3 expression, thereby lowering low-density lipoprotein (LDL) cholesterol levels. Utilizing an all-in-one pDNA construct with Strep. pyogenes Cas9 and gRNAs, our results showcased that intraduodenal administration of selected LNPs facilitated targeted gene knockdown in the liver, resulting in a 27% reduction in the serum LDL cholesterol level. This LNP-based all-in-one pDNA-mediated gene editing strategy highlights its potential as an oral therapeutic approach for hypercholesterolemia, opening up new possibilities for DNA-based gene medicine applications.


Assuntos
Edição de Genes , Lipídeos , Fígado , Nanopartículas , Animais , Edição de Genes/métodos , Fígado/metabolismo , Nanopartículas/química , Lipídeos/química , Camundongos , Plasmídeos/genética , Plasmídeos/administração & dosagem , Técnicas de Transferência de Genes , Camundongos Endogâmicos C57BL , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Humanos , DNA/administração & dosagem , DNA/genética , Duodeno/metabolismo
7.
Eur J Pharm Biopharm ; 199: 114297, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641228

RESUMO

Spray-drying of nucleic acid-based drugs designed for gene therapy or gene knockdown is associated with many advantages including storage stability and handling as well as the possibility of pulmonary application. The encapsulation of nucleic acids in nanoparticles prior to spray-drying is one strategy for obtaining efficient formulations. This, however, strongly relies on the definition of optimal nanoparticles, excipients and spray-drying conditions. Among polymeric nanoparticles, polyethylenimine (PEI)-based complexes with or without chemical modifications have been described previously as very efficient for gene or oligonucleotide delivery. The tyrosine-modification of linear or branched low molecular weight PEIs, or of polypropylenimine (PPI) dendrimers, has led to high complex stability, improved cell uptake and transfection efficacy as well as high biocompatibility. In this study, we identify optimal spray-drying conditions for PEI-based nanoparticles containing large plasmid DNA or small siRNAs, and further explore the spray-drying of nanoparticles containing chemically modified polymers. Poly(vinyl alcohol) (PVA), but not trehalose or lactose, is particularly well-suited as excipient, retaining or even enhancing transfection efficacies compared to fresh complexes. A big mesh size is critically important as well, while the variation of the spray-drying temperature plays a minor role. Upon spray-drying, microparticles in a âˆ¼ 3.3 - 8.5 µm size range (laser granulometry) are obtained, dependent on the polymers. Upon their release from the spray-dried material, the nanoparticles show increased sizes and markedly altered zeta potentials as compared to their fresh counterparts. This may contribute to their high efficacy that is seen also after prolonged storage of the spray-dried material. We conclude that these spray-dried systems offer a great potential for the preparation of nucleic acid drug storage forms with facile reconstitution, as well as for their direct pulmonary application as dry powder.


Assuntos
DNA , Nanopartículas , Polietilenoimina , RNA Interferente Pequeno , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/química , Nanopartículas/química , Polietilenoimina/química , DNA/administração & dosagem , DNA/química , Humanos , Técnicas de Transferência de Genes , Secagem por Atomização , Transfecção/métodos , Polipropilenos/química , Excipientes/química , Tamanho da Partícula , Plasmídeos/administração & dosagem , Dessecação/métodos , Álcool de Polivinil/química
8.
Eur J Pharm Biopharm ; 199: 114299, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643953

RESUMO

Lipid-polymer nanoparticles offer a promising strategy for improving gene nanomedicines by combining the benefits of biocompatibility and stability associated with the individual systems. However, research to date has focused on poly-lactic-co-glycolic acid (PLGA) and resulted in inefficient transfection. In this study, biocompatible Eudragit constructs E100 and RS100 were formulated as lipid-polymer nanoparticles loaded with pDNA expressing red fluorescent protein (RFP) as a model therapeutic. Using a facile nanoprecipitation technique, a core-shell structure stabilised by lipid-polyethylene glycol (PEG) surfactant was produced and displayed resistance to ultracentrifugation. Both cationic polymers E100 (pH-sensitive dissolution at 5) and RS100 (pH-insensitive dissolution) produced 150-200 nm sized particles with a small positive surface charge (+3-5 mV) and high pDNA encapsulation efficiencies (EE) of 75-90%. The dissolution properties of the Eudragit polymers significantly impacted the biological performance in human embryonic kidney cells (HEK293T). Nanoparticles composed of polymer RS100 resulted in consistently high cell viability (80-100%), whereas polymer E100 demonstrated dose-dependent behaviour (20-90% cell viability). The low dissolution of polymer RS100 over the full pH range and the resulting nanoparticles failed to induce RFP expression in HEK293T cells. In contrast, polymer E100-constructed nanoparticles resulted in reproducible and gradually increasing RFP expression of 26-42% at 48-72 h. Intraperitoneal (IP) injection of the polymer E100-based nanoparticles in C57BL/6 mice resulted in targeted RFP expression in mouse testes with favourable biocompatibility one-week post-administration. These findings predicate Eudragit based lipid-polymer nanoparticles as a novel and effective carrier for nucleic acids, which could facilitate pre-clinical evaluation and translation of gene nanomedicines.


Assuntos
DNA , Nanopartículas , Plasmídeos , Transfecção , Humanos , Animais , Nanopartículas/química , Concentração de Íons de Hidrogênio , Plasmídeos/administração & dosagem , Transfecção/métodos , Células HEK293 , Camundongos , DNA/administração & dosagem , DNA/química , Lipídeos/química , Polímeros/química , Solubilidade , Tamanho da Partícula , Polietilenoglicóis/química , Proteína Vermelha Fluorescente , Ácidos Polimetacrílicos/química , Masculino , Acrilatos
9.
Biomater Sci ; 12(9): 2331-2340, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38488889

RESUMO

Pseudomonas aeruginosa (PA) is one of the most common multidrug-resistant pathogens found in clinics, often manifesting as biofilms. However, due to the emergence of superbugs in hospitals and the overuse of antibiotics, the prevention and treatment of PA infections have become increasingly challenging. Utilizing DNA nanostructures for packaging and delivering antibiotics presents an intervention strategy with significant potential. Nevertheless, construction of functional DNA nanostructures with multiple functionalities and enhanced stability in physiological settings remains challenging. In this study, the authors propose a magnesium-free assembly method that utilizes tobramycin (Tob) as a mediator to assemble DNA nanostructures, allowing for the functionalization of DNA nanostructures by combining DNA and antibiotics. Additionally, our study incorporates maleimide-modified DNA into the nanostructures to act as a targeting moiety specifically directed towards the pili of PA. The targeting ability of the constructed functional DNA nanostructure significantly improves the local concentration of Tob, thereby reducing the side effects of antibiotics. Our results demonstrate the successful construction of a maleimide-decorated Tob/DNA nanotube (NTTob-Mal) for the treatment of PA-infected lung inflammation. The stability and biocompatibility of NTTob-Mal are confirmed, highlighting its potential for clinical applications. Furthermore, its specificity in recognizing and adhering to PA has been validated. In vitro experiments have shown its efficacy in inhibiting PA biofilm formation, and in a murine model, NTTob-Mal has exhibited significant therapeutic effectiveness against PA-induced pneumonia. In summary, the proposed antibiotic drug-mediated DNA nanostructure assembly approach holds promise as a novel strategy for targeted treatment of PA infections.


Assuntos
Antibacterianos , DNA , Nanoestruturas , Pneumonia , Infecções por Pseudomonas , Pseudomonas aeruginosa , Tobramicina , Pseudomonas aeruginosa/efeitos dos fármacos , Tobramicina/farmacologia , Tobramicina/administração & dosagem , Tobramicina/química , Animais , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/administração & dosagem , Nanoestruturas/química , Nanoestruturas/administração & dosagem , Camundongos , DNA/química , DNA/administração & dosagem , Pneumonia/tratamento farmacológico , Pneumonia/microbiologia , Humanos , Biofilmes/efeitos dos fármacos , Testes de Sensibilidade Microbiana
10.
Biomater Sci ; 12(9): 2381-2393, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38500446

RESUMO

The inability to systemic administration of nanoparticles, particularly cationic nanoparticles, has been a significant barrier to their clinical translation due to toxicity concerns. Understanding the in vivo behavior of cationic lipids is crucial, given their potential impact on critical biological components such as immune cells and hematopoietic stem cells (HSC). These cells are essential for maintaining the body's homeostasis, and their interaction with cationic lipids is a key factor in determining the safety and efficacy of these nanoparticles. In this study, we focused on the cytotoxic effects of cationic lipid/DNA complexes (CLN/DNA). Significantly, we observed that the most substantial cytotoxic effects, including a marked increase in numbers of long-term hematopoietic stem cells (LT-HSC), occurred 24 h post-CLN/DNA treatment in mice. Furthermore, we found that CLN/DNA-induced HSC expansion in bone marrow (BM) led to a notable decrease in the ability to reestablish blood cell production. Our study provides crucial insights into the interaction between cationic lipids and vital cellular components of the immune and hematopoietic systems.


Assuntos
Cátions , DNA , Células-Tronco Hematopoéticas , Lipídeos , Animais , DNA/química , DNA/administração & dosagem , Células-Tronco Hematopoéticas/efeitos dos fármacos , Camundongos , Cátions/química , Lipídeos/química , Nanopartículas/química , Nanopartículas/administração & dosagem , Camundongos Endogâmicos C57BL
11.
J Control Release ; 369: 251-265, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493950

RESUMO

Immunotherapy is currently a standard of care in the treatment of many malignancies. However, predictable side effects caused by systemic administration of highly immunostimulatory molecules have been a serious concern within this field. Intratumoural expression or silencing of immunogenic and immunoinhibitory molecules using nucleic acid-based approaches such as plasmid DNA (pDNA) and small interfering RNA (siRNA), respectively, could represent a next generation of cancer immunotherapy. Here, we employed lipid nanoparticles (LNPs) to deliver either non-specific pDNA and siRNA, or constructs targeting two prominent immunotherapeutic targets OX40L and indoleamine 2,3-dioxygenase-1 (IDO), to tumours in vivo. In the B16F10 mouse model, intratumoural delivery of LNP-formulated non-specific pDNA and siRNA led to strong local immune activation and tumour growth inhibition even at low doses due to the pDNA immunogenic nature. Replacement of these non-specific constructs by pOX40L and siIDO resulted in more prominent immune activation as evidenced by increased immune cell infiltration in tumours and tumour-draining lymph nodes. Consistently, pOX40L alone or in combination with siIDO could prolong overall survival, resulting in complete tumour regression and the formation of immunological memory in tumour rechallenge models. Our results suggest that intratumoural administration of LNP-formulated pDNA and siRNA offers a promising approach for cancer immunotherapy.


Assuntos
DNA , Imunoterapia , Camundongos Endogâmicos C57BL , Nanopartículas , Plasmídeos , RNA Interferente Pequeno , Animais , Imunoterapia/métodos , RNA Interferente Pequeno/administração & dosagem , Nanopartículas/administração & dosagem , Nanopartículas/química , Plasmídeos/administração & dosagem , DNA/administração & dosagem , DNA/imunologia , Camundongos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Feminino , Linhagem Celular Tumoral , Melanoma Experimental/terapia , Melanoma Experimental/imunologia , Lipídeos/química , Lipídeos/administração & dosagem , Portadores de Fármacos/química
12.
Bull Exp Biol Med ; 174(1): 104-108, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36437316

RESUMO

We studied the relationship between the level of cytokines in the lymph of the thoracic duct and the morphometric parameters of the mesenteric lymph nodes after surgical treatment of breast cancer, chemotherapy, and administration of fragmented (double-stranded, dsDNA) human DNA. In comparison with surgical treatment and with chemotherapy alone, administration of a human dsDNA has a stimulating effect on the T-cell link of the immune response. In the paracortical zone, the relationship between the chemokine MCP-1 and increased content of small lymphocytes in this zone was revealed. Interrelations of IL-2 cytokines with small lymphocytes and of IL-4 with medium lymphocytes were revealed in germinal centers. We also observed interrelations of IL-7 with small lymphocytes and IL-4 with macrophages in the medullary cords, chemokine MIP-1α with immature and mature plasma cells (the number of these cells is reduced), and of MCP-1 with immunoblasts (the number of which is also reduced) in the medullary sinuses.


Assuntos
Adjuvantes Imunológicos , Neoplasias da Mama , Citocinas , DNA , Linfonodos , Neoplasias Mamárias Animais , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/cirurgia , Neoplasias da Mama/terapia , Quimiocinas/metabolismo , Citocinas/metabolismo , DNA/administração & dosagem , Interleucina-4/metabolismo , Linfa/metabolismo , Linfonodos/metabolismo , Animais , Ratos , Ratos Wistar , Neoplasias Mamárias Animais/tratamento farmacológico , Neoplasias Mamárias Animais/cirurgia , Neoplasias Mamárias Animais/terapia , Adjuvantes Imunológicos/administração & dosagem , Linfócitos T/imunologia
13.
Food Funct ; 13(18): 9383-9390, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-35959802

RESUMO

A placebo-controlled, randomised, double-blind, parallel-group comparative study was conducted to investigate the effect of continuous intake of salmon milt (SM) DNA for 12 weeks on the improvement of liver function in 50 healthy Japanese participants aged 30 to 70 years with alanine aminotransferase (ALT) levels of 25-87 U L-1 in men, 22-66 U L-1 in women, of BMI 22.1-29.4 kg m-2. Comparative analysis of hepatic functions and several other parameters, including anthropometric parameters in placebo and SM DNA administered groups, revealed no significant differences in serum ALT level. SM DNA significantly improved the liver-to-spleen (L/S) ratio, body weight, and BMI in the main group. In addition to these parameters, in the BMI < 25 kg m-2 subgroup, the leptin level was significantly reduced. No adverse reactions or abnormal changes, symptoms, or findings in the clinical examination after intake of the test food containing SM DNA were observed. Furthermore, no significant difference in uric acid levels between SM DNA and placebo groups indicated the safety of using SM DNA as a food supplement. These results demonstrated the potential fatty liver improvement and anti-obesity action of continuous intake of SM DNA for 12 weeks without any significant adverse effects.


Assuntos
DNA , Suplementos Nutricionais , Fígado , Alanina Transaminase , Animais , DNA/administração & dosagem , Método Duplo-Cego , Feminino , Humanos , Japão , Leptina , Fígado/fisiologia , Masculino , Oncorhynchus keta , Ácido Úrico
14.
Food Funct ; 13(18): 9372-9382, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-35959845

RESUMO

The increased prevalence of nonalcoholic fatty liver disease (NAFLD) is a critical public health concern. Deoxyribonucleic acid (DNA) from chum salmon (Oncorhynchus keta) milt (salmon milt DNA; SM DNA), a by-product obtained during industrial processing of the pharmaceutical raw material protamine, ameliorates hepatosteatosis in animals. This randomised, double-blind, parallel-group comparative study evaluated the effects of SM DNA on hepatic function in healthy Japanese participants with slightly decreased liver function and high alanine aminotransferase level and body mass index. Fifty participants were included in the study. The participants were divided into the placebo (n = 24) and SM DNA (n = 26) groups and administered equal doses of placebo (dextrin) and SM DNA (530 mg day-1), respectively. No significant alleviating effects of SM DNA were observed on the primary (hepatic functions and liver-to-spleen ratio), and secondary (NAFLD fibrosis score, serum protein levels, blood glucose, blood lipids, inflammatory markers, adipokines, cytokines, fatigue scoring, and skin conditions) endpoints. Subsequently, a sex-based subgroup analysis revealed a significant improvement in the primary and secondary outcomes in males ingesting SM DNA compared with those in males who were administered placebo. However, no such effect was observed in females. Overall, this clinical study demonstrated the anti-obesity potential of SM DNA and suggested that SM DNA can benefit hepatic function in males.


Assuntos
DNA , Suplementos Nutricionais , Hepatopatia Gordurosa não Alcoólica , Adipocinas , Alanina Transaminase , Animais , Glicemia , Citocinas , DNA/administração & dosagem , Dextrinas , Método Duplo-Cego , Feminino , Humanos , Masculino , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Oncorhynchus keta , Protaminas/uso terapêutico
15.
Adv Mater ; 34(46): e2204287, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35901292

RESUMO

MicroRNA (miR)-based therapy shows strong potential; however, structural limitations pose a challenge in fully exploiting its biomedical functionality. Tetrahedral framework DNA (tFNA) has proven to be an ideal vehicle for miR therapy. Inspired by the ancient Chinese myth "Sun and Immortal Birds," a novel bioswitchable miR inhibitor delivery system (BiRDS) is designed with three miR inhibitors (the three immortal birds) and a nucleic acid core (the central sun). The BiRDS fuses miR inhibitors within the framework, maximizing their loading capacity, while allowing the system to retain the characteristics of small-sized tFNA and avoiding uncertainty associated with RNA exposure in traditional loading protocols. The RNase H-responsive sequence at the tail of each "immortal bird" enables the BiRDS to transform from a 3D to a 2D structure upon entering cells, promoting the delivery of miR inhibitors. To confirm the application potential, the BiRDS is used to deliver the miR-31 inhibitor, with antiaging effects on hair follicle stem cells, into a skin aging model. Superior skin penetration ability and RNA delivery are observed with significant anti-aging effects. These findings demonstrate the capability and editability of the BiRDS to improve the stability and delivery efficacy of miRs for future innovations.


Assuntos
DNA , Sistemas de Liberação de Medicamentos , MicroRNAs , Envelhecimento da Pele , DNA/administração & dosagem , DNA/uso terapêutico , MicroRNAs/antagonistas & inibidores , Pele , Humanos , Folículo Piloso/citologia , Células-Tronco/efeitos dos fármacos
16.
Front Immunol ; 12: 753472, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899704

RESUMO

When compartmentally mislocalized within cells, nucleic acids can be exceptionally immunostimulatory and can even trigger the immune-mediated elimination of cancer. Specifically, the accumulation of double-stranded DNA in the cytosol can efficiently promote antitumor immunity by activating the cGAMP synthase (cGAS) / stimulator of interferon genes (STING) cellular signaling pathway. Targeting this cytosolic DNA sensing pathway with interferon stimulatory DNA (ISD) is therefore an attractive immunotherapeutic strategy for the treatment of cancer. However, the therapeutic activity of ISD is limited by several drug delivery barriers, including susceptibility to deoxyribonuclease degradation, poor cellular uptake, and inefficient cytosolic delivery. Here, we describe the development of a nucleic acid immunotherapeutic, NanoISD, which overcomes critical delivery barriers that limit the activity of ISD and thereby promotes antitumor immunity through the pharmacological activation of cGAS at the forefront of the STING pathway. NanoISD is a nanoparticle formulation that has been engineered to confer deoxyribonuclease resistance, enhance cellular uptake, and promote endosomal escape of ISD into the cytosol, resulting in potent activation of the STING pathway via cGAS. NanoISD mediates the local production of proinflammatory cytokines via STING signaling. Accordingly, the intratumoral administration of NanoISD induces the infiltration of natural killer cells and T lymphocytes into murine tumors. The therapeutic efficacy of NanoISD is demonstrated in preclinical tumor models by attenuated tumor growth, prolonged survival, and an improved response to immune checkpoint blockade therapy.


Assuntos
DNA , Sistemas de Liberação de Medicamentos , Nanopartículas , Nucleotidiltransferases , Animais , Feminino , Humanos , Camundongos , Neoplasias do Colo/terapia , Citocinas/biossíntese , Citocinas/genética , DNA/administração & dosagem , DNA/síntese química , DNA/farmacologia , DNA/uso terapêutico , Ensaios de Seleção de Medicamentos Antitumorais , Endossomos/fisiologia , Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Linfócitos do Interstício Tumoral/imunologia , Neoplasias Mamárias Experimentais/terapia , Melanoma Experimental/terapia , Proteínas de Membrana/fisiologia , Camundongos Endogâmicos C57BL , Nanopartículas/administração & dosagem , Nanopartículas/uso terapêutico , Neoplasias/imunologia , Nucleotidiltransferases/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Tionucleotídeos/farmacologia , Microambiente Tumoral/efeitos dos fármacos
17.
ACS Appl Mater Interfaces ; 13(48): 58220-58228, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34793117

RESUMO

Patch-type drug delivery has garnered increased attention as an attractive alternative to the existing drug delivery techniques. Thus far, needle phobia and efficient drug delivery remain huge challenges. To address the issue of needle phobia and enhance drug delivery, we developed a needle-free and self-adhesive microcup patch that can be loaded with an ultrathin salmon DNA (SDNA) drug carrier film. This physically integrated system can facilitate efficient skin penetration of drugs loaded into the microcup patch. The system consists of three main components, namely, a cup that acts as a drug reservoir, an adhesive system that attaches the patch to the skin, and physical stimulants that can be used to increase the efficiency of drug delivery. In addition, an ultrathin SDNA/drug film allows the retention of the drug in the cup and its efficient release by dissolution in the presence of moisture. This latter feature has been validated using gelatin as a skin mimic. The cup design itself has been validated by comparing its deformation and displacement with those of a cylindrical structure. Integration of the self-adhesive microcup patch with both ultrasonic waves and an electric current allows the model drug to penetrate the stratum corneum of the skin barrier and the whole epidermis, thereby enhancing transdermal drug delivery and reducing skin irritation. This system can be used as a wearable biomedical device for efficient transdermal and needle-free drug delivery.


Assuntos
Materiais Biocompatíveis/química , DNA/química , Sistemas de Liberação de Medicamentos , Pele/química , Adesivos , Administração Cutânea , Animais , Materiais Biocompatíveis/administração & dosagem , DNA/administração & dosagem , Portadores de Fármacos/química , Teste de Materiais , Agulhas , Salmão
18.
ACS Synth Biol ; 10(10): 2552-2565, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34601868

RESUMO

Genome editing methods based on group II introns (known as targetron technology) have long been used as a gene knockout strategy in a wide range of organisms, in a fashion independent of homologous recombination. Yet, their utility as delivery systems has typically been suboptimal due to the reduced efficiency of insertion when carrying exogenous sequences. We show that this limitation can be tackled and targetrons can be adapted as a general tool in Gram-negative bacteria. To this end, a set of broad-host-range standardized vectors were designed for the conditional expression of the Ll.LtrB intron. After establishing the correct functionality of these plasmids in Escherichia coli and Pseudomonas putida, we created a library of Ll.LtrB variants carrying cargo DNA sequences of different lengths, to benchmark the capacity of intron-mediated delivery in these bacteria. Next, we combined CRISPR/Cas9-facilitated counterselection to increase the chances of finding genomic sites inserted with the thereby engineered introns. With these novel tools, we were able to insert exogenous sequences of up to 600 bp at specific genomic locations in wild-type P. putida KT2440 and its ΔrecA derivative. Finally, we applied this technology to successfully tag P. putida with an orthogonal short sequence barcode that acts as a unique identifier for tracking this microorganism in biotechnological settings. These results show the value of the targetron approach for the unrestricted delivery of small DNA fragments to precise locations in the genomes of Gram-negative bacteria, which will be useful for a suite of genome editing endeavors.


Assuntos
Sistemas CRISPR-Cas , DNA/administração & dosagem , Pseudomonas putida/genética , DNA/genética , Código de Barras de DNA Taxonômico , Edição de Genes/métodos , Genes Bacterianos , Íntrons , Plasmídeos
19.
Adv Drug Deliv Rev ; 179: 113994, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34619287

RESUMO

Traditional nanoparticle carriers such as liposomes, micelles, and polymeric vehicles improve drug delivery by protecting, stabilizing, and increasing the circulatory half-life of the encapsulated drugs. However, traditional drug delivery systems frequently suffer from poor drug loading and require an excess of carrier materials. This carrier material excess poses an additional systemic burden through accumulation, if not degradable the need for metabolism, and potential toxicity. To address these shortcomings, minimal-carrier nanoparticle systems and pharmacoactive carrier materials have been developed. Both solutions provide drug delivery systems in which the majority of the nanoparticle is pharmacologically active. While minimal-carrier and pharmacoactive drug delivery systems can improve drug loading, they can also suffer from poor stability. Here, we review minimal-carrier and pharmacoactive delivery systems, discuss ongoing challenges and outline opportunities to translate minimal-carrier and pharmacoactive drug delivery systems into the clinic.


Assuntos
Sistemas de Liberação de Fármacos por Nanopartículas/química , Sistemas de Liberação de Fármacos por Nanopartículas/uso terapêutico , DNA/administração & dosagem , Portadores de Fármacos/uso terapêutico , Estabilidade de Medicamentos , Humanos , Sistemas de Liberação de Fármacos por Nanopartículas/administração & dosagem , Tamanho da Partícula , Pró-Fármacos , Proteínas/administração & dosagem , RNA/administração & dosagem
20.
Int J Mol Sci ; 22(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34445802

RESUMO

Osteoporosis is commonly treated via the long-term usage of anti-osteoporotic agents; however, poor drug compliance and undesirable side effects limit their treatment efficacy. The parathyroid hormone-related protein (PTHrP) is essential for normal bone formation and remodeling; thus, may be used as an anti-osteoporotic agent. Here, we developed a platform for the delivery of a single peptide composed of two regions of the PTHrP protein (1-34 and 107-139); mcPTHrP 1-34+107-139 using a minicircle vector. We also transfected mcPTHrP 1-34+107-139 into human mesenchymal stem cells (MSCs) and generated Thru 1-34+107-139-producing engineered MSCs (eMSCs) as an alternative delivery system. Osteoporosis was induced in 12-week-old C57BL/6 female mice via ovariectomy. The ovariectomized (OVX) mice were then treated with the two systems; (1) mcPTHrP 1-34+107-139 was intravenously administered three times (once per week); (2) eMSCs were intraperitoneally administered twice (on weeks four and six). Compared with the control OVX mice, the mcPTHrP 1-34+107-139-treated group showed better trabecular bone structure quality, increased bone formation, and decreased bone resorption. Similar results were observed in the eMSCs-treated OVX mice. Altogether, these results provide experimental evidence to support the potential of delivering PTHrP 1-34+107-139 using the minicircle technology for the treatment of osteoporosis.


Assuntos
Reabsorção Óssea/tratamento farmacológico , DNA/administração & dosagem , Osteogênese/efeitos dos fármacos , Proteína Relacionada ao Hormônio Paratireóideo/administração & dosagem , Animais , Densidade Óssea/efeitos dos fármacos , Linhagem Celular , Feminino , Células HEK293 , Humanos , Injeções Intravenosas/métodos , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Osteoporose/tratamento farmacológico , Ovariectomia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA