Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 742, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890421

RESUMO

Aminoacyl-tRNA synthetases (aaRSs) play a central role in the translation of genetic code, serving as attractive drug targets. Within this family, the lysyl-tRNA synthetase (LysRS) constitutes a promising antimalarial target. ASP3026, an anaplastic lymphoma kinase (ALK) inhibitor was recently identified as a novel Plasmodium falciparum LysRS (PfLysRS) inhibitor. Here, based on cocrystal structures and biochemical experiments, we developed a series of ASP3026 analogues to improve the selectivity and potency of LysRS inhibition. The leading compound 36 showed a dissociation constant of 15.9 nM with PfLysRS. The inhibitory efficacy on PfLysRS and parasites has been enhanced. Covalent attachment of L-lysine to compound 36 resulted in compound 36K3, which exhibited further increased inhibitory activity against PfLysRS but significantly decreased activity against ALK. However, its inhibitory activity against parasites did not improve, suggesting potential future optimization directions. This study presents a new example of derivatization of kinase inhibitors repurposed to inhibit aaRS.


Assuntos
Quinase do Linfoma Anaplásico , Antimaláricos , Lisina-tRNA Ligase , Plasmodium falciparum , Inibidores de Proteínas Quinases , Plasmodium falciparum/enzimologia , Plasmodium falciparum/efeitos dos fármacos , Lisina-tRNA Ligase/antagonistas & inibidores , Lisina-tRNA Ligase/metabolismo , Lisina-tRNA Ligase/química , Lisina-tRNA Ligase/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Quinase do Linfoma Anaplásico/antagonistas & inibidores , Quinase do Linfoma Anaplásico/metabolismo , Quinase do Linfoma Anaplásico/genética , Antimaláricos/farmacologia , Antimaláricos/química , Relação Estrutura-Atividade , Humanos , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/genética
2.
Protein Sci ; 30(9): 1793-1803, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34184352

RESUMO

Malaria is a parasitic illness caused by the genus Plasmodium from the apicomplexan phylum. Five plasmodial species of P. falciparum (Pf), P. knowlesi, P. malariae, P. ovale, and P. vivax (Pv) are responsible for causing malaria in humans. According to the World Malaria Report 2020, there were 229 million cases and ~ 0.04 million deaths of which 67% were in children below 5 years of age. While more than 3 billion people are at risk of malaria infection globally, antimalarial drugs are their only option for treatment. Antimalarial drug resistance keeps arising periodically and thus threatens the main line of malaria treatment, emphasizing the need to find new alternatives. The availability of whole genomes of P. falciparum and P. vivax has allowed targeting their unexplored plasmodial enzymes for inhibitor development with a focus on multistage targets that are crucial for parasite viability in both the blood and liver stages. Over the past decades, aminoacyl-tRNA synthetases (aaRSs) have been explored as anti-bacterial and anti-fungal drug targets, and more recently (since 2009) aaRSs are also the focus of antimalarial drug targeting. Here, we dissect the structure-based knowledge of the most advanced three aaRSs-lysyl- (KRS), prolyl- (PRS), and phenylalanyl- (FRS) synthetases in terms of development of antimalarial drugs. These examples showcase the promising potential of this family of enzymes to provide druggable targets that stall protein synthesis upon inhibition and thereby kill malaria parasites selectively.


Assuntos
Aminoacil-tRNA Sintetases/química , Antimaláricos/química , Inibidores Enzimáticos/química , Lisina-tRNA Ligase/química , Fenilalanina-tRNA Ligase/química , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/química , Aminoacil-tRNA Sintetases/antagonistas & inibidores , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Antimaláricos/farmacologia , Domínio Catalítico , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Expressão Gênica , Humanos , Lisina-tRNA Ligase/antagonistas & inibidores , Lisina-tRNA Ligase/genética , Lisina-tRNA Ligase/metabolismo , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Modelos Moleculares , Fenilalanina-tRNA Ligase/antagonistas & inibidores , Fenilalanina-tRNA Ligase/genética , Fenilalanina-tRNA Ligase/metabolismo , Plasmodium falciparum/química , Plasmodium falciparum/enzimologia , Plasmodium falciparum/genética , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
3.
Eur J Med Chem ; 218: 113405, 2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-33831781

RESUMO

Recently, non-canonical roles of Lysyl-tRNA Synthetase (KRS), which is associated with cell migration and cancer metastasis, have been reported. Therefore, KRS has emerged as a promising target for the treatment of cell migration-related diseases, especially cancer metastasis, although the satisfying chemical inhibitors targeting KRS have not yet been identified. Here, we report the discovery of novel, mechanistically unique, and potent cell migration inhibitors targeting KRS, including the chemical and biological studies on the most effective N,N-dialkylthiazolo [5,4-b]pyridin-2-amine (SL-1910). SL-1910 exhibited highly potent migration inhibition (EC50 = 81 nM against the mutant KRS-overexpressed MDA-MB-231 cells) and was superior to the previously reported KRS inhibitor (migration inhibitory EC50 = 8.5 µM against H226 cells). The KRS protein binding study via fluorescence-based binding titration and KRS protein 2D-NMR mapping study, in vitro concentration-dependent cell migration inhibition, and in vivo anti-metastatic activity of SL-1910, which consists of a new scaffold, have been reported in this study. In addition, in vitro absorption, distribution, metabolism, and excretion studies and mouse pharmacokinetics experiments for SL-1910 were conducted.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Lisina-tRNA Ligase/antagonistas & inibidores , Piridinas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Feminino , Humanos , Lisina-tRNA Ligase/metabolismo , Neoplasias Mamárias Experimentais/diagnóstico por imagem , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Piridinas/síntese química , Piridinas/química , Relação Estrutura-Atividade
4.
Nucleic Acids Res ; 48(20): 11566-11576, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33053158

RESUMO

Aminoacyl-tRNA synthetases are attractive targets for the development of antibacterial, antifungal, antiparasitic agents and for the treatment of other human diseases. Lysyl-tRNA synthetase (LysRS) from this family has been validated as a promising target for the development of antimalarial drugs. Here, we developed a high-throughput compatible assay and screened 1215 bioactive compounds to identify Plasmodium falciparum cytoplasmic LysRS (PfLysRS) inhibitor. ASP3026, an anaplastic lymphoma kinase inhibitor that was used in clinical trials for the treatment of B-cell lymphoma and solid tumors, was identified as a novel PfLysRS inhibitor. ASP3026 suppresses the enzymatic activity of PfLysRS at nanomolar potency, which is >380-fold more effective than inhibition of the human counterpart. In addition, the compound suppressed blood-stage P. falciparum growth. To understand the molecular mechanism of inhibition by ASP3026, we further solved the cocrystal structure of PfLysRS-ASP3026 at a resolution of 2.49 Å, providing clues for further optimization of the compound. Finally, primary structure-activity relationship analyses indicated that the inhibition of PfLysRS by ASP3026 is highly structure specific. This work not only provides a new chemical scaffold with good druggability for antimalarial development but also highlights the potential for repurposing kinase-inhibiting drugs to tRNA synthetase inhibitors to treat human diseases.


Assuntos
Antimaláricos/farmacologia , Inibidores Enzimáticos/farmacologia , Lisina-tRNA Ligase/antagonistas & inibidores , Plasmodium falciparum/enzimologia , Quinase do Linfoma Anaplásico/antagonistas & inibidores , Animais , Antimaláricos/química , Inibidores Enzimáticos/química , Humanos , Lisina-tRNA Ligase/química , Modelos Moleculares , Plasmodium falciparum/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Conformação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Coelhos , Relação Estrutura-Atividade , Sulfonas/química , Sulfonas/farmacologia , Triazinas/química , Triazinas/farmacologia
5.
ACS Chem Biol ; 15(4): 1016-1025, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32195573

RESUMO

Aminoacyl-tRNA synthetases, the essential enzyme family for protein translation, are attractive targets for developing antibacterial, antifungal, and antiparasitic agents and for treating other human diseases. The antimalarial natural product cladosporin was discovered recently as a novel lysyl-tRNA synthetase (LysRS) specific inhibitor. Here, we report a thorough analysis of cladosporin derivatives using chemical synthesis, biophysical, and biochemical experiments. A series of isocoumarin derivatives with only one nonhydrogen atom/bond change per compound was synthesized. These changes include replacements of methyltetrahydropyran moiety by methylcyclohexane or cyclohexane, lactone by lactam, hydroxyl groups by methoxyl groups, and dismission of the chiral center at C3 with a Δ3,4 double bond. We evaluated these compounds by thermal shift assays and enzymatic experiments and further studied their molecular recognition by the Plasmodium falciparum LysRS through total five high-resolution crystal structures. Our results showed that the methyltetrahydropyran moiety of cladosporin could be replaced by a more stable methylcyclohexane without reducing binding ability. Removing the methyl group from the methylcyclohexane moiety slightly decreased the interaction with LysRS. Besides, the replacement with a lactam group or a conjugated Δ3,4 double bond within the scaffold could be two more options to optimize the compound. Lastly, the two phenolic hydroxyl groups were critical for the compounds to bind LysRS. The detailed analyses at atomic resolution in this study provide a foundation for the further development of new antibiotics from cladosporin derivatives.


Assuntos
Antimaláricos/química , Inibidores Enzimáticos/química , Isocumarinas/química , Lisina-tRNA Ligase/antagonistas & inibidores , Antimaláricos/síntese química , Antimaláricos/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Isocumarinas/síntese química , Isocumarinas/metabolismo , Lisina-tRNA Ligase/química , Lisina-tRNA Ligase/metabolismo , Plasmodium falciparum/enzimologia , Ligação Proteica
6.
SLAS Discov ; 25(1): 57-69, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31498734

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen that causes nosocomial infections and has highly developed systems for acquiring resistance against numerous antibiotics. The gene (lysS) encoding P. aeruginosa lysyl-tRNA synthetase (LysRS) was cloned and overexpressed, and the resulting protein was purified to 98% homogeneity. LysRS was kinetically evaluated, and the Km values for the interaction with lysine, adenosine triphosphate (ATP), and tRNALys were determined to be 45.5, 627, and 3.3 µM, respectively. The kcatobs values were calculated to be 13, 22.8, and 0.35 s-1, resulting in kcatobs/KM values of 0.29, 0.036, and 0.11 s-1µM-1, respectively. Using scintillation proximity assay technology, natural product and synthetic compound libraries were screened to identify inhibitors of function of the enzyme. Three compounds (BM01D09, BT06F11, and BT08F04) were identified with inhibitory activity against LysRS. The IC50 values were 17, 30, and 27 µM for each compound, respectively. The minimum inhibitory concentrations were determined against a panel of clinically important pathogens. All three compounds were observed to inhibit the growth of gram-positive organisms with a bacteriostatic mode of action. However, two compounds (BT06F11 and BT08F04) were bactericidal against cultures of gram-negative bacteria. When tested against human cell cultures, BT06F11 was not toxic at any concentration tested, and BM01D09 was toxic only at elevated levels. However, BT08F04 displayed a CC50 of 61 µg/mL. In studies of the mechanism of inhibition, BM01D09 inhibited LysRS activity by competing with ATP for binding, and BT08F04 was competitive with ATP and uncompetitive with the amino acid. BT06F11 inhibited LysRS activity by a mechanism other than substrate competition.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Descoberta de Drogas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Lisina-tRNA Ligase/antagonistas & inibidores , Lisina-tRNA Ligase/química , Pseudomonas aeruginosa/enzimologia , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana/métodos , Estrutura Molecular , Pseudomonas aeruginosa/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas
7.
Proc Natl Acad Sci U S A ; 116(14): 7015-7020, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30894487

RESUMO

Malaria and cryptosporidiosis, caused by apicomplexan parasites, remain major drivers of global child mortality. New drugs for the treatment of malaria and cryptosporidiosis, in particular, are of high priority; however, there are few chemically validated targets. The natural product cladosporin is active against blood- and liver-stage Plasmodium falciparum and Cryptosporidium parvum in cell-culture studies. Target deconvolution in P. falciparum has shown that cladosporin inhibits lysyl-tRNA synthetase (PfKRS1). Here, we report the identification of a series of selective inhibitors of apicomplexan KRSs. Following a biochemical screen, a small-molecule hit was identified and then optimized by using a structure-based approach, supported by structures of both PfKRS1 and C. parvum KRS (CpKRS). In vivo proof of concept was established in an SCID mouse model of malaria, after oral administration (ED90 = 1.5 mg/kg, once a day for 4 d). Furthermore, we successfully identified an opportunity for pathogen hopping based on the structural homology between PfKRS1 and CpKRS. This series of compounds inhibit CpKRS and C. parvum and Cryptosporidium hominis in culture, and our lead compound shows oral efficacy in two cryptosporidiosis mouse models. X-ray crystallography and molecular dynamics simulations have provided a model to rationalize the selectivity of our compounds for PfKRS1 and CpKRS vs. (human) HsKRS. Our work validates apicomplexan KRSs as promising targets for the development of drugs for malaria and cryptosporidiosis.


Assuntos
Criptosporidiose , Cryptosporidium parvum/enzimologia , Inibidores Enzimáticos/farmacologia , Lisina-tRNA Ligase/antagonistas & inibidores , Malária Falciparum , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/antagonistas & inibidores , Animais , Criptosporidiose/tratamento farmacológico , Criptosporidiose/enzimologia , Modelos Animais de Doenças , Inibidores Enzimáticos/química , Humanos , Lisina-tRNA Ligase/metabolismo , Malária Falciparum/tratamento farmacológico , Malária Falciparum/enzimologia , Camundongos SCID , Proteínas de Protozoários/metabolismo
8.
Chembiochem ; 20(5): 644-649, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30462880

RESUMO

Selective and specific inhibitors of Plasmodium falciparum lysyl-tRNA synthetase represent promising therapeutic antimalarial avenues. Cladosporin was identified as a potent P. falciparum lysyl-tRNA synthetase inhibitor, with an activity against parasite lysyl-tRNA synthetase >100-fold more potent than that of the activity registered against the human enzyme. Despite its compelling activity, cladosporin exhibits poor oral bioavailability; a critical requirement for antimalarial drugs. Thus, the quest to develop metabolically stable cladosporin-derived analogues, while retaining similar selectivity and potency to that of the natural compound, has begun. Chemogenomic profiling of a designed library allowed an entirely innovative structure-activity relationship study to be initiated; this shed light on structural evidence of a privileged scaffold with a unique activity against tRNA synthetases.


Assuntos
Antimaláricos/síntese química , Descoberta de Drogas , Inibidores Enzimáticos/síntese química , Isocumarinas/síntese química , Lisina-tRNA Ligase/antagonistas & inibidores , Malária Falciparum/tratamento farmacológico , Humanos , Plasmodium falciparum/enzimologia , Relação Estrutura-Atividade
9.
Chembiochem ; 20(5): 650-654, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30347507

RESUMO

Cladosporin, a natural product known for decades, has recently been discovered to display potent and selective antiplasmodial activity by inhibition of lysyl-tRNA synthetase. It was subjected to a panel of oxidative biotransformations with one fungal and two actinomycetes strains, as well as a triple mutant bacterial CYP102A1, yielding eight, mostly hydroxylated, derivatives. These new compounds covered a wide chemical space and contained two pairs of epimers in the tetrahydropyran ring. Although less potent than the parent compound, all analogues showed activity in a cell-based synthetase assay, thus demonstrating uptake and on-target activity in living cells with varying degrees of selectivity for the enzyme lysyl-tRNA synthetase from Plasmodium falciparum and highlighting sites suitable for synthesis of future cladosporin analogues. Compounds with adjacent hydroxy functions showed different MS/MS fragmentation that can be explained in terms of an, in some cases, regioselective loss of water followed by a retro-Diels-Alder reaction.


Assuntos
Antimaláricos/metabolismo , Descoberta de Drogas , Inibidores Enzimáticos/metabolismo , Isocumarinas/metabolismo , Lisina-tRNA Ligase/antagonistas & inibidores , Malária Falciparum/tratamento farmacológico , Bactérias/metabolismo , Biotransformação , Fungos/metabolismo , Plasmodium falciparum/enzimologia , Relação Estrutura-Atividade
10.
Methods ; 113: 56-63, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27789335

RESUMO

Lysyl-tRNA synthetase (KRS) is an enzyme that conjugates lysine to its cognate tRNAs in the process of protein synthesis. In addition to its catalytic function, KRS binds to the 67-kDa laminin receptor (LR) on the cell membrane and facilitates cell migration and metastasis. Modulation of this interaction by small-molecule inhibitors can be exploited to suppress cancer metastasis. In this study, we present fragment-based methods for the identification of inhibitors and monitoring protein-protein interactions between KRS and LR. First, we identified the amino acid residues, located on the KRS anticodon-binding domain, which interact with the C-terminal extension of the LR. One-dimensional (1D) relaxation-edited nuclear magnetic resonance spectroscopy (NMR) and competition experiments were designed and optimized to screen the fragment library. For screening using two-dimensional (2D) NMR, we identified the indicative signals in the KRS anticodon-binding domain and selected inhibitors that bind to KRS and compete with LR at the KRS-LR binding interface. These methods may offer an efficient approach for the discovery of anti-metastatic drugs.


Assuntos
Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , Lisina-tRNA Ligase/antagonistas & inibidores , Lisina/metabolismo , Receptores de Laminina/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Motivos de Aminoácidos , Anticódon/química , Anticódon/metabolismo , Antineoplásicos/farmacologia , Sítios de Ligação , Descoberta de Drogas/métodos , Escherichia coli/enzimologia , Escherichia coli/genética , Expressão Gênica , Humanos , Lisina-tRNA Ligase/química , Lisina-tRNA Ligase/genética , Lisina-tRNA Ligase/metabolismo , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA de Transferência de Lisina/genética , RNA de Transferência de Lisina/metabolismo , Receptores de Laminina/química , Receptores de Laminina/genética , Receptores de Laminina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Aminoacilação de RNA de Transferência
11.
PLoS Negl Trop Dis ; 10(11): e0005084, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27806050

RESUMO

Helminth parasites are an assemblage of two major phyla of nematodes (also known as roundworms) and platyhelminths (also called flatworms). These parasites are a major human health burden, and infections caused by helminths are considered under neglected tropical diseases (NTDs). These infections are typified by limited clinical treatment options and threat of drug resistance. Aminoacyl-tRNA synthetases (aaRSs) are vital enzymes that decode genetic information and enable protein translation. The specific inhibition of pathogen aaRSs bores well for development of next generation anti-parasitics. Here, we have identified and annotated aaRSs and accessory proteins from Loa loa (nematode) and Schistosoma mansoni (flatworm) to provide a glimpse of these protein translation enzymes within these parasites. Using purified parasitic lysyl-tRNA synthetases (KRSs), we developed series of assays that address KRS enzymatic activity, oligomeric states, crystal structure and inhibition profiles. We show that L. loa and S. mansoni KRSs are potently inhibited by the fungal metabolite cladosporin. Our co-crystal structure of Loa loa KRS-cladosporin complex reveals key interacting residues and provides a platform for structure-based drug development. This work hence provides a new direction for both novel target discovery and inhibitor development against eukaryotic pathogens that include L. loa and S. mansoni.


Assuntos
Anti-Helmínticos/química , Inibidores Enzimáticos/química , Proteínas de Helminto/antagonistas & inibidores , Loa/enzimologia , Loíase/parasitologia , Lisina-tRNA Ligase/antagonistas & inibidores , Schistosoma mansoni/enzimologia , Esquistossomose/parasitologia , Sequência de Aminoácidos , Animais , Anti-Helmínticos/farmacologia , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Proteínas de Helminto/química , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Humanos , Cinética , Loa/efeitos dos fármacos , Loa/genética , Loíase/tratamento farmacológico , Lisina-tRNA Ligase/química , Lisina-tRNA Ligase/genética , Lisina-tRNA Ligase/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Schistosoma mansoni/efeitos dos fármacos , Schistosoma mansoni/genética , Esquistossomose/tratamento farmacológico , Alinhamento de Sequência
12.
J Antibiot (Tokyo) ; 68(6): 361-7, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25464974

RESUMO

A high-throughput phenotypic screen for novel antibacterial agents led to the discovery of a novel pyrazolopyrimidinedione, PPD-1, with preferential activity against methicillin-resistant Staphylococcus aureus (MRSA). Resistance mapping revealed the likely target of inhibition to be lysyl tRNA synthetase (LysRS). Preliminary structure-activity relationship (SAR) studies led to an analog, PPD-2, which gained Gram-negative antibacterial activity at the expense of MRSA activity and resistance to this compound mapped to prolyl tRNA synthetase (ProRS). These targets of inhibition were confirmed in vitro, with PPD-1 showing IC50s of 21.7 and 35 µM in purified LysRS and ProRS enzyme assays, and PPD-2, 151 and 0.04 µM, respectively. The highly attractive chemical properties of these compounds combined with intriguing preliminary SAR suggest that further exploration of this compelling novel series is warranted.


Assuntos
Aminoacil-tRNA Sintetases/antagonistas & inibidores , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Desenho de Fármacos , Descoberta de Drogas , Pirazóis/farmacologia , Pirimidinonas/farmacologia , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Antibacterianos/síntese química , Antibacterianos/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ensaios de Triagem em Larga Escala , Lisina-tRNA Ligase/antagonistas & inibidores , Lisina-tRNA Ligase/genética , Lisina-tRNA Ligase/metabolismo , Resistência a Meticilina , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/enzimologia , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Neisseria gonorrhoeae/efeitos dos fármacos , Neisseria gonorrhoeae/enzimologia , Neisseria gonorrhoeae/crescimento & desenvolvimento , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pirazóis/síntese química , Pirazóis/química , Pirimidinonas/síntese química , Pirimidinonas/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Aminoacilação de RNA de Transferência/efeitos dos fármacos
13.
Nat Chem Biol ; 10(1): 29-34, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24212136

RESUMO

Lysyl-tRNA synthetase (KRS), a protein synthesis enzyme in the cytosol, relocates to the plasma membrane after a laminin signal and stabilizes a 67-kDa laminin receptor (67LR) that is implicated in cancer metastasis; however, its potential as an antimetastatic therapeutic target has not been explored. We found that the small compound BC-K-YH16899, which binds KRS, impinged on the interaction of KRS with 67LR and suppressed metastasis in three different mouse models. The compound inhibited the KRS-67LR interaction in two ways. First, it directly blocked the association between KRS and 67LR. Second, it suppressed the dynamic movement of the N-terminal extension of KRS and reduced membrane localization of KRS. However, it did not affect the catalytic activity of KRS. Our results suggest that specific modulation of a cancer-related KRS-67LR interaction may offer a way to control metastasis while avoiding the toxicities associated with inhibition of the normal functions of KRS.


Assuntos
Lisina-tRNA Ligase/metabolismo , Metástase Neoplásica , Receptores de Laminina/metabolismo , Membrana Celular/metabolismo , Lisina-tRNA Ligase/antagonistas & inibidores , Transporte Proteico , Receptores de Laminina/antagonistas & inibidores
14.
Cell Host Microbe ; 11(6): 555-7, 2012 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-22704614

RESUMO

The recent re-emphasis on malaria eradication has made developing drugs that block transmission and terminate latent disease critical. Most drugs do not affect the liver stages-an ability that is crucial to the latter goal. Addressing this problem, Hoepfner et al. (2012) uncover the parasite's lysyl-tRNA synthetase as a druggable target.


Assuntos
Antimaláricos/farmacologia , Inibidores Enzimáticos/farmacologia , Fungos/química , Isocumarinas/farmacologia , Lisina-tRNA Ligase/antagonistas & inibidores , Plasmodium falciparum/enzimologia , Humanos
15.
Cell Host Microbe ; 11(6): 654-63, 2012 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-22704625

RESUMO

With renewed calls for malaria eradication, next-generation antimalarials need be active against drug-resistant parasites and efficacious against both liver- and blood-stage infections. We screened a natural product library to identify inhibitors of Plasmodium falciparum blood- and liver-stage proliferation. Cladosporin, a fungal secondary metabolite whose target and mechanism of action are not known for any species, was identified as having potent, nanomolar, antiparasitic activity against both blood and liver stages. Using postgenomic methods, including a yeast deletion strains collection, we show that cladosporin specifically inhibits protein synthesis by directly targeting P. falciparum cytosolic lysyl-tRNA synthetase. Further, cladosporin is >100-fold more potent against parasite lysyl-tRNA synthetase relative to the human enzyme, which is conferred by the identity of two amino acids within the enzyme active site. Our data indicate that lysyl-tRNA synthetase is an attractive, druggable, antimalarial target that can be selectively inhibited.


Assuntos
Antimaláricos/farmacologia , Inibidores Enzimáticos/farmacologia , Fungos/química , Isocumarinas/farmacologia , Lisina-tRNA Ligase/antagonistas & inibidores , Plasmodium falciparum/enzimologia , Antimaláricos/isolamento & purificação , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/isolamento & purificação , Humanos , Concentração Inibidora 50 , Isocumarinas/isolamento & purificação , Testes de Sensibilidade Parasitária , Plasmodium falciparum/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas de Protozoários/antagonistas & inibidores
16.
J Biochem ; 145(5): 555-63, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19174549

RESUMO

Aminoacyl-tRNA synthetase forms an enzyme-bound intermediate, aminoacyladenylate in the amino-acid activation reaction. This reaction is monitored by measuring the ATP-PPi exchange reason in which [(32)P]PPi is incorporated into ATP. We previously reported that L-lysine hydroxamate completely inhibited the L-lysine-dependent ATP-PPi exchange reaction catalysed by lysyl-tRNA synthetase from Bacillus stearothermophilus (BsLysRS). Several experiments suggested that BsLysRS can adenylate L-lysine hydroxamate, but the enzyme-bound lysyladenylate-like compound does not undergo the nucleophilic attack of PPi. This contrasts with the two reports for seryl-tRNA synthetase (SerRS): (i) L-serine hydroxamate was utilized by yeast SerRS as a substrate in the ATP-PPi exchange; and (ii) a seryladenylate-like compound was formed from L-serine hydroxamate in the crystal structure of Thermus thermophilus SerRS. To gain clues about the mechanistic difference, we have determined the crystal structures of two complexes of BsLysRS with the adenylate of L-lysine hydroxamate and with 5'-O-[N-(L-Lysyl)sulphamoyl] adenosine. The comparisons of the two BsLysRS structures and the above SerRS structure revealed the specific side-chain shift of Glu411 of BsLysRS in the complex with the adenylate of L-lysine hydroxamate. In support of other structural comparisons, the result suggested that Glu411 plays a key role in the arrangement of PPi for the nucleophilic attack.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Geobacillus stearothermophilus/enzimologia , Lisina-tRNA Ligase/química , Lisina/análogos & derivados , Monofosfato de Adenosina/química , Trifosfato de Adenosina/química , Domínio Catalítico , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Lisina/química , Lisina-tRNA Ligase/antagonistas & inibidores , Estrutura Secundária de Proteína
17.
J Comb Chem ; 10(3): 391-400, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18426239

RESUMO

The solid-phase combinatorial synthesis of a new library with potential inhibitory activity against the cytoplasmic lysyl-tRNA synthetase (LysRS) isoform of Trypanosoma brucei is described. The library has been specifically designed to mimic the lysyl adenylate complex. The design was carried out by dividing the complex into four modular parts. Proline derivatives (cis-gamma-amino-L-proline or trans-gamma-hydroxy-L-proline) were chosen as central scaffolds. After primary screening, three compounds of the library caused in vitro inhibition of the tRNA aminoacylation reaction in the low micromolar range.


Assuntos
Antiprotozoários/síntese química , Técnicas de Química Combinatória , Lisina-tRNA Ligase/antagonistas & inibidores , Prolina/síntese química , Aminoacilação/efeitos dos fármacos , Animais , Antiprotozoários/farmacologia , Cromatografia Líquida de Alta Pressão/métodos , Avaliação Pré-Clínica de Medicamentos , Lisina-tRNA Ligase/química , Lisina-tRNA Ligase/isolamento & purificação , Conformação Molecular , Prolina/análogos & derivados , Prolina/farmacologia , Estereoisomerismo , Trypanosoma brucei brucei/enzimologia
18.
ACS Chem Biol ; 2(12): 819-27, 2007 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-18154269

RESUMO

Structural and functional diversity among the aminoacyl-tRNA synthetases prevent infiltration of the genetic code by noncognate amino acids. To explore whether these same features distinguish the synthetases as potential sources of resistance against antibiotic amino acid analogues, we investigated bacterial growth inhibition by S-(2-aminoethyl)-L-cysteine (AEC). Wild-type lysyl-tRNA synthetase (LysRS) and a series of active site variants were screened for their ability to restore growth of an Escherichia coli LysRS null strain at increasing concentrations of AEC. While wild-type E. coli growth is completely inhibited at 5 microM AEC, two LysRS variants, Y280F and F426W, provided substantial resistance and allowed E. coli to grow in the presence of up to 1 mM AEC. Elevated resistance did not reflect changes in the kinetics of amino acid activation or tRNA (Lys) aminoacylation, which showed at best 4-6-fold improvements, but instead correlated with the binding affinity for AEC, which was decreased approximately 50-fold in the LysRS variants. In addition to changes in LysRS, AEC resistance has also been attributed to mutations in the L box riboswitch, which regulates expression of the lysC gene, encoding aspartokinase. The Y280F and F426W LysRS mutants contained wild-type L box riboswitches that responded normally to AEC in vitro, indicating that LysRS is the primary cellular target of this antibiotic. These findings suggest that the AEC resistance conferred by L box mutations is an indirect effect resulting from derepression of lysC expression and increased cellular pools of lysine, which results in more effective competition with AEC for binding to LysRS.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Cisteína/análogos & derivados , Farmacorresistência Bacteriana/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Sítios de Ligação , Cisteína/química , Cisteína/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Escherichia coli/citologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Escherichia coli/genética , Lisina-tRNA Ligase/antagonistas & inibidores , Lisina-tRNA Ligase/genética , Lisina-tRNA Ligase/metabolismo , Viabilidade Microbiana/efeitos dos fármacos
19.
Proc Natl Acad Sci U S A ; 100(24): 14351-6, 2003 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-14623972

RESUMO

Insertion of lysine during protein synthesis depends on the enzyme lysyl-tRNA synthetase (LysRS), which exists in two unrelated forms, LysRS1 and LysRS2. LysRS1 has been found in most archaea and some bacteria, and LysRS2 has been found in eukarya, most bacteria, and a few archaea, but the two proteins are almost never found together in a single organism. Comparison of structures of LysRS1 and LysRS2 complexed with lysine suggested significant differences in their potential to bind lysine analogues with backbone replacements. One such naturally occurring compound, the metabolic intermediate S-(2-aminoethyl)-L-cysteine, is a bactericidal agent incorporated during protein synthesis via LysRS2. In vitro tests showed that S-(2-aminoethyl)-L-cysteine is a poor substrate for LysRS1, and that it inhibits LysRS1 200-fold less effectively than it inhibits LysRS2. In vivo inhibition by S-(2-aminoethyl)-L-cysteine was investigated by replacing the endogenous LysRS2 of Bacillus subtilis with LysRS1 from the Lyme disease pathogen Borrelia burgdorferi. B. subtilis strains producing LysRS1 alone were relatively insensitive to growth inhibition by S-(2-aminoethyl)-L-cysteine, whereas a WT strain or merodiploid strains producing both LysRS1 and LysRS2 showed significant growth inhibition under the same conditions. These growth effects arising from differences in amino acid recognition could contribute to the distribution of LysRS1 and LysRS2 in different organisms. More broadly, these data demonstrate how diversity of the aminoacyl-tRNA synthetases prevents infiltration of the genetic code by noncanonical amino acids, thereby providing a natural reservoir of potential antibiotic resistance.


Assuntos
Cisteína/análogos & derivados , Lisina-tRNA Ligase/genética , Lisina-tRNA Ligase/metabolismo , Lisina/análogos & derivados , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Borrelia burgdorferi/efeitos dos fármacos , Borrelia burgdorferi/enzimologia , Borrelia burgdorferi/genética , Cisteína/farmacologia , Farmacorresistência Bacteriana/genética , Inibidores Enzimáticos/farmacologia , Evolução Molecular , Genes Bacterianos , Código Genético , Genômica , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Lisina/metabolismo , Lisina-tRNA Ligase/antagonistas & inibidores , RNA de Transferência de Lisina/metabolismo , Especificidade da Espécie
20.
J Virol ; 77(18): 9817-22, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12941890

RESUMO

The major human tRNA(Lys) isoacceptors, and, are selectively packaged into human immunodeficiency virus type 1 (HIV-1) during assembly, where acts as a primer for reverse transcription. Lysyl-tRNA synthetase (LysRS) is also incorporated into HIV-1, independently of tRNA(Lys), via its interaction with Gag, and is a strong candidate for being the signal that specifically targets tRNA(Lys) for viral incorporation. We have transfected 293T cells with HIV-1 proviral DNA and short interfering RNA (siRNA) specific for LysRS to study the effect of diminished cellular LysRS upon tRNA(Lys) packaging, annealing to viral genomic RNA, and viral production and infectivity. At early time points after siRNA transfection, an 80% inhibition of LysRS incorporation into viruses reflects an 80% reduction of newly synthesized LysRS, rather than a more limited 20 to 25% decrease in the concentration of total cell LysRS, indicating that newly synthesized LysRS in the cell may be the main source of viral LysRS. Viruses produced from cells transfected with siRNA show reduced tRNA(Lys) packaging, reduced annealing to viral RNA, and reduced viral infectivity.


Assuntos
HIV-1/genética , Lisina-tRNA Ligase/antagonistas & inibidores , RNA de Transferência de Lisina/metabolismo , RNA Viral/metabolismo , Replicação Viral , HIV-1/fisiologia , Humanos , Lisina-tRNA Ligase/biossíntese , RNA Interferente Pequeno/farmacologia , RNA de Transferência de Lisina/química , Montagem de Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA