Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Chem Biol Interact ; 352: 109772, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34896366

RESUMO

In the present study it was hypothesized that 5-((4-methoxyphenyl)thio)benzo[c][1,2,5] thiodiazole (MTDZ), a new acetylcholinesterase inhibitor, exerts antinociceptive action and reduces the oxaliplatin (OXA)-induced peripheral neuropathy and its comorbidities (anxiety and cognitive deficits). Indeed, the acute antinociceptive activity of MTDZ (1 and 10 mg/kg; per oral route) was observed for the first time in male Swiss mice in formalin and hot plate tests and on mechanical withdrawal threshold induced by Complete Freund's Adjuvant (CFA). To evaluate the MTDZ effect on OXA-induced peripheral neuropathy and its comorbidities, male and female Swiss mice received OXA (10 mg/kg) or vehicle intraperitoneally, on days 0 and 2 of the experimental protocol. Oral administration of MTDZ (1 mg/kg) or vehicle was performed on days 2-14. OXA caused cognitive impairment, anxious-like behaviour, mechanical and thermal hypersensitivity in animals, with females more susceptible to thermal sensitivity. MTDZ reversed the hypersensitivity, cognitive impairment and anxious-like behaviour induced by OXA. Here, the negative correlation between the paw withdrawal threshold caused by OXA and acetylcholinesterase (AChE) activity was demonstrated in the cortex, hippocampus, and spinal cord. OXA inhibited the activity of total ATPase, Na+ K+ - ATPase, Ca2+ - ATPase and altered Mg2+ - ATPase in the cortex, hippocampus, and spinal cord. OXA exposure increased reactive species (RS) levels and superoxide dismutase (SOD) activity in the cortex, hippocampus, and spinal cord. MTDZ modulated ion pumps and reduced the oxidative stress induced by OXA. In conclusion, MTDZ is an antinociceptive molecule promising to treat OXA-induced neurotoxicity since it reduced nociceptive and anxious-like behaviours, and cognitive deficit in male and female mice.


Assuntos
Benzoatos/uso terapêutico , Inibidores da Colinesterase/uso terapêutico , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/enzimologia , Tiadiazóis/uso terapêutico , Tiazóis/uso terapêutico , Adenosina Trifosfatases/metabolismo , Analgésicos/química , Analgésicos/uso terapêutico , Animais , Ansiedade/induzido quimicamente , Ansiedade/tratamento farmacológico , Benzoatos/química , Carbamatos , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/enzimologia , Inibidores da Colinesterase/química , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Modelos Animais de Doenças , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/enzimologia , Indóis , Masculino , Camundongos , Oxaliplatina/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Medula Espinal/efeitos dos fármacos , Medula Espinal/enzimologia , Tiadiazóis/química , Tiazóis/química
2.
J Peripher Nerv Syst ; 26(1): 4-16, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33449435

RESUMO

Initially identified in Drosophila, the Hippo signaling pathway regulates how cells respond to their environment by controlling proliferation, migration and differentiation. Many recent studies have focused on characterizing Hippo pathway function and regulation in mammalian cells. Here, we present a brief overview of the major components of the Hippo pathway, as well as their regulation and function. We comprehensively review the studies that have contributed to our understanding of the Hippo pathway in the function of the peripheral nervous system and in peripheral nerve diseases. Finally, we discuss innovative approaches that aim to modulate Hippo pathway components in diseases of the peripheral nervous system.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Doenças do Sistema Nervoso Periférico , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Animais , Humanos , Doenças do Sistema Nervoso Periférico/enzimologia , Doenças do Sistema Nervoso Periférico/genética , Doenças do Sistema Nervoso Periférico/terapia
3.
Int J Mol Sci ; 21(19)2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33049996

RESUMO

Charcot-Marie-Tooth disease (CMT) is one of the most common inherited peripheral neuropathies. CMT patients typically show slowly progressive muscle weakness and sensory loss in a distal dominant pattern in childhood. The diagnosis of CMT is based on clinical symptoms, electrophysiological examinations, and genetic testing. Advances in genetic testing technology have revealed the genetic heterogeneity of CMT; more than 100 genes containing the disease causative mutations have been identified. Because a single genetic alteration in CMT leads to progressive neurodegeneration, studies of CMT patients and their respective models revealed the genotype-phenotype relationships of targeted genes. Conventionally, rodents and cell lines have often been used to study the pathogenesis of CMT. Recently, Drosophila has also attracted attention as a CMT model. In this review, we outline the clinical characteristics of CMT, describe the advantages and disadvantages of using Drosophila in CMT studies, and introduce recent advances in CMT research that successfully applied the use of Drosophila, in areas such as molecules associated with mitochondria, endosomes/lysosomes, transfer RNA, axonal transport, and glucose metabolism.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Modelos Animais de Doenças , Drosophila melanogaster/genética , Doenças do Sistema Nervoso Periférico/genética , Aminoacil-tRNA Sintetases/genética , Animais , Transporte Axonal/genética , Doença de Charcot-Marie-Tooth/classificação , Doença de Charcot-Marie-Tooth/enzimologia , Criança , Humanos , Membranas Intracelulares/metabolismo , L-Iditol 2-Desidrogenase/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação , Doenças do Sistema Nervoso Periférico/classificação , Doenças do Sistema Nervoso Periférico/enzimologia
4.
Neuroreport ; 31(15): 1084-1089, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32881777

RESUMO

Cervical nerve root injury induces a host of inflammatory mediators in the spinal cord that initiate and maintain neuronal hyperexcitability and pain. Secretory phospholipase A2 (sPLA2) is an enzyme that has been implicated as a mediator of pain onset and maintenance in inflammation and neural injury. Although sPLA2 modulates nociception and excitatory neuronal signaling in vitro, its effects on neuronal activity and central sensitization early after painful nerve root injury are unknown. This study investigated whether inhibiting spinal sPLA2 at the time of nerve root compression (NRC) modulates the pain, dorsal horn hyperexcitability, and spinal genes involved in glutamate signaling, nociception, and inflammation that are seen early after injury. Rats underwent a painful C7 NRC injury with immediate intrathecal administration of the sPLA2 inhibitor thioetheramide-phosphorlycholine. Additional groups underwent either injury alone or sham surgery. One day after injury, behavioral sensitivity, spinal neuronal excitability, and spinal cord gene expression for glutamate receptors (mGluR5 and NR1) and transporters (GLT1 and EAAC1), the neuropeptide substance P, and pro-inflammatory cytokines (TNFα, IL1α, and IL1ß) were assessed. Treatment with the sPLA2 inhibitor prevented mechanical allodynia, attenuated neuronal hyperexcitability in the spinal dorsal horn, restored the proportion of spinal neurons classified as wide dynamic range, and reduced genes for mGluR5, substance P, IL1α, and IL1ß to sham levels. These findings indicate spinal regulation of central sensitization after painful neuropathy and suggest that spinal sPLA2 is implicated in those early spinal mechanisms of neuronal excitability, perhaps via glutamate signaling, neurotransmitters, or inflammatory cascades.


Assuntos
Genes Reguladores/fisiologia , Síndromes de Compressão Nervosa/enzimologia , Neuroimunomodulação/fisiologia , Fosfolipases A2 Secretórias/antagonistas & inibidores , Fosfolipases A2 Secretórias/metabolismo , Raízes Nervosas Espinhais/enzimologia , Animais , Genes Reguladores/efeitos dos fármacos , Injeções Espinhais , Masculino , Síndromes de Compressão Nervosa/tratamento farmacológico , Síndromes de Compressão Nervosa/genética , Neuroimunomodulação/efeitos dos fármacos , Dor/tratamento farmacológico , Dor/enzimologia , Dor/genética , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/enzimologia , Doenças do Sistema Nervoso Periférico/genética , Fosfatidilcolinas/administração & dosagem , Radiculopatia/tratamento farmacológico , Radiculopatia/enzimologia , Radiculopatia/genética , Ratos , Ratos Sprague-Dawley , Raízes Nervosas Espinhais/efeitos dos fármacos
5.
Eur J Pharmacol ; 880: 173161, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32416188

RESUMO

Nucleoside reverse transcriptase inhibitors (NRTIs) are associated with the development of painful neuropathies and may further aggravate sensory neuropathy produced by HIV-1 infection, leading to discontinuation of NRTI therapy by HIV patients. Following antiretroviral-induced peripheral neuropathy, c-Jun N-terminal kinase (JNK) is activated in the dorsal root ganglia (DRG) and spinal cord. However, the contribution of individual JNK genes remains unknown. Here, we have tested the behavioural mechanical sensitivity of JNK1, JNK2 and JNK3 knockout (KO) mice in the von Frey test after treatment with 2',3'-dideoxycytidine (ddC). Protein expression was investigated in the spinal cord of wild type (wt) and KO mice by western blotting. The onset of neuropathic pain was prevented by the deletion of JNK3, leading us to hypothesize that JNK3 protein plays a major role in the regulation of pain threshold in antiretroviral neuropathy. The growth-associated protein 43 (GAP-43) and the transcription factor c-Jun are involved in regeneration processes. This study revealed an up-regulation of GAP-43 and c-Jun protein, 14 days after ddC administration. JNK1 deletion induced a significant reduction in c-Jun phosphorylation and GAP-43 protein contents. In contrast, there was no difference in ddC-induced reduction of hind paw intraepidermal nerve fibre density in all JNK KO mice. Overall, these findings indicate that JNK3 plays a critical role in regulating ddC neurotoxicity-induced mechanical pain hypersensitivity, while JNK1 is important for activation of c-Jun and GAP-43 as a critical pathway of a regeneration program. These data highlight the impact of individual JNK isoforms on antiretroviral neurotoxicity and neuro-regeneration processes.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Dor/enzimologia , Doenças do Sistema Nervoso Periférico/enzimologia , Animais , Antirretrovirais , Modelos Animais de Doenças , Isoenzimas/genética , Isoenzimas/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Camundongos Knockout , Dor/induzido quimicamente , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Zalcitabina
6.
Mod Pathol ; 33(3): 420-430, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31481664

RESUMO

Lipomatosis of nerve is a rare malformation characterized by a fibrolipomatous proliferation within peripheral nerve. Lipomatosis of nerve most frequently involves the median nerve, and manifests clinically as a compressive neuropathy. However, 30-60% of cases are associated with tissue overgrowth within the affected nerve's territory (e.g., macrodactyly for lipomatosis of nerve in the distal median nerve). Somatic activating PIK3CA mutations have been identified in peripheral nerve from patients with lipomatosis of nerve with type I macrodactyly, which is now classified as a PIK3CA-related overgrowth spectrum disorder. However, the PIK3CA mutation status of histologically confirmed lipomatosis of nerve, including cases involving proximal nerves, and cases without territory overgrowth, has not been determined. Fourteen histologically confirmed cases of lipomatosis of nerve involving the median (N = 6), brachial plexus (N = 1), ulnar (N = 3), plantar (N = 2), sciatic and superficial peroneal nerves (N = 1 each) were included. Ten cases had nerve territory overgrowth, ranging from macrodactyly to hemihypertrophy; and four cases had no territory overgrowth. Exome sequencing revealed "hotspot" activating PIK3CA missense mutations in 6/7 cases. Droplet digital polymerase chain reaction for the five most common PIK3CA mutations (p.H1047R, p.H1047L, p.E545K, p.E542K, and p.C420R) confirmed the exome results and identified an additional six cases with mutations (12/14 total). PIK3CA mutations were found in 8/10 cases with territory overgrowth (N = 7 p.H1047R and N = 1 p.E545K), including two proximal nerve cases with extremity overgrowth, and 4/4 cases without territory overgrowth (p.H1047R and p.H1047L, N = 2 each). The variant allele frequency of PIK3CA mutations (6-32%) did not correlate with the overgrowth phenotype. Three intraneural lipomas had no detected PIK3CA mutations. As PIK3CA mutations are frequent events in lipomatosis of nerve, irrespective of anatomic site or territory overgrowth, we propose that all phenotypic variants of this entity be classified within the PIK3CA-related overgrowth spectrum and termed "PIK3CA-related lipomatosis of nerve".


Assuntos
Proliferação de Células , Classe I de Fosfatidilinositol 3-Quinases/genética , Lipomatose/genética , Mutação , Nervos Periféricos/enzimologia , Doenças do Sistema Nervoso Periférico/genética , Adulto , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Predisposição Genética para Doença , Humanos , Recém-Nascido , Lipomatose/enzimologia , Lipomatose/patologia , Masculino , Nervos Periféricos/patologia , Doenças do Sistema Nervoso Periférico/enzimologia , Doenças do Sistema Nervoso Periférico/patologia , Fenótipo , Reação em Cadeia da Polimerase , Terminologia como Assunto , Sequenciamento do Exoma
7.
Hum Mol Genet ; 29(2): 177-188, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31868880

RESUMO

Mitochondria undergo continuous cycles of fusion and fission in response to physiopathological stimuli. The key player in mitochondrial fission is dynamin-related protein 1 (DRP1), a cytosolic protein encoded by dynamin 1-like (DNM1L) gene, which relocalizes to the outer mitochondrial membrane, where it assembles, oligomerizes and drives mitochondrial division upon guanosine-5'-triphosphate (GTP) hydrolysis. Few DRP1 mutations have been described so far, with patients showing complex and variable phenotype ranging from early death to encephalopathy and/or optic atrophy. The disease is the consequence of defective mitochondrial fission due to faulty DRP1 function. However, the underlying molecular mechanisms and the functional consequences at mitochondrial and cellular level remain elusive. Here we report on a 5-year-old girl presenting psychomotor developmental delay, global hypotonia and severe ataxia due to axonal sensory neuropathy harboring a novel de novo heterozygous missense mutation in the GTPase domain of DRP1 (NM_012062.3:c.436G>A, NP_036192.2: p.D146N variant in DNM1L). Patient's fibroblasts show hyperfused/balloon-like giant mitochondria, highlighting the importance of D146 residue for DRP1 function. This dramatic mitochondrial rearrangement phenocopies what observed overexpressing DRP1-K38A, a well-known experimental dominant negative version of DRP1. In addition, we demonstrated that p.D146N mutation has great impact on peroxisomal shape and function. The p.D146N mutation compromises the GTPase activity without perturbing DRP1 recruitment or assembly, causing decreased mitochondrial and peroxisomal turnover. In conclusion, our findings highlight the importance of sensory neuropathy in the clinical spectrum of DRP1 variants and, for the first time, the impact of DRP1 mutations on mitochondrial turnover and peroxisomal functionality.


Assuntos
Dinaminas/genética , Fibroblastos/ultraestrutura , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Dinâmica Mitocondrial/genética , Doenças do Sistema Nervoso Periférico/genética , Autofagia/genética , Pré-Escolar , Dinaminas/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Heterozigoto , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mutação , Linhagem , Doenças do Sistema Nervoso Periférico/enzimologia , Doenças do Sistema Nervoso Periférico/metabolismo , Doenças do Sistema Nervoso Periférico/patologia , Peroxissomos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sequenciamento do Exoma
8.
Hum Mutat ; 39(3): 415-432, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29235198

RESUMO

Histidyl-tRNA synthetase (HARS) ligates histidine to cognate tRNA molecules, which is required for protein translation. Mutations in HARS cause the dominant axonal peripheral neuropathy Charcot-Marie-Tooth disease type 2W (CMT2W); however, the precise molecular mechanism remains undefined. Here, we investigated three HARS missense mutations associated with CMT2W (p.Tyr330Cys, p.Ser356Asn, and p.Val155Gly). The three mutations localize to the HARS catalytic domain and failed to complement deletion of the yeast ortholog (HTS1). Enzyme kinetics, differential scanning fluorimetry (DSF), and analytical ultracentrifugation (AUC) were employed to assess the effect of these substitutions on primary aminoacylation function and overall dimeric structure. Notably, the p.Tyr330Cys, p.Ser356Asn, and p.Val155Gly HARS substitutions all led to reduced aminoacylation, providing a direct connection between CMT2W-linked HARS mutations and loss of canonical ARS function. While DSF assays revealed that only one of the variants (p.Val155Gly) was less thermally stable relative to wild-type, all three HARS mutants formed stable dimers, as measured by AUC. Our work represents the first biochemical analysis of CMT-associated HARS mutations and underscores how loss of the primary aminoacylation function can contribute to disease pathology.


Assuntos
Axônios/patologia , Histidina-tRNA Ligase/metabolismo , Doenças do Sistema Nervoso Periférico/enzimologia , Doenças do Sistema Nervoso Periférico/patologia , Sequência de Aminoácidos , Aminoacilação , Biocatálise , Domínio Catalítico , Sequência Conservada , Feminino , Teste de Complementação Genética , Histidina-tRNA Ligase/química , Histidina-tRNA Ligase/genética , Histidina-tRNA Ligase/isolamento & purificação , Humanos , Cinética , Masculino , Mutação/genética , Linhagem , Doenças do Sistema Nervoso Periférico/genética , Multimerização Proteica , Especificidade por Substrato
9.
Neurobiol Dis ; 111: 59-69, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29197621

RESUMO

As cancer is becoming more and more a chronic disease, a large proportion of patients is confronted with devastating side effects of certain anti-cancer drugs. The most common neurological complications are painful peripheral neuropathies. Chemotherapeutics that interfere with microtubules, including plant-derived vinca-alkaloids such as vincristine, can cause these chemotherapy-induced peripheral neuropathies (CIPN). Available treatments focus on symptom alleviation and pain reduction rather than prevention of the neuropathy. The aim of this study was to investigate the potential of specific histone deacetylase 6 (HDAC6) inhibitors as a preventive therapy for CIPN using multiple rodent models for vincristine-induced peripheral neuropathies (VIPN). HDAC6 inhibition increased the levels of acetylated α-tubulin in tissues of rodents undergoing vincristine-based chemotherapy, which correlates to a reduced severity of the neurological symptoms, both at the electrophysiological and the behavioral level. Mechanistically, disturbances in axonal transport of mitochondria is considered as an important contributing factor in the pathophysiology of VIPN. As vincristine interferes with the polymerization of microtubules, we investigated whether disturbances in axonal transport could contribute to VIPN. We observed that increasing α-tubulin acetylation through HDAC6 inhibition restores vincristine-induced defects of axonal transport in cultured dorsal root ganglion neurons. Finally, we assured that HDAC6-inhibition offers neuroprotection without interfering with the anti-cancer efficacy of vincristine using a mouse model for acute lymphoblastic leukemia. Taken together, our results emphasize the therapeutic potential of HDAC6 inhibitors with beneficial effects both on vincristine-induced neurotoxicity, as well as on tumor proliferation.


Assuntos
Antineoplásicos/efeitos adversos , Desacetilase 6 de Histona/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Vincristina/efeitos adversos , Animais , Antineoplásicos/farmacologia , Transporte Axonal/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Desacetilase 6 de Histona/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neoplasias/enzimologia , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/enzimologia , Tubulina (Proteína)/metabolismo
10.
Pediatr Blood Cancer ; 65(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29115708

RESUMO

BACKGROUND: Vincristine (VCR) is a critical part of treatment in pediatric malignancies and is associated with dose-dependent peripheral neuropathy (vincristine-induced peripheral neuropathy [VIPN]). Our previous findings show VCR metabolism is regulated by the CYP3A5 gene. Individuals who are low CYP3A5 expressers metabolize VCR slower and experience more severe VIPN as compared to high expressers. Preliminary observations suggest that Caucasians experience more severe VIPN as compared to nonCaucasians. PROCEDURE: Kenyan children with cancer who were undergoing treatment including VCR were recruited for a prospective cohort study. Patients received IV VCR 2 mg/m2 /dose with a maximum dose of 2.5 mg as part of standard treatment protocols. VCR pharmacokinetics (PK) sampling was collected via dried blood spot cards and genotyping was conducted for common functional variants in CYP3A5, multi-drug resistance 1 (MDR1), and microtubule-associated protein tau (MAPT). VIPN was assessed using five neuropathy tools. RESULTS: The majority of subjects (91%) were CYP3A5 high-expresser genotype. CYP3A5 low-expresser genotype subjects had a significantly higher dose and body surface area normalized area under the curve than CYP3A5 high-expresser genotype subjects (0.28 ± 0.15 hr·m2 /l vs. 0.15 ± 0.011 hr·m2 /l, P = 0.027). Regardless of which assessment tool was utilized, minimal neuropathy was detected in this cohort. There was no difference in the presence or severity of neuropathy assessed between CYP3A5 high- and low-expresser genotype groups. CONCLUSION: Genetic factors are associated with VCR PK. Due to the minimal neuropathy observed in this cohort, there was no demonstrable association between genetic factors or VCR PK with development of VIPN. Further studies are needed to determine the role of genetic factors in optimizing dosing of VCR for maximal benefit.


Assuntos
Citocromo P-450 CYP3A , Genótipo , Neoplasias , Doenças do Sistema Nervoso Periférico , Vincristina , Adolescente , Criança , Pré-Escolar , Citocromo P-450 CYP3A/biossíntese , Citocromo P-450 CYP3A/genética , Feminino , Humanos , Lactente , Quênia , Masculino , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/genética , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/enzimologia , Doenças do Sistema Nervoso Periférico/genética , Testes Farmacogenômicos , Vincristina/administração & dosagem , Vincristina/efeitos adversos , Vincristina/farmacocinética
11.
J Pharmacol Exp Ther ; 359(2): 300-309, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27608656

RESUMO

Chemotherapy-induced peripheral neuropathy (CIPN) is a potentially debilitating side effect of a number of chemotherapeutic agents. There are currently no U.S. Food and Drug Administration-approved interventions or prevention strategies for CIPN. Although the cellular mechanisms mediating CIPN remain to be determined, several lines of evidence support the notion that DNA damage caused by anticancer therapies could contribute to the neuropathy. DNA damage in sensory neurons after chemotherapy correlates with symptoms of CIPN. Augmenting apurinic/apyrimidinic endonuclease (APE)-1 function in the base excision repair pathway reverses this damage and the neurotoxicity caused by anticancer therapies. This neuronal protection is accomplished by either overexpressing APE1 or by using a first-generation targeted APE1 small molecule, E3330 [(2E)-2-[(4,5-dimethoxy-2-methyl-3,6-dioxo-1,4-cyclohexadien-1-yl)methylene]-undecanoic acid; also called APX3330]. Although E3330 has been approved for phase 1 clinical trials (Investigational New Drug application number IND125360), we synthesized novel, second-generation APE1-targeted molecules and determined whether they would be protective against neurotoxicity induced by cisplatin or oxaliplatin while not diminishing the platins' antitumor effect. We measured various endpoints of neurotoxicity using our ex vivo model of sensory neurons in culture, and we determined that APX2009 [(2E)-2-[(3-methoxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)methylidene]-N,N-diethylpentanamide] is an effective small molecule that is neuroprotective against cisplatin and oxaliplatin-induced toxicity. APX2009 also demonstrated a strong tumor cell killing effect in tumor cells and the enhanced tumor cell killing was further substantiated in a more robust three-dimensional pancreatic tumor model. Together, these data suggest that the second-generation compound APX2009 is effective in preventing or reversing platinum-induced CIPN while not affecting the anticancer activity of platins.


Assuntos
Antineoplásicos/efeitos adversos , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/prevenção & controle , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/efeitos adversos , Sistema Enzimático do Citocromo P-450/metabolismo , Dano ao DNA , Avaliação Pré-Clínica de Medicamentos , Humanos , Modelos Moleculares , Conformação Molecular , Compostos Organoplatínicos/efeitos adversos , Oxaliplatina , Doenças do Sistema Nervoso Periférico/enzimologia , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/patologia
12.
Sci Signal ; 9(439): ra77, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27485015

RESUMO

Using exome sequencing, we identified a de novo mutation (c.2971A>G; T991A) in SLC12A6, the gene encoding the K(+)-Cl(-) cotransporter KCC3, in a patient with an early-onset, progressive, and severe peripheral neuropathy primarily affecting motor neurons. Normally, the WNK kinase-dependent phosphorylation of T(991) tonically inhibits KCC3; however, cell swelling triggers Thr(991) dephosphorylation to activate the transporter and restore cell volume. KCC3 T991A mutation in patient cells abolished Thr(991) phosphorylation, resulted in constitutive KCC3 activity, and compromised cell volume homeostasis. KCC3(T991A/T991A) mutant mice exhibited constitutive KCC3 activity and recapitulated aspects of the clinical, electrophysiological, and histopathological findings of the patient. These results suggest that the function of the peripheral nervous system depends on finely tuned, kinase-regulated KCC3 activity and implicate abnormal cell volume homeostasis as a previously unreported mechanism of axonal degeneration.


Assuntos
Neurônios Motores/enzimologia , Doenças do Sistema Nervoso Periférico/enzimologia , Simportadores/metabolismo , Animais , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Mutantes , Neurônios Motores/patologia , Mutação de Sentido Incorreto , Doenças do Sistema Nervoso Periférico/genética , Doenças do Sistema Nervoso Periférico/patologia , Fosforilação/genética , Simportadores/genética , Proteína Quinase 1 Deficiente de Lisina WNK/genética , Proteína Quinase 1 Deficiente de Lisina WNK/metabolismo
13.
PLoS One ; 11(1): e0147620, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26808812

RESUMO

Nicotinamide mononucleotide adenylyl transferases (NMNATs) are essential neuronal maintenance factors postulated to preserve neuronal function and protect against axonal degeneration in various neurodegenerative disease states. We used in vitro and in vivo approaches to assess the impact of NMNAT2 reduction on cellular and physiological functions induced by treatment with a vinca alkaloid (vincristine) and a taxane-based (paclitaxel) chemotherapeutic agent. NMNAT2 null (NMNAT2-/-) mutant mice die at birth and cannot be used to probe functions of NMNAT2 in adult animals. Nonetheless, primary cortical cultures derived from NMNAT2-/- embryos showed reduced cell viability in response to either vincristine or paclitaxel treatment whereas those derived from NMNAT2 heterozygous (NMNAT2+/-) mice were preferentially sensitive to vincristine-induced degeneration. Adult NMNAT2+/- mice, which survive to adulthood, exhibited a 50% reduction of NMNAT2 protein levels in dorsal root ganglia relative to wildtype (WT) mice with no change in levels of other NMNAT isoforms (NMNAT1 or NMNAT3), NMNAT enzyme activity (i.e. NAD/NADH levels) or microtubule associated protein-2 (MAP2) or neurofilament protein levels. We therefore compared the impact of NMNAT2 knockdown on the development and maintenance of chemotherapy-induced peripheral neuropathy induced by vincristine and paclitaxel treatment using NMNAT2+/- and WT mice. NMNAT2+/- did not differ from WT mice in either the development or maintenance of either mechanical or cold allodynia induced by either vincristine or paclitaxel treatment. Intradermal injection of capsaicin, the pungent ingredient in hot chili peppers, produced equivalent hypersensitivity in NMNAT2+/- and WT mice receiving vehicle in lieu of paclitaxel. Capsaicin-evoked hypersensitivity was enhanced by prior paclitaxel treatment but did not differ in either NMNAT2+/- or WT mice. Thus, capsaicin failed to unmask differences in nociceptive behaviors in either paclitaxel-treated or paclitaxel-untreated NMNAT2+/- and WT mice. Moreover, no differences in motor behavior were detected between genotypes in the rotarod test. Our studies do not preclude the possibility that complete knockout of NMNAT2 in a conditional knockout animal could unmask a role for NMNAT2 in protection against detrimental effects of chemotherapeutic treatment.


Assuntos
Nicotinamida-Nucleotídeo Adenililtransferase/genética , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Doenças do Sistema Nervoso Periférico/enzimologia , Doenças do Sistema Nervoso Periférico/genética , Animais , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Feminino , Camundongos , Camundongos Mutantes , Paclitaxel/farmacologia , Gravidez , Vincristina/farmacologia
14.
Zhen Ci Yan Jiu ; 40(5): 358-63, 2015 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-26669190

RESUMO

OBJECTIVE: To observe the effect of electroacupuncture (EA) stimulation of "Weizhong" (BL 40)-"Huantiao" (GB 30) on expression of phosphorylated calcium/calmodulin dependent protein kinase II (p-CaMK II) and cAMP response element binding protein (p-CREB) in the spinal cord in rats with spared nerve injury (SNI), so as to explore its mechanism underlying easing neuropathic pain. METHODS: Sixty SD rats were randomly divided into five groups: control (sham-operation) , model, EA, AP-5 (a NMDA receptor antagonist) and L-NAME (a non-selective nitric oxide synthase, NOS inhibitor) (n = 12 in each group). The neuropathic pain model was established by sectioning the right tibal nerve and common peroneal nerve. EA intervention (2 Hz, 1 mA, increasing 1 mA/10 min) was applied to "Weizhong" (BL 40) and "Huantiao" (GB 30) on the injured side for 30 min, once a day for 7 days. Rats of the AP-5 and L-NAME groups were treated by intragastric administration of AP-5 (0.7 mg · kg(-1) · d(-1)) and L-NAME (60 mg · kg(-1) · d(-1)) respectively from the 11 th day after operation, once daily for 7 days. The mechanical pain thresholds were measured before the SNI procedure (baseline) and at the 10th and 16th day after the procedure. The expression of p-CaMK II protein and p-CREB protein and gene of the spinal cord (L4-L6 segments) was determined by Western blot and fluorescence quantitative-polymerase chain reaction (PCR), separately. RESULTS: In comparison to the control group, the mechanical pain threshold was significantly decreased in the model group (P < 0.01). After EA intervention, the mechanical pain thresholds of the EA, AP-5 and L-NAME groups were obviously increased (P < 0.01, P < 0.05) on day 16 post SNI procedure. The expression levels of p-CaMK II and p-CREB proteins and CREB mRNA in the spinal cord were significantly higher in the model group than in the control group (P < 0.05). Compared with the model group, the expression levels of spinal p-CaMK II and p-CREB proteins and CREB mRNA were obviously down-regulated in the EA group (P < 0.05), but not in the AP-5 group and the L-NAME group (P > 0.055. CONCLUSION: EA intervention of BL 40-GB 30 may alleviate pain in neuropathic pain rats, which may be related to its effects in down-regulating spinal CaMK II-CREB pathway function.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Eletroacupuntura , Traumatismos dos Nervos Periféricos/terapia , Doenças do Sistema Nervoso Periférico/terapia , Pontos de Acupuntura , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Humanos , Masculino , Traumatismos dos Nervos Periféricos/enzimologia , Traumatismos dos Nervos Periféricos/genética , Traumatismos dos Nervos Periféricos/metabolismo , Doenças do Sistema Nervoso Periférico/enzimologia , Doenças do Sistema Nervoso Periférico/genética , Doenças do Sistema Nervoso Periférico/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Medula Espinal/enzimologia , Medula Espinal/metabolismo
15.
Neurobiol Dis ; 79: 100-10, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25956228

RESUMO

Chemotherapy drugs such as vincristine can produce painful peripheral neuropathy for which is still lack of effective treatment. Recent studies have demonstrated that neuroinflammation plays an important role in the pathogenesis of neuropathic pain. Heme oxygenase 1 (HO-1) was shown to mediate the resolution of inflammation. In this study, we investigated the contribution of HO-1 in the modulation of vincristine-induced pain and the mechanisms implicated. Injection of vincristine induced persistent mechanical allodynia and thermal hyperalgesia in mice. The expression of HO-1 mRNA and protein was increased in 2 weeks in the spinal cord. Immunostaining showed that HO-1 was mainly expressed in neurons of spinal cord dorsal horn in naïve animals, but induced in astrocytes and microglia after vincristine injection. Intraperitoneal injection of HO-1 inducer increased HO-1 expression in the spinal cord and attenuated vincristine-induced pain. Persistent induction of HO-1 by intraspinal injection of HO-1-expressing lentivirus alleviated vincristine-induced pain for more than 2 weeks. Furthermore, vincristine induced activation of glial cells (astrocytes and microglia), phosphorylation of MAPKs (JNK, ERK, and p38), and production of TNF-α and monocyte chemoattractant protein-1 in the spinal cord, which were all reduced by intrathecal injection of HO-1 inducer. Taken together, our data provide the first evidence that induction of HO-1 attenuates vincristine-induced neuropathic pain via inhibition of glia-mediated neuroinflammation in the spinal cord. This suggests that exogenously induced HO-1 may have potential as therapy in chemotherapy-induced neuropathic pain.


Assuntos
Antineoplásicos Fitogênicos/toxicidade , Heme Oxigenase-1/metabolismo , Proteínas de Membrana/metabolismo , Neuralgia/terapia , Neuroglia/enzimologia , Medula Espinal/enzimologia , Vincristina/toxicidade , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Modelos Animais de Doenças , Ativadores de Enzimas/farmacologia , Terapia Genética , Heme Oxigenase-1/genética , Hiperalgesia/induzido quimicamente , Hiperalgesia/enzimologia , Hiperalgesia/imunologia , Hiperalgesia/terapia , Lentivirus/genética , Masculino , Proteínas de Membrana/genética , Camundongos Endogâmicos ICR , Neuralgia/induzido quimicamente , Neuralgia/enzimologia , Neuralgia/imunologia , Neuroglia/efeitos dos fármacos , Neuroglia/imunologia , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Neurônios/imunologia , Dor/induzido quimicamente , Dor/tratamento farmacológico , Dor/enzimologia , Dor/imunologia , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/enzimologia , Doenças do Sistema Nervoso Periférico/imunologia , Protoporfirinas/farmacologia , RNA Mensageiro/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/imunologia
16.
Acta Haematol ; 134(1): 25-31, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25871926

RESUMO

AIMS: To explore the biomarker for predicting the occurrence of adverse events in myeloma patients treated by intravenous bortezomib, we measured proteasome activity in peripheral blood mononuclear cells. METHODS: Samples were obtained from 34 bortezomib-naïve patients. Proteasome activity was measured at pre- and postchemotherapy phase by using a synthetic substrate. RESULTS: Bortezomib injection resulted in a dramatic decrease in proteasome activity, reaching 32.4 ± 18.79% (mean ± SD) of the pretreatment level at 1 h, but it generally recovered at the end of the first course. In total, 6 patients manifested with severe bortezomib-induced peripheral neuropathy (sBIPN) in the second-third course. There was a nonsignificant trend for these patients to have lower levels of the relative proteasome activity at the end of the first course than those without sBIPN (median: 74.03 vs. 103.2%, p = 0.052). Moreover, in all of them, proteasome activity did not recover to the pretreatment level, whereas no patients with complete recovery manifested with sBIPN. Analysis with Fisher's exact test demonstrated that incomplete recovery of proteasome activity is a significant risk factor for sBIPN (p = 0.014). CONCLUSION: Patients with incomplete recovery of proteasome activity are at high risk for developing sBIPN, and the susceptible patients can be indicated by monitoring proteasome activity.


Assuntos
Antineoplásicos/efeitos adversos , Ácidos Borônicos/efeitos adversos , Leucócitos Mononucleares , Mieloma Múltiplo , Proteínas de Neoplasias/metabolismo , Doenças do Sistema Nervoso Periférico , Complexo de Endopeptidases do Proteassoma/metabolismo , Pirazinas/efeitos adversos , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/administração & dosagem , Ácidos Borônicos/administração & dosagem , Bortezomib , Suscetibilidade a Doenças , Feminino , Seguimentos , Humanos , Leucócitos Mononucleares/enzimologia , Leucócitos Mononucleares/patologia , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/enzimologia , Mieloma Múltiplo/patologia , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/enzimologia , Doenças do Sistema Nervoso Periférico/patologia , Pirazinas/administração & dosagem
17.
Br J Haematol ; 169(1): 77-80, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25511866

RESUMO

Momelotinib (a JAK1 and JAK2 inhibitor) induces both anaemia and spleen responses in myelofibrosis (MF). Momelotinib treatment-emergent peripheral neuropathy (TE-PN) was documented in 44 (44%) of 100 MF patients treated at our institution; median time of TE-PN onset was 32 weeks and duration 11 months. Improvement after drug dose reduction or discontinuation was documented in only two patients. TE-PN was significantly associated with treatment response (P = 0·02) and longer survival (P = 0·048) but significance was lost during multivariate analysis that included treatment duration. TE-PN did not correlate with initial or maximum momelotinib dose or previous treatment with JAK inhibitor or thalidomide.


Assuntos
Benzamidas/efeitos adversos , Doenças do Sistema Nervoso Periférico/epidemiologia , Mielofibrose Primária/tratamento farmacológico , Mielofibrose Primária/epidemiologia , Pirimidinas/efeitos adversos , Adulto , Idoso , Idoso de 80 Anos ou mais , Benzamidas/administração & dosagem , Feminino , Humanos , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 2/antagonistas & inibidores , Masculino , Pessoa de Meia-Idade , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/enzimologia , Prevalência , Mielofibrose Primária/enzimologia , Pirimidinas/administração & dosagem , Fatores de Risco
18.
Mol Neurobiol ; 51(2): 591-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24946751

RESUMO

Nuclear factor-κB (NF-κB) has been reported as a critical component of signalling mechanisms involved in the pathogenesis of a number of inflammatory conditions. Previous reports have shown that anti-inflammatory agents have a protective role in experimental diabetic neuropathy. Here, we assessed whether the inhibition of NF-κB cascade via IκB kinase (IKK) exerts any neuroprotective effect in experimental diabetic neuropathy. IKK inhibitor SC-514 (1 and 3 mg/kg) was administered daily for 2 weeks starting after 6 weeks of streptozotocin-induced diabetes. Nerve conduction and blood flow were determined by Powerlab and LASER Doppler system, respectively. We evaluated the changes in NF-κB, iNOS, and COX-2 expression by Western blotting in sciatic nerve. We found that IKK inhibition with SC-514 increased nerve blood flow and conduction velocity and improved pain threshold in diabetic animals. SC-514 also reduced the expression of NF-κB and phosphorylation of IKKß in the sciatic nerve. Treatment with SC-514 reduced the elevated levels of pro-inflammatory cytokines (TNF-α and IL-6), iNOS, and COX-2. SC-514 reduces the expression of NF-κB and its downstream inflammatory components which may be involved in the improvement in nerve functions and pain perception in diabetic neuropathy. From the data of the present study, we suggest that diminution in IKK can be exploited as a drug target to significantly reduce the development of long-term complications of diabetes, particularly neuropathy.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/enzimologia , Neuropatias Diabéticas/enzimologia , Neuropatias Diabéticas/prevenção & controle , Quinase I-kappa B/antagonistas & inibidores , Tiofenos/uso terapêutico , Animais , Diabetes Mellitus Experimental/patologia , Neuropatias Diabéticas/patologia , Quinase I-kappa B/metabolismo , Masculino , Condução Nervosa/efeitos dos fármacos , Condução Nervosa/fisiologia , Doenças do Sistema Nervoso Periférico/enzimologia , Doenças do Sistema Nervoso Periférico/patologia , Doenças do Sistema Nervoso Periférico/prevenção & controle , Ratos , Ratos Sprague-Dawley , Tiofenos/farmacologia
19.
Curr Pharm Des ; 21(3): 274-90, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25159070

RESUMO

Phosphodiesterase 2 (PDE2) is a ubiquitous enzyme whose major role is to hydrolyze the important second messengers cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). In the central nervous system, pharmacological inhibition of PDE2 results in boosted cAMP and/or cGMP signaling, which is responsible for series of changes in protein expression relevant to psychiatric and learning and memory disorders, such as depression, anxiety, and cognition deficits in Alzheimer's disease. In the periphery, inhibition of PDE2 exhibits beneficial effects in the diseased cardiovascular system, the respiratory system, skeletal muscles and Candida albicans-caused systemic infections. Even though blood-brain barrier penetration properties and selectivity of currently available PDE2 inhibitors have hindered them from entering clinical trials, PDE2 is still of great potential therapeutic values in different categories of diseases, and there is demand for development of new generation drugs targeting PDE2 for treatment of diseases in central nervous and peripheral systems.


Assuntos
Doenças do Sistema Nervoso Central/tratamento farmacológico , Doenças do Sistema Nervoso Central/enzimologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/antagonistas & inibidores , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/enzimologia , Inibidores de Fosfodiesterase/uso terapêutico , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Humanos
20.
Brain Behav Immun ; 38: 185-91, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24530998

RESUMO

Bortezomib (BTZ) is a frequently used chemotherapeutic drug for the treatment of refractory multiple myeloma and hematological neoplasms. The mechanism by which the administration of BTZ leads to painful peripheral neuropathy remains unclear. In the present study, we first determined that the administration of BTZ upregulated the expression of TNF-α and phosphorylated JNK1/2 in the dorsal root ganglion (DRG) of rat. Furthermore, the TNF-α synthesis inhibitor thalidomide significantly blocked the activation of both isoforms JNK1 and JNK2 in the DRG and attenuated mechanical allodynia following BTZ treatment. Knockout of the expression of TNF-α receptor TNFR1 (TNFR1 KO mice) or TNFR2 (TNFR2 KO mice) inhibited JNK1 and JNK2 activation and decreased mechanical allodynia induced by BTZ. These results suggest that upregulated TNF-α expression may activate JNK signaling via TNFR1 or TNFR2 to mediate mechanical allodynia following BTZ treatment.


Assuntos
Antineoplásicos/toxicidade , Ácidos Borônicos/toxicidade , Gânglios Espinais/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Neurônios/metabolismo , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Pirazinas/toxicidade , Fator de Necrose Tumoral alfa/metabolismo , Animais , Bortezomib , Gânglios Espinais/efeitos dos fármacos , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Doenças do Sistema Nervoso Periférico/enzimologia , Doenças do Sistema Nervoso Periférico/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA