Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 300(3): 105737, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336292

RESUMO

Transcription is a tightly regulated, complex, and essential cellular process in all living organisms. Transcription is comprised of three steps, transcription initiation, elongation, and termination. The distinct transcription initiation and termination mechanisms of eukaryotic RNA polymerases I, II, and III (Pols I, II, and III) have long been appreciated. Recent methodological advances have empowered high-resolution investigations of the Pols' transcription elongation mechanisms. Here, we review the kinetic similarities and differences in the individual steps of Pol I-, II-, and III-catalyzed transcription elongation, including NTP binding, bond formation, pyrophosphate release, and translocation. This review serves as an important summation of Saccharomyces cerevisiae (yeast) Pol I, II, and III kinetic investigations which reveal that transcription elongation by the Pols is governed by distinct mechanisms. Further, these studies illustrate how basic, biochemical investigations of the Pols can empower the development of chemotherapeutic compounds.


Assuntos
Tratamento Farmacológico , RNA Polimerase III , RNA Polimerase II , RNA Polimerase I , Saccharomyces cerevisiae , Elongação da Transcrição Genética , Biocatálise/efeitos dos fármacos , Cinética , RNA Polimerase I/metabolismo , RNA Polimerase II/metabolismo , RNA Polimerase III/metabolismo , Saccharomyces cerevisiae/enzimologia , Elongação da Transcrição Genética/efeitos dos fármacos
2.
Biochim Biophys Acta Gene Regul Mech ; 1864(3): 194691, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33556624

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, with an estimated global prevalence of 1 in 4 individuals. Aberrant transcriptional control of gene expression is central to the pathophysiology of metabolic diseases. However, the molecular mechanisms leading to gene dysregulation are not well understood. Histone modifications play important roles in the control of transcription. Acetylation of histone 3 at lysine 9 (H3K9ac) is associated with transcriptional activity and is implicated in transcript elongation by controlling RNA polymerase II (RNAPII) pause-release. Hence, changes in this histone modification may shed information on novel pathways linking transcription control and metabolic dysfunction. Here, we carried out genome-wide analysis of H3K9ac in the liver of mice fed a control or a high-fat diet (an animal model of NAFLD), and asked whether this histone mark associates with changes in gene expression. We found that over 70% of RNAPII peaks in promoter-proximal regions overlapped with H3K9ac, consistent with a role of H3K9ac in the regulation of transcription. When comparing high-fat with control diet, approximately 17% of the differentially expressed genes were associated with changes in H3K9ac in their promoters, showing a strong correlation between changes in H3K9ac signal and gene expression. Overall, our data indicate that in response to a high-fat diet, dysregulated gene expression of a subset of genes may be attributable to changes in transcription elongation driven by H3K9ac. Our results point at an added mechanism of gene regulation that may be important in the development of metabolic diseases.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Histonas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Regiões Promotoras Genéticas , Elongação da Transcrição Genética/efeitos dos fármacos , Acetilação/efeitos dos fármacos , Animais , Histonas/genética , Masculino , Camundongos , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia
3.
Cancer Res ; 81(7): 1719-1731, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33472893

RESUMO

Chromosomal instability (CIN) is a driver of clonal diversification and intratumor heterogeneity, providing genetic diversity that contributes to tumor progression. It is estimated that approximately 80% of solid cancers, including non-small cell lung cancer (NSCLC), exhibit features of CIN, which affects tumor growth and response to therapy. However, the molecular mechanisms connecting CIN to tumor progression are still poorly understood. Through an RNAi screen performed on genes involved in CIN and overexpressed in human lung adenocarcinoma samples, we identified the cytoskeleton-associated protein 2-like (CKAP2L) as a potential oncogene that promotes lung cancer proliferation and growth in vitro and in vivo. Mechanistically, CKAP2L directly interacted with RNA Pol II and regulated transcription elongation of key genes involved in spindle assembly checkpoint, chromosome segregation, cell cycle, and E2F signaling. Furthermore, depletion of CKAP2L increased the sensitivity of NSCLC cells to alvocidib, a pan-CDK inhibitor, leading to a significant reduction of cell proliferation and an increase in cell death. Altogether, these findings shed light on the molecular mechanisms through which CKAP2L, a protein involved in CIN, promotes cancer progression and suggest that its inhibition represents a novel therapeutic strategy in NSCLC. SIGNIFICANCE: These findings demonstrate the oncogenic function of CKAP2L through regulation of transcription elongation and suggest that targeting CKAP2L could enhance therapeutic response in patients with NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas do Citoesqueleto/fisiologia , Neoplasias Pulmonares/patologia , Elongação da Transcrição Genética , Células A549 , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Neoplasias Pulmonares/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Metástase Neoplásica , RNA Interferente Pequeno/farmacologia , RNA Interferente Pequeno/uso terapêutico , Elongação da Transcrição Genética/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Sci Rep ; 9(1): 17369, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31758083

RESUMO

Cyclin-dependent kinase 9 (CDK9), one crucial molecule in promoting the transition from transcription pausing to elongation, is a critical modulator of cell survival and death. However, the pathological function of CDK9 in bacterial inflammatory diseases has never been explored. CDK9 inhibition or knock-down attenuated Porphyromonas gingivalis-triggered inflammatory gene expression. Gene-expression microarray analysis of monocytes revealed that knock-down of CDK9 not only affected inflammatory responses, but also impacted cell death network, especially the receptor-interacting protein kinase 3 (RIPK3)-mixed lineage kinase domain-like (MLKL)-mediated necroptosis after P. gingivalis infection. Inhibition of CDK9 significantly decreased necroptosis with downregulation of both MLKL and phosphorylated MLKL. By regulating caspase-8 and cellular FLICE inhibitory protein (cFLIP), key molecules in regulating cell survival and death, CDK9 affected not only the classic RIPK1-RIPK3-mediated necroptosis, but also the alternate TIR-domain-containing adapter-inducing interferon-ß-RIPK3-mediated necroptosis. CDK9 inhibition dampened pro-inflammatory gene production in the acute infection process in the subcutaneous chamber model in vivo. Moreover, CDK9 inhibition contributed to the decreased periodontal bone loss and inflammatory response induced by P. gingivalis in the periodontal micro-environment. In conclusion, by modulating the RIPK3-MLKL-mediated necroptosis, CDK9 inhibition provided a novel mechanism to impact the progress of bacterial infection in the periodontal milieu.


Assuntos
Quinase 9 Dependente de Ciclina/fisiologia , Necroptose/genética , Periodontite/genética , Proteínas Quinases/fisiologia , Proteína Serina-Treonina Quinases de Interação com Receptores/fisiologia , Adulto , Animais , Infecções por Bacteroidaceae/complicações , Infecções por Bacteroidaceae/genética , Infecções por Bacteroidaceae/metabolismo , Infecções por Bacteroidaceae/patologia , Estudos de Casos e Controles , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Quinase 9 Dependente de Ciclina/metabolismo , Progressão da Doença , Inibidores Enzimáticos/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Periodontite/metabolismo , Periodontite/microbiologia , Periodontite/patologia , Porphyromonas gingivalis/fisiologia , Proteínas Quinases/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Células THP-1 , Elongação da Transcrição Genética/efeitos dos fármacos
5.
EMBO J ; 38(16): e102003, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31313851

RESUMO

Many eukaryotic proteins are regulated by modification with the ubiquitin-like protein small ubiquitin-like modifier (SUMO). This linkage is reversed by SUMO proteases, of which there are two in Saccharomyces cerevisiae, Ulp1 and Ulp2. SUMO-protein conjugation regulates transcription, but the roles of SUMO proteases in transcription remain unclear. We report that Ulp2 is recruited to transcriptionally active genes to control local polysumoylation. Mutant ulp2 cells show impaired association of RNA polymerase II (RNAPII) with, and diminished expression of, constitutively active genes and the inducible CUP1 gene. Ulp2 loss sensitizes cells to 6-azauracil, a hallmark of transcriptional elongation defects. We also describe a novel chromatin regulatory mechanism whereby histone-H2B ubiquitylation stimulates histone sumoylation, which in turn appears to inhibit nucleosome association of the Ctk1 kinase. Ctk1 phosphorylates serine-2 (S2) in the RNAPII C-terminal domain (CTD) and promotes transcript elongation. Removal of both ubiquitin and SUMO from histones is needed to overcome the impediment to S2 phosphorylation. These results suggest sequential ubiquitin-histone and SUMO-histone modifications recruit Ulp2, which removes polySUMO chains and promotes RNAPII transcription elongation.


Assuntos
Endopeptidases/metabolismo , Histonas/metabolismo , Mutação , Proteínas de Saccharomyces cerevisiae/metabolismo , Elongação da Transcrição Genética , Endopeptidases/genética , Regulação Fúngica da Expressão Gênica , Metalotioneína/genética , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Sumoilação , Elongação da Transcrição Genética/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Uracila/análogos & derivados , Uracila/farmacologia
6.
Genes Dev ; 33(13-14): 871-885, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31171704

RESUMO

Aberrant translation initiation at non-AUG start codons is associated with multiple cancers and neurodegenerative diseases. Nevertheless, how non-AUG translation may be regulated differently from canonical translation is poorly understood. Here, we used start codon-specific reporters and ribosome profiling to characterize how translation from non-AUG start codons responds to protein synthesis inhibitors in human cells. These analyses surprisingly revealed that translation of multiple non-AUG-encoded reporters and the endogenous GUG-encoded DAP5 (eIF4G2/p97) mRNA is resistant to cycloheximide (CHX), a translation inhibitor that severely slows but does not completely abrogate elongation. Our data suggest that slowly elongating ribosomes can lead to queuing/stacking of scanning preinitiation complexes (PICs), preferentially enhancing recognition of weak non-AUG start codons. Consistent with this model, limiting PIC formation or scanning sensitizes non-AUG translation to CHX. We further found that non-AUG translation is resistant to other inhibitors that target ribosomes within the coding sequence but not those targeting newly initiated ribosomes. Together, these data indicate that ribosome queuing enables mRNAs with poor initiation context-namely, those with non-AUG start codons-to be resistant to pharmacological translation inhibitors at concentrations that robustly inhibit global translation.


Assuntos
Códon de Iniciação/genética , Resistência a Múltiplos Medicamentos/genética , Ribossomos/genética , Elongação da Transcrição Genética/efeitos dos fármacos , Cicloeximida/farmacologia , Fator de Iniciação Eucariótico 4G/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter/genética , Células HEK293 , Células HeLa , Humanos , Inibidores da Síntese de Proteínas/farmacologia
7.
Cell ; 175(3): 766-779.e17, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30340042

RESUMO

The super elongation complex (SEC) is required for robust and productive transcription through release of RNA polymerase II (Pol II) with its P-TEFb module and promoting transcriptional processivity with its ELL2 subunit. Malfunction of SEC contributes to multiple human diseases including cancer. Here, we identify peptidomimetic lead compounds, KL-1 and its structural homolog KL-2, which disrupt the interaction between the SEC scaffolding protein AFF4 and P-TEFb, resulting in impaired release of Pol II from promoter-proximal pause sites and a reduced average rate of processive transcription elongation. SEC is required for induction of heat-shock genes and treating cells with KL-1 and KL-2 attenuates the heat-shock response from Drosophila to human. SEC inhibition downregulates MYC and MYC-dependent transcriptional programs in mammalian cells and delays tumor progression in a mouse xenograft model of MYC-driven cancer, indicating that small-molecule disruptors of SEC could be used for targeted therapy of MYC-induced cancer.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Experimentais/tratamento farmacológico , Fator B de Elongação Transcricional Positiva/metabolismo , Proteínas Repressoras/metabolismo , Elongação da Transcrição Genética/efeitos dos fármacos , Fatores de Elongação da Transcrição/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Drosophila , Feminino , Células HCT116 , Células HEK293 , Resposta ao Choque Térmico , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Polimerase II/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
8.
Genes Dev ; 32(17-18): 1215-1225, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30150253

RESUMO

Paused RNA polymerase II (Pol II) that piles up near most human promoters is the target of mechanisms that control entry into productive elongation. Whether paused Pol II is a stable or dynamic target remains unresolved. We report that most 5' paused Pol II throughout the genome is turned over within 2 min. This process is revealed under hypertonic conditions that prevent Pol II recruitment to promoters. This turnover requires cell viability but is not prevented by inhibiting transcription elongation, suggesting that it is mediated at the level of termination. When initiation was prevented by triptolide during recovery from high salt, a novel preinitiated state of Pol II lacking the pausing factor Spt5 accumulated at transcription start sites. We propose that Pol II occupancy near 5' ends is governed by a cycle of ongoing assembly of preinitiated complexes that transition to pause sites followed by eviction from the DNA template. This model suggests that mechanisms regulating the transition to productive elongation at pause sites operate on a dynamic population of Pol II that is turning over at rates far higher than previously suspected. We suggest that a plausible alternative to elongation control via escape from a stable pause is by escape from premature termination.


Assuntos
Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Iniciação da Transcrição Genética , Diterpenos/farmacologia , Compostos de Epóxi/farmacologia , Células HCT116 , Humanos , Soluções Isotônicas , Fenantrenos/farmacologia , Solução Salina Hipertônica , Elongação da Transcrição Genética/efeitos dos fármacos , Iniciação da Transcrição Genética/efeitos dos fármacos
9.
J Biol Chem ; 293(19): 7189-7194, 2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29550768

RESUMO

RNA polymerase II (Pol II) is the central enzyme that transcribes eukaryotic protein-coding genes to produce mRNA. The mushroom toxin α-amanitin binds Pol II and inhibits transcription at the step of RNA chain elongation. Pol II from yeast binds α-amanitin with micromolar affinity, whereas metazoan Pol II enzymes exhibit nanomolar affinities. Here, we present the high-resolution cryo-EM structure of α-amanitin bound to and inhibited by its natural target, the mammalian Pol II elongation complex. The structure revealed that the toxin is located in a pocket previously identified in yeast Pol II but forms additional contacts with metazoan-specific residues, which explains why its affinity to mammalian Pol II is ∼3000 times higher than for yeast Pol II. Our work provides the structural basis for the inhibition of mammalian Pol II by the natural toxin α-amanitin and highlights that cryo-EM is well suited to studying interactions of a small molecule with its macromolecular target.


Assuntos
Alfa-Amanitina/química , Inibidores Enzimáticos/química , RNA Polimerase II/antagonistas & inibidores , RNA Polimerase II/química , Elongação da Transcrição Genética/efeitos dos fármacos , Alfa-Amanitina/farmacologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Microscopia Crioeletrônica , Inibidores Enzimáticos/farmacologia , Ligação de Hidrogênio , Conformação Proteica , Homologia de Sequência de Aminoácidos , Suínos
10.
Mol Microbiol ; 108(5): 495-504, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29575154

RESUMO

Transcription and translation are coupled processes in bacteria. A role of transcription elongation cofactor NusG in coupling has been suggested by in vitro structural studies. NMR revealed association of the NusG carboxy-terminal domain with S10 (NusE), implying a direct role for NusG as a bridge linking RNAP and the lead ribosome. Here we present the first in vitro and in vivo evidence of full-length NusG association with mature 70S ribosomes. Binding did not require accessory factors in vitro. Mutating the NusG:S10 binding interface at NusG F165 or NusE M88 and D97 residues weakened NusG:S10 association in vivo and completely abolished it in vitro, supporting the specificity of this interaction. Mutations in the binding interface increased sensitivity to chloramphenicol. This phenotype was suppressed by rpoB*35, an RNAP mutation that reduces replisome-RNAP clashes. We propose that weakened NusG:S10 interaction leads to uncoupling when translation is inhibited, with resulting RNAP backtracking, replication blocks and formation of lethal DNA double-strand breaks.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Elongação da Transcrição Genética , Fatores de Transcrição/metabolismo , Terminação da Transcrição Genética , Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Sítios de Ligação , Cloranfenicol/farmacologia , Quebras de DNA de Cadeia Dupla , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Mutação , Fatores de Alongamento de Peptídeos/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Elongação da Transcrição Genética/efeitos dos fármacos , Fatores de Transcrição/genética , Terminação da Transcrição Genética/efeitos dos fármacos
11.
Cell Rep ; 20(12): 2833-2845, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28930680

RESUMO

Kinase inhibitors represent the backbone of targeted cancer therapy, yet only a limited number of oncogenic drivers are directly druggable. By interrogating the activity of 1,505 kinase inhibitors, we found that BRD4-NUT-rearranged NUT midline carcinoma (NMC) cells are specifically killed by CDK9 inhibition (CDK9i) and depend on CDK9 and Cyclin-T1 expression. We show that CDK9i leads to robust induction of apoptosis and of markers of DNA damage response in NMC cells. While both CDK9i and bromodomain inhibition over time result in reduced Myc protein expression, only bromodomain inhibition induces cell differentiation and a p21-induced cell-cycle arrest in these cells. Finally, RNA-seq and ChIP-based analyses reveal a BRD4-NUT-specific CDK9i-induced perturbation of transcriptional elongation. Thus, our data provide a mechanistic basis for the genotype-dependent vulnerability of NMC cells to CDK9i that may be of relevance for the development of targeted therapies for NMC patients.


Assuntos
Terapia de Alvo Molecular , Neoplasias/enzimologia , Neoplasias/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Ciclina T/metabolismo , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Quinase 9 Dependente de Ciclina/metabolismo , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Neoplasias/genética , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Inibidores de Proteínas Quinases/química , RNA Polimerase II/metabolismo , Elongação da Transcrição Genética/efeitos dos fármacos , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos
12.
Mol Cell ; 67(1): 5-18.e19, 2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28673542

RESUMO

Processive elongation of RNA Polymerase II from a proximal promoter paused state is a rate-limiting event in human gene control. A small number of regulatory factors influence transcription elongation on a global scale. Prior research using small-molecule BET bromodomain inhibitors, such as JQ1, linked BRD4 to context-specific elongation at a limited number of genes associated with massive enhancer regions. Here, the mechanistic characterization of an optimized chemical degrader of BET bromodomain proteins, dBET6, led to the unexpected identification of BET proteins as master regulators of global transcription elongation. In contrast to the selective effect of bromodomain inhibition on transcription, BET degradation prompts a collapse of global elongation that phenocopies CDK9 inhibition. Notably, BRD4 loss does not directly affect CDK9 localization. These studies, performed in translational models of T cell leukemia, establish a mechanism-based rationale for the development of BET bromodomain degradation as cancer therapy.


Assuntos
Quinase 9 Dependente de Ciclina/metabolismo , Proteínas Nucleares/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Elongação da Transcrição Genética , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Antineoplásicos/farmacologia , Proteínas de Ciclo Celular , Quinase 9 Dependente de Ciclina/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Relação Dose-Resposta a Droga , Feminino , Regulação Leucêmica da Expressão Gênica , Células HCT116 , Células HEK293 , Humanos , Células Jurkat , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Complexos Multiproteicos , Proteínas Nucleares/genética , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Estabilidade Proteica , Proteólise , RNA Polimerase II/metabolismo , Fatores de Tempo , Elongação da Transcrição Genética/efeitos dos fármacos , Fatores de Transcrição/genética , Transfecção , Ubiquitina-Proteína Ligases , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Mol Cell Biol ; 37(19)2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28694331

RESUMO

Chronic hepatitis B virus (HBV) infection can lead to liver cirrhosis and hepatocellular carcinoma. HBV reactivation during or after chemotherapy is a potentially fatal complication for cancer patients with chronic HBV infection. Transcription of HBV is a critical intermediate step of the HBV life cycle. However, factors controlling HBV transcription remain largely unknown. Here, we found that different P-TEFb complexes are involved in the transcription of the HBV viral genome. Both BRD4 and the super elongation complex (SEC) bind to the HBV genome. The treatment of bromodomain inhibitor JQ1 stimulates HBV transcription and increases the occupancy of BRD4 on the HBV genome, suggesting the bromodomain-independent recruitment of BRD4 to the HBV genome. JQ1 also leads to the increased binding of SEC to the HBV genome, and SEC is required for JQ1-induced HBV transcription. These findings reveal a novel mechanism by which the HBV genome hijacks the host P-TEFb-containing complexes to promote its own transcription. Our findings also point out an important clinical implication, that is, the potential risk of HBV reactivation during therapy with a BRD4 inhibitor, such as JQ1 or its analogues, which are a potential treatment for acute myeloid leukemia.


Assuntos
DNA Circular/genética , DNA Viral/genética , Vírus da Hepatite B/fisiologia , Proteínas Nucleares/metabolismo , Fator B de Elongação Transcricional Positiva/metabolismo , Elongação da Transcrição Genética , Fatores de Transcrição/metabolismo , Azepinas/farmacologia , Proteínas de Ciclo Celular , DNA Circular/metabolismo , DNA Viral/metabolismo , Células HeLa , Células Hep G2 , Vírus da Hepatite B/genética , Humanos , Ligação Proteica , Elongação da Transcrição Genética/efeitos dos fármacos , Fatores de Elongação da Transcrição , Triazóis/farmacologia , Ativação Viral
14.
Biochemistry ; 56(24): 3008-3018, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28514164

RESUMO

The most common, oxidatively generated lesion in cellular DNA is 8-oxo-7,8-dihydroguanine, which can be oxidized further to yield highly mutagenic spiroiminodihydantoin (Sp) and 5-guanidinohydantoin (Gh) in DNA. In human cell-free extracts, both lesions can be excised by base excision repair and global genomic nucleotide excision repair. However, it is not known if these lesions can be removed by transcription-coupled DNA repair (TCR), a pathway that clears lesions from DNA that impede RNA synthesis. To determine if Sp or Gh impedes transcription, which could make each a viable substrate for TCR, either an Sp or a Gh lesion was positioned on the transcribed strand of DNA under the control of a promoter that supports transcription by human RNA polymerase II. These constructs were incubated in HeLa nuclear extracts that contained active RNA polymerase II, and the resulting transcripts were resolved by denaturing polyacrylamide gel electrophoresis. The structurally rigid Sp strongly blocks transcription elongation, permitting 1.6 ± 0.5% nominal lesion bypass. In contrast, the conformationally flexible Gh poses less of a block to human RNAPII, allowing 9 ± 2% bypass. Furthermore, fractional lesion bypass for Sp and Gh is minimally affected by glycosylase activity found in the HeLa nuclear extract. These data specifically suggest that both Sp and Gh may well be susceptible to TCR because each poses a significant block to human RNA polymerase II progression. A more general principle is also proposed: Conformational flexibility may be an important structural feature of DNA lesions that enhances their transcriptional bypass.


Assuntos
Guanidinas/farmacologia , Guanosina/análogos & derivados , Hidantoínas/farmacologia , RNA Polimerase II/antagonistas & inibidores , Compostos de Espiro/farmacologia , Elongação da Transcrição Genética/efeitos dos fármacos , Dano ao DNA , Reparo do DNA , Guanidinas/síntese química , Guanidinas/química , Guanosina/síntese química , Guanosina/química , Guanosina/farmacologia , Células HeLa , Humanos , Hidantoínas/síntese química , Hidantoínas/química , Conformação Molecular , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Compostos de Espiro/síntese química , Compostos de Espiro/química , Relação Estrutura-Atividade
15.
Nat Chem Biol ; 13(5): 501-507, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28263964

RESUMO

Pharmacological perturbation is a powerful tool for understanding mRNA synthesis, but identification of the specific steps of this multi-step process that are targeted by small molecules remains challenging. Here we applied strand-specific total RNA sequencing (RNA-seq) to identify and distinguish specific pharmacological effects on transcription and pre-mRNA processing in human cells. We found unexpectedly that the natural product isoginkgetin, previously described as a splicing inhibitor, inhibits transcription elongation. Compared to well-characterized elongation inhibitors that target CDK9, isoginkgetin caused RNA polymerase accumulation within a broader promoter-proximal band, indicating that elongation inhibition by isoginkgetin occurs after release from promoter-proximal pause. RNA-seq distinguished isoginkgetin and CDK9 inhibitors from topoisomerase I inhibition, which alters elongation across gene bodies. We were able to detect these and other specific defects in mRNA synthesis at low sequencing depth using simple metagene-based metrics. These metrics now enable total-RNA-seq-based screening for high-throughput identification of pharmacological effects on individual stages of mRNA synthesis.


Assuntos
Biflavonoides/farmacologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Análise de Sequência de RNA , Elongação da Transcrição Genética/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Humanos , RNA Mensageiro/análise , RNA Mensageiro/metabolismo
16.
J Biol Chem ; 291(50): 26177-26187, 2016 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-27799305

RESUMO

The persistence of HIV in resting memory CD4+ T cells at a latent state is considered as the major barrier on the path to achieve a cure for HIV. Proteasome inhibitors (PIs) were previously reported as latency reversing agents (LRAs) but the mechanism underlying this function is yet unclear. Here we demonstrate that PIs reactivate latent HIV ex vivo without global T cell activation, and may facilitate host innate immune responses. Mechanistically, latent HIV reactivation induced by PIs is mediated by heat shock factor 1 (HSF1) via the recruitment of the heat shock protein (HSP) 90-positive transcriptional elongation factor b (p-TEFb) complex. Specifically, HSP90 downstream HSF1 gives positive feedback to the reactivation process through binding to cyclin-dependent kinase 9 (CDK9) and preventing it from undergoing degradation by the proteasome. Overall, these findings suggest proteasome inhibitors as potential latency reversing agents. In addition, HSF1/HSP90 involved in HIV transcription elongation, may serve as therapeutic targets in HIV eradication.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Quinase 9 Dependente de Ciclina/metabolismo , HIV-1/fisiologia , Proteínas de Choque Térmico HSP90/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Ativação Viral/efeitos dos fármacos , Latência Viral/efeitos dos fármacos , Linfócitos T CD4-Positivos/virologia , Quinase 9 Dependente de Ciclina/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Infecções por HIV/metabolismo , Proteínas de Choque Térmico HSP90/genética , Fatores de Transcrição de Choque Térmico , Humanos , Masculino , Complexo de Endopeptidases do Proteassoma/genética , Elongação da Transcrição Genética/efeitos dos fármacos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Viral/fisiologia , Latência Viral/fisiologia
17.
Am J Physiol Lung Cell Mol Physiol ; 311(6): L1183-L1201, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27793799

RESUMO

Chronic epithelial injury triggers a TGF-ß-mediated cellular transition from normal epithelium into a mesenchymal-like state that produces subepithelial fibrosis and airway remodeling. Here we examined how TGF-ß induces the mesenchymal cell state and determined its mechanism. We observed that TGF-ß stimulation activates an inflammatory gene program controlled by the NF-κB/RelA signaling pathway. In the mesenchymal state, NF-κB-dependent immediate-early genes accumulate euchromatin marks and processive RNA polymerase. This program of immediate-early genes is activated by enhanced expression, nuclear translocation, and activating phosphorylation of the NF-κB/RelA transcription factor on Ser276, mediated by a paracrine signal. Phospho-Ser276 RelA binds to the BRD4/CDK9 transcriptional elongation complex, activating the paused RNA Pol II by phosphorylation on Ser2 in its carboxy-terminal domain. RelA-initiated transcriptional elongation is required for expression of the core epithelial-mesenchymal transition transcriptional regulators SNAI1, TWIST1, and ZEB1 and mesenchymal genes. Finally, we observed that pharmacological inhibition of BRD4 can attenuate experimental lung fibrosis induced by repetitive TGF-ß challenge in a mouse model. These data provide a detailed mechanism for how activated NF-κB and BRD4 control epithelial-mesenchymal transition initiation and transcriptional elongation in model airway epithelial cells in vitro and in a murine pulmonary fibrosis model in vivo. Our data validate BRD4 as an in vivo target for the treatment of pulmonary fibrosis associated with inflammation-coupled remodeling in chronic lung diseases.


Assuntos
Transição Epitelial-Mesenquimal/genética , NF-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Fibrose Pulmonar/genética , Elongação da Transcrição Genética , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ciclo Celular , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Imunoprecipitação da Cromatina , Quinase 9 Dependente de Ciclina/metabolismo , Epigênese Genética/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Genes Precoces , Humanos , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Pulmão/citologia , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Elongação da Transcrição Genética/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia
18.
Mol Cell ; 63(3): 433-44, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27477907

RESUMO

During transcription initiation, the TFIIH-kinase Kin28/Cdk7 marks RNA polymerase II (Pol II) by phosphorylating the C-terminal domain (CTD) of its largest subunit. Here we describe a structure-guided chemical approach to covalently and specifically inactivate Kin28 kinase activity in vivo. This method of irreversible inactivation recapitulates both the lethal phenotype and the key molecular signatures that result from genetically disrupting Kin28 function in vivo. Inactivating Kin28 impacts promoter release to differing degrees and reveals a "checkpoint" during the transition to productive elongation. While promoter-proximal pausing is not observed in budding yeast, inhibition of Kin28 attenuates elongation-licensing signals, resulting in Pol II accumulation at the +2 nucleosome and reduced transition to productive elongation. Furthermore, upon inhibition, global stabilization of mRNA masks different degrees of reduction in nascent transcription. This study resolves long-standing controversies on the role of Kin28 in transcription and provides a rational approach to irreversibly inhibit other kinases in vivo.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Engenharia de Proteínas , Estabilidade de RNA , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Elongação da Transcrição Genética , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/química , Quinases Ciclina-Dependentes/genética , DNA Polimerase II/genética , DNA Polimerase II/metabolismo , Humanos , Modelos Moleculares , Mutação , Nucleossomos/enzimologia , Nucleossomos/genética , Fosforilação , Regiões Promotoras Genéticas , Conformação Proteica , Inibidores de Proteínas Quinases/farmacologia , Estabilidade de RNA/efeitos dos fármacos , RNA Fúngico/efeitos dos fármacos , RNA Fúngico/genética , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Relação Estrutura-Atividade , Fatores de Tempo , Elongação da Transcrição Genética/efeitos dos fármacos , Quinase Ativadora de Quinase Dependente de Ciclina
19.
Nucleic Acids Res ; 44(14): 6853-67, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27353326

RESUMO

The association of DSIF and NELF with initiated RNA Polymerase II (Pol II) is the general mechanism for inducing promoter-proximal pausing of Pol II. However, it remains largely unclear how the paused Pol II is released in response to stimulation. Here, we show that the release of the paused Pol II is cooperatively regulated by multiple P-TEFbs which are recruited by bromodomain-containing protein Brd4 and super elongation complex (SEC) via different recruitment mechanisms. Upon stimulation, Brd4 recruits P-TEFb to Spt5/DSIF via a recruitment pathway consisting of Med1, Med23 and Tat-SF1, whereas SEC recruits P-TEFb to NELF-A and NELF-E via Paf1c and Med26, respectively. P-TEFb-mediated phosphorylation of Spt5, NELF-A and NELF-E results in the dissociation of NELF from Pol II, thereby transiting transcription from pausing to elongation. Additionally, we demonstrate that P-TEFb-mediated Ser2 phosphorylation of Pol II is dispensable for pause release. Therefore, our studies reveal a co-regulatory mechanism of Brd4 and SEC in modulating the transcriptional pause release by recruiting multiple P-TEFbs via a Mediator- and Paf1c-coordinated recruitment network.


Assuntos
Fator B de Elongação Transcricional Positiva/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Acetamidas/farmacologia , Proteínas de Ciclo Celular , Células HCT116 , Células HeLa , Humanos , Modelos Biológicos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação/efeitos dos fármacos , RNA Interferente Pequeno/metabolismo , Elongação da Transcrição Genética/efeitos dos fármacos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição/metabolismo
20.
Dev Biol ; 416(2): 361-72, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27343897

RESUMO

Regulation of gene expression at the level of transcriptional elongation has been shown to be important in stem cells and tumour cells, but its role in the whole animal is only now being fully explored. Neural crest cells (NCCs) are a multipotent population of cells that migrate during early development from the dorsal neural tube throughout the embryo where they differentiate into a variety of cell types including pigment cells, cranio-facial skeleton and sensory neurons. Specification of NCCs is both spatially and temporally regulated during embryonic development. Here we show that components of the transcriptional elongation regulatory machinery, CDK9 and CYCLINT1 of the P-TEFb complex, are required to regulate neural crest specification. In particular, we show that expression of the proto-oncogene c-Myc and c-Myc responsive genes are affected. Our data suggest that P-TEFb is crucial to drive expression of c-Myc, which acts as a 'gate-keeper' for the correct temporal and spatial development of the neural crest.


Assuntos
Ciclina T/genética , Quinase 9 Dependente de Ciclina/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes myc , Crista Neural/embriologia , Fator B de Elongação Transcricional Positiva/genética , Elongação da Transcrição Genética , Proteínas de Xenopus/genética , Xenopus laevis/embriologia , Animais , Ciclina T/deficiência , Quinase 9 Dependente de Ciclina/deficiência , Isoxazóis/farmacologia , Leflunomida , Morfolinos/farmacologia , Fator B de Elongação Transcricional Positiva/deficiência , Proteínas Proto-Oncogênicas c-myc/biossíntese , RNA Polimerase II/metabolismo , Fatores de Transcrição SOXE/biossíntese , Fatores de Transcrição SOXE/genética , Elongação da Transcrição Genética/efeitos dos fármacos , Transcrição Gênica , Proteínas de Xenopus/deficiência , Xenopus laevis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA