RESUMO
In mammals, CLOCK and BMAL1 proteins form a heterodimer that binds to E-box sequences and activates transcription of target genes, including Period (Per). Translated PER proteins then bind to the CLOCK-BMAL1 complex to inhibit its transcriptional activity. However, the molecular mechanism and the impact of this PER-dependent inhibition on the circadian clock oscillation remain elusive. We previously identified Ser38 and Ser42 in a DNA-binding domain of CLOCK as phosphorylation sites at the PER-dependent inhibition phase. In this study, knockout rescue experiments showed that nonphosphorylatable (Ala) mutations at these sites shortened circadian period, whereas their constitutive-phospho-mimetic (Asp) mutations completely abolished the circadian rhythms. Similarly, we found that nonphosphorylatable (Ala) and constitutive-phospho-mimetic (Glu) mutations at Ser78 in a DNA-binding domain of BMAL1 also shortened the circadian period and abolished the rhythms, respectively. The mathematical modeling predicted that these constitutive-phospho-mimetic mutations weaken the DNA binding of the CLOCK-BMAL1 complex and that the nonphosphorylatable mutations inhibit the PER-dependent displacement (reduction of DNA-binding ability) of the CLOCK-BMAL1 complex from DNA. Biochemical experiments supported the importance of these phosphorylation sites for displacement of the complex in the PER2-dependent inhibition. Our results provide direct evidence that phosphorylation of CLOCK-Ser38/Ser42 and BMAL1-Ser78 plays a crucial role in the PER-dependent inhibition and the determination of the circadian period.
Assuntos
Fatores de Transcrição ARNTL , Proteínas CLOCK , Relógios Circadianos , Proteínas Circadianas Period , Animais , Humanos , Camundongos , Fatores de Transcrição ARNTL/metabolismo , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/química , Relógios Circadianos/genética , Ritmo Circadiano/fisiologia , Ritmo Circadiano/genética , Proteínas CLOCK/metabolismo , Proteínas CLOCK/genética , DNA/metabolismo , Células HEK293 , Mutação , Células NIH 3T3 , Proteínas Circadianas Period/metabolismo , Proteínas Circadianas Period/genética , Fosforilação , Ligação Proteica , Domínios ProteicosRESUMO
Polyamines stimulate the synthesis of specific proteins at the level of translation, and the genes encoding these proteins are termed as the "polyamine modulon". The circadian clock generates daily rhythms in mammalian physiology and behavior. We investigated the role of polyamines in the circadian rhythm using control and polyamine-reduced NIH3T3 cells. The intracellular polyamines exhibited a rhythm with a period of about 24 h. In the polyamine-reduced NIH3T3 cells, the circadian period of circadian clock genes was lengthened and the synthesis of BMAL1 and REV-ERBα was significantly reduced at the translation level. Thus, the mechanism of polyamine stimulation of these protein syntheses was analyzed using NIH3T3 cells transiently transfected with genes encoding enhanced green fluorescent protein (EGFP) fusion mRNA with normal or mutated 5'-untranslated region (5'-UTR) of Bmal1 or Rev-erbα mRNA. It was found that polyamines stimulated BMAL1 and REV-ERBα synthesis through the enhancement of ribosomal shunting during the ribosome shunting within the 5'-UTR of mRNAs. Accordingly, the genes encoding Bmal1 and Rev-erbα were identified as the members of "polyamine modulon", and these two proteins are significantly involved in the circadian rhythm control.
Assuntos
Fatores de Transcrição ARNTL/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Poliaminas/farmacologia , Regiões 5' não Traduzidas/efeitos dos fármacos , Fatores de Transcrição ARNTL/química , Fatores de Transcrição ARNTL/metabolismo , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Conformação Molecular , Células NIH 3T3 , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/química , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , RNA Mensageiro/químicaRESUMO
Mammalian circadian clocks are driven by transcription/translation feedback loops composed of positive transcriptional activators (BMAL1 and CLOCK) and negative repressors (CRYPTOCHROMEs (CRYs) and PERIODs (PERs)). CRYs, in complex with PERs, bind to the BMAL1/CLOCK complex and repress E-box-driven transcription of clock-associated genes. There are two individual CRYs, with CRY1 exhibiting higher affinity to the BMAL1/CLOCK complex than CRY2. It is known that this differential binding is regulated by a dynamic serine-rich loop adjacent to the secondary pocket of both CRYs, but the underlying features controlling loop dynamics are not known. Here we report that allosteric regulation of the serine-rich loop is mediated by Arg-293 of CRY1, identified as a rare CRY1 SNP in the Ensembl and 1000 Genomes databases. The p.Arg293His CRY1 variant caused a shortened circadian period in a Cry1-/-Cry2-/- double knockout mouse embryonic fibroblast cell line. Moreover, the variant displayed reduced repressor activity on BMAL1/CLOCK driven transcription, which is explained by reduced affinity to BMAL1/CLOCK in the absence of PER2 compared with CRY1. Molecular dynamics simulations revealed that the p.Arg293His CRY1 variant altered a communication pathway between Arg-293 and the serine loop by reducing its dynamicity. Collectively, this study provides direct evidence that allosterism in CRY1 is critical for the regulation of circadian rhythm.
Assuntos
Proteínas CLOCK , Ritmo Circadiano , Criptocromos , Simulação de Dinâmica Molecular , Fatores de Transcrição ARNTL/química , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Regulação Alostérica , Substituição de Aminoácidos , Animais , Arginina/química , Arginina/genética , Arginina/metabolismo , Proteínas CLOCK/química , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Criptocromos/química , Criptocromos/genética , Criptocromos/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Mutação de Sentido Incorreto , Proteínas Circadianas Period/química , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Estrutura Secundária de Proteína , Transcrição GênicaRESUMO
Essential components of the human circadian clock, BMAL1 and CLOCK, which are intrinsically disordered transcription factors, were expressed and subjected to a fluorescent in vitro binding assay using an E-box DNA fragment. Screening of a chemical library identified 5,8-quinoxalinedione (1), which was found to inhibit binding of the heterodimer BMAL1/CLOCK to E-box at low micromolar concentrations.
Assuntos
Fatores de Transcrição ARNTL/antagonistas & inibidores , Proteínas CLOCK/antagonistas & inibidores , Relógios Circadianos , DNA/metabolismo , Proteínas Intrinsicamente Desordenadas/antagonistas & inibidores , Quinoxalinas/farmacologia , Fatores de Transcrição ARNTL/química , Fatores de Transcrição ARNTL/metabolismo , Proteínas CLOCK/química , Proteínas CLOCK/metabolismo , DNA/química , Relação Dose-Resposta a Droga , Humanos , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Estrutura Molecular , Ligação Proteica/efeitos dos fármacosRESUMO
Mammalian circadian rhythms are generated by a transcription-based feedback loop in which CLOCK:BMAL1 drives transcription of its repressors (PER1/2, CRY1/2), which ultimately interact with CLOCK:BMAL1 to close the feedback loop with ~24 hr periodicity. Here we pinpoint a key difference between CRY1 and CRY2 that underlies their differential strengths as transcriptional repressors. Both cryptochromes bind the BMAL1 transactivation domain similarly to sequester it from coactivators and repress CLOCK:BMAL1 activity. However, we find that CRY1 is recruited with much higher affinity to the PAS domain core of CLOCK:BMAL1, allowing it to serve as a stronger repressor that lengthens circadian period. We discovered a dynamic serine-rich loop adjacent to the secondary pocket in the photolyase homology region (PHR) domain that regulates differential binding of cryptochromes to the PAS domain core of CLOCK:BMAL1. Notably, binding of the co-repressor PER2 remodels the serine loop of CRY2, making it more CRY1-like and enhancing its affinity for CLOCK:BMAL1.
Assuntos
Fatores de Transcrição ARNTL/fisiologia , Proteínas CLOCK/fisiologia , Ritmo Circadiano , Criptocromos/metabolismo , Fatores de Transcrição ARNTL/química , Fatores de Transcrição ARNTL/metabolismo , Animais , Proteínas CLOCK/química , Proteínas CLOCK/metabolismo , Ritmo Circadiano/fisiologia , Criptocromos/química , Criptocromos/fisiologia , Camundongos , Estrutura Terciária de Proteína , Serina/metabolismoRESUMO
The circadian clock is an endogenous time-keeping system that is ubiquitous in animals and plants as well as some bacteria. In mammals, the clock regulates the sleep-wake cycle via 2 basic helix-loop-helix PER-ARNT-SIM (bHLH-PAS) domain proteins-CLOCK and BMAL1. There is emerging evidence to suggest that heme affects circadian control, through binding of heme to various circadian proteins, but the mechanisms of regulation are largely unknown. In this work we examine the interaction of heme with human CLOCK (hCLOCK). We present a crystal structure for the PAS-A domain of hCLOCK, and we examine heme binding to the PAS-A and PAS-B domains. UV-visible and electron paramagnetic resonance spectroscopies are consistent with a bis-histidine ligated heme species in solution in the oxidized (ferric) PAS-A protein, and by mutagenesis we identify His144 as a ligand to the heme. There is evidence for flexibility in the heme pocket, which may give rise to an additional Cys axial ligand at 20K (His/Cys coordination). Using DNA binding assays, we demonstrate that heme disrupts binding of CLOCK to its E-box DNA target. Evidence is presented for a conformationally mobile protein framework, which is linked to changes in heme ligation and which has the capacity to affect binding to the E-box. Within the hCLOCK structural framework, this would provide a mechanism for heme-dependent transcriptional regulation.
Assuntos
Proteínas CLOCK/química , Elementos E-Box , Heme/química , Transdução de Sinais , Fatores de Transcrição ARNTL/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Catálise , Relógios Circadianos , Criptocromos/química , DNA/química , Elétrons , Escherichia coli/metabolismo , Humanos , Ligantes , Proteínas do Tecido Nervoso/química , Oxigênio/química , Proteínas Circadianas Period/química , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Transcrição GênicaRESUMO
The mammalian CLOCK:BMAL1 transcription factor complex and its coactivators CREB-binding protein (CBP)/p300 and mixed-lineage leukemia 1 (MLL1) critically regulate circadian transcription and chromatin modification. Circadian oscillations are regulated by interactions of BMAL1's C-terminal transactivation domain (TAD) with the KIX domain of CBP/p300 (activating) and with the clock protein CRY1 (repressing) as well as by the BMAL1 G-region preceding the TAD. Circadian acetylation of Lys537 within the G-region enhances repressive BMAL1-TAD-CRY1 interactions. Here, we characterized the interaction of the CBP-KIX domain with BMAL1 proteins, including the BMAL1-TAD, parts of the G-region, and Lys537 Tethering the small compound 1-10 in the MLL-binding pocket of the CBP-KIX domain weakened BMAL1 binding, and MLL1-bound KIX did not form a ternary complex with BMAL1, indicating that the MLL-binding pocket is important for KIX-BMAL1 interactions. Small-angle X-ray scattering (SAXS) models of BMAL1 and BMAL1:KIX complexes revealed that the N-terminal BMAL1 G-region including Lys537 forms elongated extensions emerging from the bulkier BMAL1-TAD:KIX core complex. Fitting high-resolution KIX domain structures into the SAXS-derived envelopes suggested that the G-region emerges near the MLL-binding pocket, further supporting a role of this pocket in BMAL1 binding. Additionally, mutations in the second CREB-pKID/c-Myb-binding pocket of the KIX domain moderately impacted BMAL1 binding. The BMAL1(K537Q) mutation mimicking Lys537 acetylation, however, did not affect the KIX-binding affinity, in contrast to its enhancing effect on CRY1 binding. Our results significantly advance the mechanistic understanding of the protein interaction networks controlling CLOCK:BMAL1- and CBP-dependent gene regulation in the mammalian circadian clock.
Assuntos
Fatores de Transcrição ARNTL/metabolismo , Proteína de Ligação a CREB/metabolismo , Relógios Circadianos , Fatores de Transcrição ARNTL/química , Fatores de Transcrição ARNTL/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteína de Ligação a CREB/química , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/metabolismo , Camundongos , Mutagênese Sítio-Dirigida , Proteína de Leucina Linfoide-Mieloide/química , Proteína de Leucina Linfoide-Mieloide/metabolismo , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-myb/química , Proteínas Proto-Oncogênicas c-myb/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Espalhamento a Baixo Ângulo , Ressonância de Plasmônio de Superfície , Difração de Raios XRESUMO
Either expression level or transcriptional activity of various nuclear receptors (NRs) have been demonstrated to be under circadian control. With a few exceptions, little is known about the roles of NRs as direct regulators of the circadian circuitry. Here we show that the nuclear receptor HNF4A strongly transrepresses the transcriptional activity of the CLOCK:BMAL1 heterodimer. We define a central role for HNF4A in maintaining cell-autonomous circadian oscillations in a tissue-specific manner in liver and colon cells. Not only transcript level but also genome-wide chromosome binding of HNF4A is rhythmically regulated in the mouse liver. ChIP-seq analyses revealed cooccupancy of HNF4A and CLOCK:BMAL1 at a wide array of metabolic genes involved in lipid, glucose, and amino acid homeostasis. Taken together, we establish that HNF4A defines a feedback loop in tissue-specific mammalian oscillators and demonstrate its recruitment in the circadian regulation of metabolic pathways.
Assuntos
Proteínas CLOCK/metabolismo , Ritmo Circadiano , Fator 4 Nuclear de Hepatócito/metabolismo , Fatores de Transcrição ARNTL/química , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Proteínas CLOCK/química , Proteínas CLOCK/genética , Linhagem Celular , Colo/metabolismo , Dimerização , Regulação para Baixo , Regulação da Expressão Gênica , Fator 4 Nuclear de Hepatócito/genética , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Transcrição GênicaRESUMO
Mammalian circadian clocks are driven by a transcription/translation feedback loop composed of positive regulators (CLOCK/BMAL1) and repressors (CRYPTOCHROME 1/2 (CRY1/2) and PER1/2). To understand the structural principles of regulation, we used evolutionary sequence analysis to identify co-evolving residues within the CRY/PHL protein family. Here we report the identification of an ancestral secondary cofactor-binding pocket as an interface in repressive CRYs, mediating regulation through direct interaction with CLOCK and BMAL1. Mutations weakening binding between CLOCK/BMAL1 and CRY1 lead to acceleration of the clock, suggesting that subtle sequence divergences at this site can modulate clock function. Divergence between CRY1 and CRY2 at this site results in distinct periodic output. Weaker interactions between CRY2 and CLOCK/BMAL1 at this pocket are strengthened by co-expression of PER2, suggesting that PER expression limits the length of the repressive phase in CRY2-driven rhythms. Overall, this work provides a model for the mechanism and evolutionary variation of clock regulatory mechanisms.
Assuntos
Criptocromos/genética , Criptocromos/metabolismo , Evolução Molecular , Fatores de Transcrição ARNTL/química , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Sítio Alostérico/genética , Animais , Proteínas CLOCK/química , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Linhagem Celular , Relógios Circadianos/genética , Criptocromos/química , Células HEK293 , Humanos , Proteínas de Insetos/química , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Camundongos , Camundongos Knockout , Modelos Moleculares , Proteínas Circadianas Period/química , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Domínios e Motivos de Interação entre Proteínas/genética , Homologia Estrutural de ProteínaRESUMO
The cell cycle and the circadian clock operate as biological oscillators whose timed functions are tightly regulated. Accumulating evidence illustrates the presence of molecular links between these two oscillators. This mutual interplay utilizes various coupling mechanisms, such as the use of common regulators. The connection between these two cyclic systems has unique interest in the context of aberrant cell proliferation since both of these oscillators are frequently misregulated in cancer cells. Further studies will provide deeper understanding of the detailed molecular connections between the cell cycle and the circadian clock and may also serve as a basis for the design of innovative therapeutic strategies.
Assuntos
Fatores de Transcrição ARNTL/genética , Proteínas CLOCK/genética , Ciclo Celular/genética , Relógios Circadianos/genética , Fatores de Transcrição ARNTL/química , Animais , Divisão Celular/genética , Proliferação de Células/genética , Ritmo Circadiano/genética , HumanosRESUMO
The Drosophila circadian clock keeps time via transcriptional feedback loops. These feedback loops are initiated by CLOCK-CYCLE (CLK-CYC) heterodimers, which activate transcription of genes encoding the feedback repressors PERIOD and TIMELESS. Circadian clocks normally operate in â¼150 brain pacemaker neurons and in many peripheral tissues in the head and body, but can also be induced by expressing CLK in nonclock cells. These ectopic clocks also require cyc, yet CYC expression is restricted to canonical clock cells despite evidence that cyc mRNA is widely expressed. Here we show that CLK binds to and stabilizes CYC in cell culture and in nonclock cells in vivo. Ectopic clocks also require the blue light photoreceptor CRYPTOCHROME (CRY), which is required for both light entrainment and clock function in peripheral tissues. These experiments define the genetic architecture required to initiate circadian clock function in Drosophila, reveal mechanisms governing circadian activator stability that are conserved in perhaps all eukaryotes, and suggest that Clk, cyc, and cry expression is sufficient to drive clock expression in naive cells.
Assuntos
Fatores de Transcrição ARNTL/química , Animais Geneticamente Modificados/metabolismo , Proteínas CLOCK/metabolismo , Relógios Circadianos , Criptocromos/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Neurônios/fisiologia , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Animais Geneticamente Modificados/genética , Proteínas CLOCK/genética , Células Cultivadas , Ritmo Circadiano , Proteínas de Drosophila/genética , Neurônios/citologiaRESUMO
In the canonical clock model, CLOCK:BMAL1-mediated transcriptional activation is feedback regulated by its repressors CRY and PER and, in association with other coregulators, ultimately generates oscillatory gene expression patterns. How CLOCK:BMAL1 interacts with coregulator(s) is not well understood. Here we report the crystal structures of the mouse CLOCK transactivating domain Exon19 in complex with CIPC, a potent circadian repressor that functions independently of CRY and PER. The Exon19:CIPC complex adopts a three-helical coiled-coil bundle conformation containing two Exon19 helices and one CIPC. Unique to Exon19:CIPC, three highly conserved polar residues, Asn341 of CIPC and Gln544 of the two Exon19 helices, are located at the mid-section of the coiled-coil bundle interior and form hydrogen bonds with each other. Combining results from protein database search, sequence analysis, and mutagenesis studies, we discovered for the first time that CLOCK Exon19:CIPC interaction is a conserved transcription regulatory mechanism among mammals, fish, flies, and other invertebrates.
Assuntos
Fatores de Transcrição ARNTL/química , Proteínas CLOCK/química , Proteínas de Transporte/química , Proteínas de Drosophila/química , Simulação de Acoplamento Molecular , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Motivos de Aminoácidos , Substituição de Aminoácidos , Animais , Sítios de Ligação , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Sequência Conservada , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Éxons , Camundongos , Ligação ProteicaRESUMO
The C-terminal transactivation domain (TAD) of BMAL1 (brain and muscle ARNT-like 1) is a regulatory hub for transcriptional coactivators and repressors that compete for binding and, consequently, contributes to period determination of the mammalian circadian clock. Here, we report the discovery of two distinct conformational states that slowly exchange within the dynamic TAD to control timing. This binary switch results from cis/trans isomerization about a highly conserved Trp-Pro imide bond in a region of the TAD that is required for normal circadian timekeeping. Both cis and trans isomers interact with transcriptional regulators, suggesting that isomerization could serve a role in assembling regulatory complexes in vivo. Toward this end, we show that locking the switch into the trans isomer leads to shortened circadian periods. Furthermore, isomerization is regulated by the cyclophilin family of peptidyl-prolyl isomerases, highlighting the potential for regulation of BMAL1 protein dynamics in period determination.
Assuntos
Fatores de Transcrição ARNTL/metabolismo , Relógios Circadianos , Ritmo Circadiano , Fatores de Transcrição ARNTL/química , Fatores de Transcrição ARNTL/genética , Animais , Linhagem Celular Tumoral , Ciclofilinas/genética , Ciclofilinas/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Humanos , Isomerismo , Camundongos , Mutação , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Filogenia , Prolina , Domínios Proteicos , Transdução de Sinais , Relação Estrutura-Atividade , Fatores de Tempo , Transfecção , TriptofanoRESUMO
The basic helix-loop-helix PAS domain (bHLH-PAS) transcription factor CLOCK:BMAL1 (brain and muscle Arnt-like protein 1) sits at the core of the mammalian circadian transcription/translation feedback loop. Precise control of CLOCK:BMAL1 activity by coactivators and repressors establishes the â¼24-h periodicity of gene expression. Formation of a repressive complex, defined by the core clock proteins cryptochrome 1 (CRY1):CLOCK:BMAL1, plays an important role controlling the switch from repression to activation each day. Here we show that CRY1 binds directly to the PAS domain core of CLOCK:BMAL1, driven primarily by interaction with the CLOCK PAS-B domain. Integrative modeling and solution X-ray scattering studies unambiguously position a key loop of the CLOCK PAS-B domain in the secondary pocket of CRY1, analogous to the antenna chromophore-binding pocket of photolyase. CRY1 docks onto the transcription factor alongside the PAS domains, extending above the DNA-binding bHLH domain. Single point mutations at the interface on either CRY1 or CLOCK disrupt formation of the ternary complex, highlighting the importance of this interface for direct regulation of CLOCK:BMAL1 activity by CRY1.
Assuntos
Fatores de Transcrição ARNTL/genética , Proteínas CLOCK/genética , Relógios Circadianos/genética , Criptocromos/genética , Fatores de Transcrição ARNTL/química , Fatores de Transcrição ARNTL/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Proteínas CLOCK/química , Proteínas CLOCK/metabolismo , Criptocromos/química , Criptocromos/metabolismo , Cristalografia por Raios X , Camundongos , Modelos Moleculares , Mutação , Ligação Proteica , Domínios Proteicos , Células Sf9 , SpodopteraRESUMO
Alzheimer's disease (AD) is a circadian clock-related disease. However, it is not very clear whether pre-symptomatic AD leads to circadian disruption or whether malfunction of circadian rhythms exerts influence on development of AD. Here, we report a functional clock that exists in the hippocampus. This oscillator both receives input signals and maintains the cycling of the hippocampal Per2 gene. One of the potential inputs to the oscillator is orexin signaling, which can shorten the hippocampal clock period and thereby regulate the expression of clock-controlled-genes (CCGs). A 24-h time course qPCR analysis followed by a JTK_CYCLE algorithm analysis indicated that a number of AD-risk genes are potential CCGs in the hippocampus. Specifically, we found that Bace1 and Bace2, which are related to the production of the amyloid-beta peptide, are CCGs. BACE1 is inhibited by E4BP4, a repressor of D-box genes, while BACE2 is activated by CLOCK:BMAL1. Finally, we observed alterations in the rhythmic expression patterns of Bace2 and ApoE in the hippocampus of aged APP/PS1dE9 mice. Our results therefore indicate that there is a circadian oscillator in the hippocampus whose oscillation could be regulated by orexins. Hence, orexin signaling regulates both the hippocampal clock and the circadian oscillation of AD-risk genes.
Assuntos
Doença de Alzheimer/patologia , Relógios Circadianos/genética , Ritmo Circadiano/genética , Hipocampo/metabolismo , Orexinas/metabolismo , Fatores de Transcrição ARNTL/química , Fatores de Transcrição ARNTL/metabolismo , Algoritmos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/veterinária , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/química , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Apolipoproteínas E/metabolismo , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/química , Ácido Aspártico Endopeptidases/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/química , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Proteínas Circadianas Period/genética , Transdução de SinaisRESUMO
The circadian clock system has been linked to the onset and development of obesity and some accompanying comorbidities. Epigenetic mechanisms, such as DNA methylation, are putatively involved in the regulation of the circadian clock system. The aim of this study was to investigate the influence of a weight loss intervention based on an energy-controlled Mediterranean dietary pattern in the methylation levels of 3 clock genes, BMAL1, CLOCK, and NR1D1, and the association between the methylation levels and changes induced in the serum lipid profile with the weight loss treatment. The study sample enrolled 61 women (body mass index = 28.6 ± 3.4 kg/m(2); age: 42.2 ± 11.4 years), who followed a nutritional program based on a Mediterranean dietary pattern. DNA was isolated from whole blood obtained at the beginning and end point. Methylation levels at different CpG sites of BMAL1, CLOCK, and NR1D1 were analyzed by Sequenom's MassArray. The energy-restricted intervention modified the methylation levels of different CpG sites in BMAL1 (CpGs 5, 6, 7, 9, 11, and 18) and NR1D1 (CpGs 1, 10, 17, 18, 19, and 22). Changes in cytosine methylation in the CpG 5 to 9 region of BMAL1 with the intervention positively correlated with the eveningness profile (p = 0.019). The baseline methylation of the CpG 5 to 9 region in BMAL1 positively correlated with energy (p = 0.047) and carbohydrate (p = 0.017) intake and negatively correlated with the effect of the weight loss intervention on total cholesterol (p = 0.032) and low-density lipoprotein cholesterol (p = 0.005). Similar significant and positive correlations were found between changes in methylation levels in the CpG 5 to 9 region of BMAL1 due to the intervention and changes in serum lipids (p < 0.05). This research describes apparently for the first time an association between changes in the methylation of the BMAL1 gene with the intervention and the effects of a weight loss intervention on blood lipids levels.
Assuntos
Fatores de Transcrição ARNTL/química , Fatores de Transcrição ARNTL/genética , Colesterol/sangue , Ritmo Circadiano/genética , Triglicerídeos/sangue , Redução de Peso/genética , Adulto , Proteínas CLOCK/química , Proteínas CLOCK/genética , Dieta Mediterrânea , Epigenômica , Feminino , Humanos , Metilação , Pessoa de Meia-Idade , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/química , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Obesidade , OligodesoxirribonucleotídeosRESUMO
Understanding of multidrug binding at the atomic level would facilitate drug design and strategies to modulate drug metabolism, including drug transport, oxidation, and conjugation. Therefore we explored the mechanism of promiscuous binding of small molecules by studying the ligand binding domain, the PAS-B domain of the aryl hydrocarbon receptor (AhR). Because of the low sequence identities of PAS domains to be used for homology modeling, structural features of the widely employed HIF-2α and a more recent suitable template, CLOCK were compared. These structures were used to build AhR PAS-B homology models. We performed molecular dynamics simulations to characterize dynamic properties of the PAS-B domain and the generated conformational ensembles were employed in in silico docking. In order to understand structural and ligand binding features we compared the stability and dynamics of the promiscuous AhR PAS-B to other PAS domains exhibiting specific interactions or no ligand binding function. Our exhaustive in silico binding studies, in which we dock a wide spectrum of ligand molecules to the conformational ensembles, suggest that ligand specificity and selection may be determined not only by the PAS-B domain itself, but also by other parts of AhR and its protein interacting partners. We propose that ligand binding pocket and access channels leading to the pocket play equally important roles in discrimination of endogenous molecules and xenobiotics.
Assuntos
Receptores de Hidrocarboneto Arílico/química , Xenobióticos/metabolismo , Fatores de Transcrição ARNTL/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Sítios de Ligação , Proteínas CLOCK/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Modelos Químicos , Modelos Moleculares , Simulação de Acoplamento Molecular , Complexos Multiproteicos , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Receptores de Hidrocarboneto Arílico/metabolismo , Especificidade por SubstratoRESUMO
Intracellular circadian clocks, composed of clock genes that act in transcription-translation feedback loops, drive global rhythmic expression of the mammalian transcriptome and allow an organism to anticipate to the momentum of the day. Using a novel clock-perturbing peptide, we established a pivotal role for casein kinase (CK)-2-mediated circadian BMAL1-Ser90 phosphorylation (BMAL1-P) in regulating central and peripheral core clocks. Subsequent analysis of the underlying mechanism showed a novel role of CRY as a repressor for protein kinase. Co-immunoprecipitation experiments and real-time monitoring of protein-protein interactions revealed that CRY-mediated periodic binding of CK2ß to BMAL1 inhibits BMAL1-Ser90 phosphorylation by CK2α. The FAD binding domain of CRY1, two C-terminal BMAL1 domains, and particularly BMAL1-Lys537 acetylation/deacetylation by CLOCK/SIRT1, were shown to be critical for CRY-mediated BMAL1-CK2ß binding. Reciprocally, BMAL1-Ser90 phosphorylation is prerequisite for BMAL1-Lys537 acetylation. We propose a dual negative-feedback model in which a CRY-dependent CK2-driven posttranslational BMAL1-P-BMAL1 loop is an integral part of the core clock oscillator.
Assuntos
Fatores de Transcrição ARNTL/metabolismo , Caseína Quinase II/metabolismo , Relógios Circadianos , Criptocromos/metabolismo , Processamento de Proteína Pós-Traducional , Fatores de Transcrição ARNTL/química , Fatores de Transcrição ARNTL/genética , Animais , Caseína Quinase II/química , Caseína Quinase II/genética , Linhagem Celular , Células Cultivadas , Criptocromos/química , Criptocromos/genética , Embrião de Mamíferos/citologia , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mutação , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismoRESUMO
A new study adds further complexity to the mammalian circadian clock by revealing that the CRY protein has an additional unsuspected feedback role in facilitating a crucial regulatory phosphorylation event. Read the Research Article.
Assuntos
Fatores de Transcrição ARNTL/metabolismo , Caseína Quinase II/metabolismo , Relógios Circadianos , Criptocromos/metabolismo , Modelos Biológicos , Processamento de Proteína Pós-Traducional , Fatores de Transcrição ARNTL/química , Fatores de Transcrição ARNTL/genética , Animais , Caseína Quinase II/química , Caseína Quinase II/genética , Criptocromos/química , Criptocromos/genética , Humanos , Fosforilação , Domínios e Motivos de Interação entre ProteínasRESUMO
The MYC oncogene encodes MYC, a transcription factor that binds the genome through sites termed E-boxes (5'-CACGTG-3'), which are identical to the binding sites of the heterodimeric CLOCK-BMAL1 master circadian transcription factor. Hence, we hypothesized that ectopic MYC expression perturbs the clock by deregulating E-box-driven components of the circadian network in cancer cells. We report here that deregulated expression of MYC or N-MYC disrupts the molecular clock in vitro by directly inducing REV-ERBα to dampen expression and oscillation of BMAL1, and this could be rescued by knockdown of REV-ERB. REV-ERBα expression predicts poor clinical outcome for N-MYC-driven human neuroblastomas that have diminished BMAL1 expression, and re-expression of ectopic BMAL1 in neuroblastoma cell lines suppresses their clonogenicity. Further, ectopic MYC profoundly alters oscillation of glucose metabolism and perturbs glutaminolysis. Our results demonstrate an unsuspected link between oncogenic transformation and circadian and metabolic dysrhythmia, which we surmise to be advantageous for cancer.