Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.892
Filtrar
1.
Med ; 5(5): 380-382, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38733970

RESUMO

Wagenlehner and colleagues1 demonstrated non-inferiority and superiority with respect to a primary endpoint of composite success (microbiological plus clinical) of cefepime/taniborbactam vs. meropenem in treating complicated urinary tract infections and acute pyelonephritis caused by carbapenem-susceptible gram-negative bacteria in adults. A major area of interest in real-world application of cefepime/taniborbactam is its potential role in treating carbapenem-resistant infections, which deserves further investigation.


Assuntos
Antibacterianos , Carbapenêmicos , Cefepima , Infecções Urinárias , Cefepima/uso terapêutico , Cefepima/farmacologia , Humanos , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Carbapenêmicos/uso terapêutico , Carbapenêmicos/farmacologia , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/microbiologia , Cefalosporinas/uso terapêutico , Cefalosporinas/farmacologia , Pielonefrite/tratamento farmacológico , Pielonefrite/microbiologia , Combinação de Medicamentos , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Meropeném/uso terapêutico , Meropeném/farmacologia , Ácidos Borínicos , Ácidos Carboxílicos
2.
J Assoc Physicians India ; 72(1): 43-46, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38736073

RESUMO

INTRODUCTION: A survey-based approach to managing antibiotic-resistant infections in the intensive care unit (ICU) setting, with a focus on carbapenem-resistant Enterobacteriaceae (CRE) cases, was conducted. Among CRE, New Delhi metallo-ß-lactamase 1 (NDM-1) is a carbapenemase that is resistant to ß-lactam antibiotics and has a broader spectrum of antimicrobial resistance than other carbapenemase types. The article explains that healthcare-associated infections (HAIs) are a significant problem, particularly in low- and middle-income countries, and that carbapenem in combination with other antibiotics are the most potent class of antimicrobial agents effective in treating life-threatening bacterial infections, including those caused by resistant strains. AIM: The survey aimed to gather critical care healthcare professionals (HCPs') opinions on their current practices in managing infections acquired in the hospital and ICU settings, with a focus on CRE cases, specifically NDM-1 and other antibiotic-resistant infections. METHODS: Responses from critical care healthcare professionals, including online surveys and in-person interviews, to gain insights into the management of infections caused by multidrug-resistant bacteria. The findings related to the insights on the prevalence of bacterial flora, clinical experiences on efficacy and safety of meropenem sulbactam ethylenediaminetetraacetic acid (EDTA) (MSE) in CRE cases, and various combination therapies of antibiotics used to treat antibiotic-resistant infections in ICU setting were evaluated. RESULTS: Klebsiella pneumoniae bacteria were the most common bacteria in cultures, followed by Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii. NDM-1 was the type of carbapenemase found in around 50% of CRE patients. MSE is among the most preferred antibiotics besides colistin, polymyxin B, and ceftazidime avibactum for CRE cases and specifically for NDM-1 cases due to its high rate of efficacy and safety. CONCLUSION: The article concludes with a discussion on the antibiotics used in response to CRE cases, reporting that critical care HCP considers MSE with high efficacy and safe antibiotic combination and was used as both monotherapy and in combination with other antibiotics. The survey highlights the need for exploring and better understanding the role of MSE in the management of CRE infections, especially in NDM-1.


Assuntos
Antibacterianos , Enterobacteriáceas Resistentes a Carbapenêmicos , Cuidados Críticos , Infecções por Enterobacteriaceae , Unidades de Terapia Intensiva , Humanos , Antibacterianos/uso terapêutico , Infecções por Enterobacteriaceae/tratamento farmacológico , Cuidados Críticos/métodos , Infecção Hospitalar/tratamento farmacológico , Infecção Hospitalar/microbiologia , Inquéritos e Questionários , beta-Lactamases , Farmacorresistência Bacteriana Múltipla , Meropeném/uso terapêutico , Índia , Atitude do Pessoal de Saúde , Polimixina B/uso terapêutico , Carbapenêmicos/uso terapêutico , Carbapenêmicos/farmacologia , Klebsiella pneumoniae/efeitos dos fármacos , Pessoal de Saúde
3.
Microbiology (Reading) ; 170(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38739119

RESUMO

Introduction. Bacterial keratitis, particularly caused by Pseudomonas aeruginosa, is challenging to treat because of multi-drug tolerance, often associated with the formation of biofilms. Antibiotics in development are typically evaluated against planktonic bacteria in a culture medium, which may not accurately represent the complexity of infections in vivo.Hypothesis/Gap Statement. Developing a reliable, economic ex vivo keratitis model that replicates some complexity of tissue infections could facilitate a deeper understanding of antibiotic efficacy, thus aiding in the optimization of treatment strategies for bacterial keratitis.Methodology. Here we investigated the efficacy of three commonly used antibiotics (gentamicin, ciprofloxacin and meropenem) against Pseudomonas aeruginosa cytotoxic strain PA14 and invasive strain PA01 using an ex vivo porcine keratitis model.Results. Both strains of P. aeruginosa were susceptible to the MIC of the three tested antibiotics. However, significantly higher concentrations were necessary to inhibit bacterial growth in the minimum biofilm eradication concentration (MBEC) assay, with both strains tolerating concentrations greater than 512 mg l-1 of meropenem. When MIC and higher concentrations than MBEC (1024 mg l-1) of antibiotics were applied, ciprofloxacin exhibited the highest potency against both P. aeruginosa strains, followed by meropenem, while gentamicin showed the least potency. Despite this, none of the antibiotic concentrations used effectively cleared the infection, even after 18 h of continuous exposure.Conclusions. Further exploration of antibiotic concentrations and aligning dosing with clinical studies to validate the model is needed. Nonetheless, our ex vivo porcine keratitis model could be a valuable tool for assessing antibiotic efficacy.


Assuntos
Antibacterianos , Biofilmes , Ciprofloxacina , Modelos Animais de Doenças , Ceratite , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas , Pseudomonas aeruginosa , Animais , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Antibacterianos/farmacologia , Suínos , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Biofilmes/efeitos dos fármacos , Ceratite/microbiologia , Ceratite/tratamento farmacológico , Ciprofloxacina/farmacologia , Gentamicinas/farmacologia , Meropeném/farmacologia
4.
Sci Rep ; 14(1): 10173, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702351

RESUMO

This study aimed to explore the changes of pharmacokinetic parameters after meropenem in patients with abdominal septic shock after gastrointestinal perforation, and to simulate the probability of different dosing regimens achieving different pharmacodynamic goals. The study included 12 patients, and utilized high performance liquid chromatography-tandem mass spectrometry to monitor the plasma concentration of meropenem. The probability of target attainment (PTA) for different minimum inhibitory concentration (MIC) values and %fT > 4MIC was compared among simulated dosing regimens. The results showed that in 96 blood samples from 12 patients, the clearance (CL) of meropenem in the normal and abnormal creatinine clearance subgroups were 7.7 ± 1.8 and 4.4 ± 1.1 L/h, respectively, and the apparent volume of distribution (Vd) was 22.6 ± 5.1 and 17.2 ± 5.8 L, respectively. 2. Regardless of the subgroup, 0.5 g/q6h infusion over 6 h regimen achieved a PTA > 90% when MIC ≤ 0.5 mg/L. 1.0 g/q6h infusion regimen compared with other regimen, in most cases, the probability of making PTA > 90% is higher. For patients at low MIC, 0.5 g/q6h infusion over 6 h may be preferable. For patients at high MIC, a dose regimen of 1.0 g/q6 h infusion over 6 h may be preferable. Further research is needed to confirm this exploratory result.


Assuntos
Antibacterianos , Meropeném , Testes de Sensibilidade Microbiana , Choque Séptico , Humanos , Meropeném/farmacocinética , Meropeném/administração & dosagem , Meropeném/uso terapêutico , Choque Séptico/tratamento farmacológico , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Estudos Prospectivos , Antibacterianos/farmacocinética , Antibacterianos/administração & dosagem , Antibacterianos/uso terapêutico , Adulto , Perfuração Intestinal , Idoso de 80 Anos ou mais
5.
Emerg Microbes Infect ; 13(1): 2352432, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38712634

RESUMO

This study investigated resistance evolution mechanisms of conjugated plasmids and bacterial hosts under different concentrations of antibiotic pressure. Ancestral strain ECNX52 was constructed by introducing the blaNDM-5-carrying IncX3 plasmid into E. coli C600, and was subjected to laboratory evolution under different concentrations of meropenem pressure. Minimal inhibitory concentrations and conjugation frequency were determined. Fitness of these strains was assessed. Whole genome sequencing and transcriptional changes were performed. Ancestral host or plasmids were recombined with evolved hosts or plasmids to verify plasmid or host factors in resistance evolution. Role of the repA mutation on plasmid copy number was determined. Two out of the four clones (EM2N1 and EM2N3) exhibited four-fold increase in MIC when exposed to a continuous pressure of 2 µg/mL MEM (1/32 MIC), by down regulating expression of outer membrane protein ompF. Besides, all four clones displayed four-fold increase in MIC and higher conjugation frequency when subjected to a continuous pressure of 4 µg/mL MEM (1/16 MIC), attributing to increasing plasmid copy number generated by repA D140Y (GAT→TAT) mutation. Bacterial hosts and conjugative plasmids can undergo resistance evolution under certain concentrations of antimicrobial pressure by reducing the expression of outer membrane proteins or increasing plasmid copy numbers.


Assuntos
Antibacterianos , Proteínas de Escherichia coli , Escherichia coli , Testes de Sensibilidade Microbiana , Plasmídeos , Porinas , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Plasmídeos/genética , Antibacterianos/farmacologia , Porinas/genética , Porinas/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Carbapenêmicos/farmacologia , Meropeném/farmacologia , Mutação , Evolução Molecular , Conjugação Genética , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Sequenciamento Completo do Genoma , Dosagem de Genes , beta-Lactamases/genética
6.
J Mass Spectrom ; 59(6): e5041, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38751321

RESUMO

Numerous studies have suggested that intra-articular administration of antibiotics following primary revision surgery may be one of the methods for treating prosthetic joint infection (PJI). Vancomycin and meropenem are the two most commonly used antibiotics for local application. Determining the concentrations of vancomycin and meropenem in the serum and synovial fluid of patients with PJI plays a significant role in further optimizing local medication schemes and effectively eradicating biofilm infections. This study aimed to establish a rapid, sensitive, and accurate ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for determining the concentrations of vancomycin and meropenem in human serum and synovial fluid. Serum samples were processed using acetonitrile precipitation of proteins and dichloromethane extraction, while synovial fluid samples were diluted before analysis. Chromatographic separation was achieved in 6 min on a Waters Acquity UPLC BEH C18 column, with the mobile phase consisting of 0.1% formic acid in water (solvent A) and acetonitrile (solvent B). Quantification was carried out using a Waters XEVO TQD triple quadrupole mass spectrometer with an electrospray ionization (ESI) source in positive ion mode. The multiple reaction monitoring (MRM) mode was employed to detect the following quantifier ion transitions: 717.95-99.97 (norvancomycin), 725.90-100.04 (vancomycin), 384.16-67.99 (meropenem). The method validation conformed to the guidelines of the FDA and the Chinese Pharmacopoeia. The method demonstrated good linearity within the range of 0.5-50 µg/ml for serum and 0.5-100 µg/ml for synovial fluid. Selectivity, intra-day and inter-day precision and accuracy, extraction recovery, matrix effect, and stability validation results all met the required standards. This method has been successfully applied in the pharmacokinetic/pharmacodynamic (PK/PD) studies of patients with PJI.


Assuntos
Antibacterianos , Meropeném , Infecções Relacionadas à Prótese , Líquido Sinovial , Espectrometria de Massas em Tandem , Vancomicina , Humanos , Espectrometria de Massas em Tandem/métodos , Vancomicina/sangue , Vancomicina/análise , Vancomicina/farmacocinética , Líquido Sinovial/química , Meropeném/análise , Meropeném/sangue , Meropeném/farmacocinética , Cromatografia Líquida de Alta Pressão/métodos , Infecções Relacionadas à Prótese/tratamento farmacológico , Infecções Relacionadas à Prótese/sangue , Antibacterianos/sangue , Antibacterianos/análise , Antibacterianos/farmacocinética , Antibacterianos/uso terapêutico , Reprodutibilidade dos Testes , Masculino , Limite de Detecção , Pessoa de Meia-Idade , Espectrometria de Massa com Cromatografia Líquida
7.
Environ Int ; 187: 108729, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38735077

RESUMO

Due to the specific action on bacterial cell wall, ß-lactam antibiotics have gained widespread usage as they exhibit a high degree of specificity in targeting bacteria, but causing minimal toxicity to host cells. Under antibiotic pressure, bacteria may opt to shed their cell walls and transform into L-form state as a means to evade the antibiotic effects. In this study, we explored and identified diverse optimal conditions for both Gram-negative bacteria (E. coli DH5α (CTX)) and Gram-positive bacteria (B. subtilis ATCC6633), which were induced to L-form bacteria using lysozyme (0.5 ppm) and meropenem (64 ppm). Notably, when bacteria transformed into L-form state, both bacterial strains showed varying degrees of increased resistance to antibiotics polymyxin E, meropenem, rifampicin, and tetracycline. E. coli DH5α (CTX) exhibited the most significant enhancement in resistance to tetracycline, with a 128-fold increase, while B. subtilis ATCC6633 showed a 32-fold increase in resistance to tetracycline and polymyxin E. Furthermore, L-form bacteria maintained their normal metabolic activity, combined with enhanced oxidative stress, served as an adaptive strategy promoting the sustained survival of L-form bacteria. This study provided a theoretical basis for comprehending antibiotic resistance mechanisms, developing innovative treatment strategies, and confronting global antibiotic resistance challenges.


Assuntos
Antibacterianos , Bacillus subtilis , Escherichia coli , Estresse Oxidativo , Antibacterianos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Bacillus subtilis/efeitos dos fármacos , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana , Tetraciclina/farmacologia , Meropeném/farmacologia
8.
Front Cell Infect Microbiol ; 14: 1318585, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562962

RESUMO

One of the most important emerging health problems is the increasing role of animals in the rapid global rise in resistance to last-resort antibiotics, such as carbapenems. However, there is limited information on the role of pet animals in harboring and spreading pandrug-resistant (PDR) carbapenemase-producing Enterobacterales (CPE), especially in Egypt. This cross-sectional study was conducted to screen for CPE in healthy and diseased pets using phenotypic and molecular methods and the NG-Test CARBA 5 immunochromatographic assay. Rectal swabs were collected from 62 dogs and 48 cats, incubated overnight in tryptic soy broth containing 10 µg of meropenem disc and subsequently cultured on MacConkey agar supplemented with meropenem (1 mg/L). Sixty-six isolates (60.6%), including 56 Klebsiella pneumoniae, seven Escherichia coli, and three K. oxytoca isolates, were confirmed to be carbapenem-resistant Enterobacterales (CRE) by the disc diffusion method, broth microdilution test, CNPt-direct, and PCR assay targeting carbapenemase genes. Forty-three (65.2%) dogs and 23 (34.8%) cats carried CPE. Of these, 35 (70.0%) were healthy (including 27 dogs and 8 cats) and 31 (52.5%) were diseased (including 16 dogs and 15 cats). bla OXA-181 was the most common gene detected (42/66, 63.6%), followed by bla IMP (40/66, 60.6%), bla OXA-48-like (29/66, 43.9%), bla KPC and bla VIM (20/66, 30.3% each), and bla NDM (17/66, 25.8%). The identified genotypes were bla KPC-2, bla IMP-1, bla VIM-1, bla NDM-1, and bla NDM-5. The CARBA 5 assay showed higher sensitivity and specificity for the detection of NDM, OXA and KPC than that for VIM and IMP genes. Antimicrobial resistance profiles of CRE isolates revealed 20 PDR, 30 extensively drug-resistant (XDR), and 16 multidrug-resistant (MDR) phenotypes. This study provides evidence of colonization with PDR CPE in dogs and cats. To manage the infection or colonization of pets in veterinary clinical settings, extended surveillance systems should be considered, and the use of critical antibiotics should be strictly controlled.


Assuntos
Doenças do Gato , Doenças do Cão , Gatos , Cães , Animais , Estudos Transversais , Meropeném , Egito , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/genética , Proteínas de Bactérias/análise , beta-Lactamases/genética , beta-Lactamases/análise , Antibacterianos/farmacologia , Escherichia coli/genética
9.
Front Cell Infect Microbiol ; 14: 1353433, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558854

RESUMO

Objective: To analyze the clinical epidemiological characteristics including clinical features, disease prognosis of pneumococcal meningitis (PM), and drug sensitivity of S. pneumoniae isolates in Chinese children. Methods: A retrospective analysis was performed on the clinical, laboratory microbiological data of 160 hospitalized children less than 15 years of age with PM from January 2019 to December 2020 in 33 tertiary hospitals in China. Results: A total of 160 PM patients were diagnosed, including 103 males and 57 females The onset age was 15 days to 15 years old, and the median age was 1 year and 3 months. There were 137 cases (85.6%) in the 3 months to <5 years age group, especially in the 3 months to <3 years age group (109 cases, 68.2%); S. pneumoniae was isolated from cerebrospinal fluid (CSF) culture in 95(35.6%), and 57(35.6%) in blood culture. The positive rates of S. pneumoniae detection by CSF metagenomic next-generation sequencing (mNGS)and antigen detection method were 40.2% (35/87) and 26.9% (21/78). Fifty-five cases (34.4%) had one or more predisposing factors of bacterial meningitis; and 113 cases (70.6%) had one or more extracranial infection diseases Fever (147, 91.9%) was the most common clinical symptom, followed by vomiting (61, 38.1%) and altered mental status (47,29.4%). Among 160 children with PM, the main intracranial imaging complications were subdural effusion and (or) empyema in 43 cases (26.9%), hydrocephalus in 24 cases (15.0%), cerebral abscess in 23 cases (14.4%), intracranial hemorrhage in 8 cases (5.0%), and other cerebrovascular diseases in 13 cases (8.1%) including encephalomalacia, cerebral infarction, and encephalatrophy. Subdural effusion and (or) empyema and hydrocephalus mainly occurred in children < 1 years old (90.7% (39/43) and 83.3% (20/24), respectively). 17 cases with PM (39.5%) had more than one intracranial imaging abnormality. S. pneumoniae isolates were completely sensitive to vancomycin (100.0%, 75/75), linezolid (100.0%,56/56), ertapenem (6/6); highly sensitive to levofloxacin (81.5%, 22/27), moxifloxacin (14/17), rifampicin (96.2%, 25/26), and chloramphenicol (91.3%, 21/23); moderately sensitive to cefotaxime (56.1%, 23/41), meropenem (51.1%, 23/45) and ceftriaxone (63.5, 33/52); less sensitive to penicillin (19.6%, 27/138) and clindamycin (1/19); completely resistant to erythromycin (100.0%, 31/31). The cure and improvement rate were 22.5% (36/160)and 66.3% (106/160), respectively. 18 cases (11.3%) had an adverse outcome, including 6 cases withdrawing treatment therapy, 5 cases unhealed, 5 cases died, and 2 recurrences. S. pneumoniae was completely susceptible to vancomycin (100.0%, 75/75), linezolid (100.0%, 56/56), and ertapenem (6/6); susceptible to cefotaxime, meropenem, and ceftriaxone in the order of 56.1% (23/41), 51.1% (23/45), and 63.5 (33/52); completely resistant to erythromycin (100.0%, 31/31). Conclusion: Pediatric PM is more common in children aged 3 months to < 3 years old. Intracranial complications mostly occur in children < 1 year of age with fever being the most common clinical manifestations and subdural effusion and (or) empyema and hydrocephalus being the most common complications, respectively. CSF non-culture methods can facilitate improving the detection rate of pathogenic bacteria. More than 10% of PM children had adverse outcomes. S. pneumoniae strains are susceptible to vancomycin, linezolid, ertapenem, levofloxacin, moxifloxacin, rifampicin, and chloramphenicol.


Assuntos
Empiema , Hidrocefalia , Meningites Bacterianas , Meningite Pneumocócica , Derrame Subdural , Adolescente , Criança , Feminino , Humanos , Lactente , Masculino , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Cefotaxima , Ceftriaxona/uso terapêutico , Cloranfenicol , Empiema/tratamento farmacológico , Ertapenem/uso terapêutico , Eritromicina/uso terapêutico , Hidrocefalia/tratamento farmacológico , Levofloxacino , Linezolida/uso terapêutico , Meningites Bacterianas/diagnóstico , Meningite Pneumocócica/diagnóstico , Meningite Pneumocócica/tratamento farmacológico , Meningite Pneumocócica/epidemiologia , Meropeném/uso terapêutico , Testes de Sensibilidade Microbiana , Moxifloxacina/uso terapêutico , Estudos Retrospectivos , Rifampina , Derrame Subdural/tratamento farmacológico , Vancomicina , Recém-Nascido , Pré-Escolar
10.
BMC Infect Dis ; 24(1): 378, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582858

RESUMO

INTRODUCTION: Carbapenem-resistant gram-negative bacilli are a worldwide concern because of high morbidity and mortality rates. Additionally, the increasing prevalence of these bacteria is dangerous. To investigate the extent of antimicrobial resistance and prioritize the utility of novel drugs, we evaluated the molecular characteristics and antimicrobial susceptibility profiles of carbapenem-resistant Enterobacterales, Pseudomonas aeruginosa and Acinetobacter baumannii in Ecuador in 2022. METHODS: Ninety-five clinical isolates of carbapenem non-susceptible gram-negative bacilli were collected from six hospitals in Ecuador. Carbapenem resistance was confirmed with meropenem disk diffusion assays following Clinical Laboratory Standard Institute guidelines. Carbapenemase production was tested using a modified carbapenemase inactivation method. Antimicrobial susceptibility was tested with a disk diffusion assay, the Vitek 2 System, and gradient diffusion strips. Broth microdilution assays were used to assess colistin susceptibility. All the isolates were screened for the blaKPC, blaNDM, blaOXA-48, blaVIM and blaIMP genes. In addition, A. baumannii isolates were screened for the blaOXA-23, blaOXA-58 and blaOXA-24/40 genes. RESULTS: Carbapenemase production was observed in 96.84% of the isolates. The blaKPC, blaNDM and blaOXA-48 genes were detected in Enterobacterales, with blaKPC being predominant. The blaVIM gene was detected in P. aeruginosa, and blaOXA-24/40 predominated in A. baumannii. Most of the isolates showed co-resistance to aminoglycosides, fluoroquinolones, and trimethoprim/sulfamethoxazole. Both ceftazidime/avibactam and meropenem/vaborbactam were active against carbapenem-resistant gram-negative bacilli that produce serin-carbapenemases. CONCLUSION: The epidemiology of carbapenem resistance in Ecuador is dominated by carbapenemase-producing K. pneumoniae harbouring blaKPC. Extensively drug resistant (XDR) P. aeruginosa and A. baumannii were identified, and their identification revealed the urgent need to implement strategies to reduce the dissemination of these strains.


Assuntos
Carbapenêmicos , beta-Lactamases , Humanos , Carbapenêmicos/farmacologia , Meropeném , Epidemiologia Molecular , Equador/epidemiologia , Testes de Sensibilidade Microbiana , beta-Lactamases/genética , Proteínas de Bactérias/genética , Antibacterianos/farmacologia , Bactérias Gram-Negativas/genética , Klebsiella pneumoniae/genética , Pseudomonas aeruginosa/genética
11.
BMC Microbiol ; 24(1): 122, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600509

RESUMO

BACKGROUND: Escherichia coli (E. coli) is a multidrug resistant opportunistic pathogen that can cause secondary bacterial infections in patients with COVID-19. This study aimed to determine the antimicrobial resistance profile of E. coli as a secondary bacterial infection in patients with COVID-19 and to assess the prevalence and characterization of genes related to efflux pumps and porin. METHODS: A total of 50 nonduplicate E. coli isolates were collected as secondary bacterial infections in COVID-19 patients. The isolates were cultured from sputum samples. Confirmation and antibiotic susceptibility testing were conducted by Vitek 2. PCR was used to assess the prevalence of the efflux pump and porin-related genes in the isolates. The phenotypic and genotypic evolution of antibiotic resistance genes related to the efflux pump was evaluated. RESULTS: The E. coli isolates demonstrated high resistance to ampicillin (100%), cefixime (62%), cefepime (62%), amoxicillin-clavulanic acid (60%), cefuroxime (60%), and ceftriaxone (58%). The susceptibility of E. coli to ertapenem was greatest (92%), followed by imipenem (88%), meropenem (86%), tigecycline (80%), and levofloxacin (76%). Regarding efflux pump gene combinations, there was a significant association between the acrA gene and increased resistance to levofloxacin, between the acrB gene and decreased resistance to meropenem and increased resistance to levofloxacin, and between the ompF and ompC genes and increased resistance to gentamicin. CONCLUSIONS: The antibiotics ertapenem, imipenem, meropenem, tigecycline, and levofloxacin were effective against E. coli in patients with COVID-19. Genes encoding efflux pumps and porins, such as acrA, acrB, and outer membrane porins, were highly distributed among all the isolates. Efflux pump inhibitors could be alternative antibiotics for restoring tetracycline activity in E. coli isolates.


Assuntos
COVID-19 , Coinfecção , Infecções por Escherichia coli , Humanos , Escherichia coli , Ertapenem/farmacologia , Levofloxacino/farmacologia , Meropeném/farmacologia , Tigeciclina/farmacologia , Antibacterianos/farmacologia , Infecções por Escherichia coli/microbiologia , Imipenem/farmacologia , Porinas/genética , Porinas/farmacologia , Testes de Sensibilidade Microbiana
12.
Antimicrob Resist Infect Control ; 13(1): 37, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600535

RESUMO

INTRODUCTION: Antimicrobial resistance (AMR) is a pressing global health concern, particularly pronounced in low-resource settings. In Ethiopia, the escalating prevalence of carbapenem-resistant Pseudomonas aeruginosa (P. aeruginosa) poses a substantial threat to public health. METHODS: A comprehensive search of databases, including PubMed, Scopus, Embase, Hinari, and Google Scholar, identified relevant studies. Inclusion criteria encompassed observational studies reporting the prevalence of meropenem-resistant P. aeruginosa in Ethiopia. Quality assessment utilized JBI checklists. A random-effects meta-analysis pooled data on study characteristics and prevalence estimates, with subsequent subgroup and sensitivity analyses. Publication bias was assessed graphically and statistically. RESULTS: Out of 433 studies, nineteen, comprising a total sample of 11,131, met inclusion criteria. The pooled prevalence of meropenem-resistant P. aeruginosa was 15% (95% CI: 10-21%). Significant heterogeneity (I2 = 83.6%) was observed, with the number of P. aeruginosa isolates identified as the primary source of heterogeneity (p = 0.127). Subgroup analysis by infection source revealed a higher prevalence in hospital-acquired infections (28%, 95% CI: 10, 46) compared to community settings (6%, 95% CI: 2, 11). Geographic based subgroup analysis indicated the highest prevalence in the Amhara region (23%, 95% CI: 8, 38), followed by Addis Ababa (21%, 95% CI: 11, 32), and lower prevalence in the Oromia region (7%, 95% CI: 4, 19). Wound samples exhibited the highest resistance (25%, 95% CI: 25, 78), while sputum samples showed the lowest prevalence. Publication bias, identified through funnel plot examination and Egger's regression test (p < 0.001), execution of trim and fill analysis resulted in an adjusted pooled prevalence of (3.7%, 95% CI: 2.3, 9.6). CONCLUSION: The noteworthy prevalence of meropenem resistance among P. aeruginosa isolates in Ethiopia, particularly in healthcare settings, underscores the urgency of implementing strict infection control practices and antibiotic stewardship. Further research is imperative to address and mitigate the challenges posed by antimicrobial resistance in the country.


Assuntos
Anti-Infecciosos , Infecções por Pseudomonas , Humanos , Etiópia/epidemiologia , Meropeném/farmacologia , Prevalência , Pseudomonas aeruginosa , Infecções por Pseudomonas/epidemiologia , Farmacorresistência Bacteriana
13.
J Infect Dev Ctries ; 18(3): 391-398, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38635608

RESUMO

INTRODUCTION: Urinary tract infection (UTI) is a common bacterial complication in pregnancy. The study aimed to estimate the prevalence, risk factors, and bacterial etiology of UTI during pregnancy and determine the efficacy of antimicrobial drugs in treating UTIs. METHODOLOGY: Urine specimens and clinical data were collected from pregnant women who attended primary health centers in Erbil, Iraq. All specimens were cultured on appropriate media and identified by standard microbiological methods. The pregnant women were grouped into symptomatic UTI group, asymptomatic bacteriuria group, and the control group. The agar dilution method was used to determine antimicrobial susceptibility. RESULTS: Among the 5,042 pregnant women included in this study, significant bacteriuria was found in 625 (12.40%) of the cases, and 198 (31.68%) had symptomatic UTI, of which 43.59% were diagnosed during the third trimester. Out of the 643 bacteria isolated, 33.28% were symptomatic UTI, of which 43.59% developed during the third trimester. There was a significant difference in the bacterial etiology between symptomatic UTI and asymptomatic bacteriuria (p = 0.002), as well as between cystitis and pyelonephritis (p = 0.017). The most common bacterial species isolated was Escherichia coli, which was susceptible to fosfomycin (100%), meropenem (99.45%), and nitrofurantoin (97.8%). CONCLUSIONS: Pregnant women are more likely to develop UTI in the third trimester. Escherichia coli is the predominant pathogen. The study suggests the use of fosfomycin, meropenem, and nitrofurantoin for the treatment of UTI. No Gram-positive isolates were resistant to daptomycin.


Assuntos
Anti-Infecciosos , Bacteriúria , Fosfomicina , Infecções Urinárias , Feminino , Humanos , Gravidez , Bacteriúria/tratamento farmacológico , Bacteriúria/epidemiologia , Bacteriúria/microbiologia , Nitrofurantoína/farmacologia , Nitrofurantoína/uso terapêutico , Fosfomicina/uso terapêutico , Gestantes , Meropeném/uso terapêutico , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/epidemiologia , Infecções Urinárias/etiologia , Anti-Infecciosos/uso terapêutico , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
14.
BMC Microbiol ; 24(1): 126, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622558

RESUMO

This study aimed to explore the role of the two-component system Bae SR in the mechanism of drug resistance in carbapenem-resistant A. baumannii (CRAB) using molecular docking and real-time polymerase chain reaction (PCR). The two-component system Bae SR of Acinetobacter baumannii was subjected to molecular docking with imipenem, meropenem, and levofloxacin. Antibacterial assays and fluorescence quantitative PCR were used to explore protein-ligand interactions and molecular biological resistance mechanisms related to CRAB. The analysis of the two-component system in A. baumannii revealed that imipenem exhibited the highest docking energy in Bae S at - 5.81 kcal/mol, while the docking energy for meropenem was - 4.92 kcal/mol. For Bae R, imipenem had a maximum docking energy of - 4.28 kcal/mol, compared with - 4.60 kcal/mol for meropenem. The highest binding energies for Bae S-levofloxacin and Bae R-levofloxacin were - 3.60 and - 3.65 kcal/mol, respectively. All imipenem-resistant strains had minimum inhibitory concentration (MIC) values of 16 µg/mL, whereas levofloxacin-resistant strains had MIC values of 8 µg/mL. The time-sterilization curve showed a significant decrease in bacterial colony numbers at 2 h under the action of 8 µg/mL imipenem, indicating antibacterial effects. In contrast, levofloxacin did not exhibit any antibacterial activity. Fluorescence quantitative PCR results revealed significantly increased relative expression levels of bae S and bae R genes in the CRAB group, which were 2 and 1.5 times higher than those in the CSAB group, respectively, with statistically significant differences. Molecular docking in this study found that the combination of Bae SR and carbapenem antibiotics (imipenem, meropenem) exhibited stronger affinity and stability compared with levofloxacin. Moreover, the overexpression of the two-component system genes in carbapenem-resistant A. baumannii enhanced its resistance to carbapenem, providing theoretical and practical insights into carbapenem resistance in respiratory tract infections caused by A. baumannii.


Assuntos
Acinetobacter baumannii , Carbapenêmicos , Carbapenêmicos/farmacologia , Meropeném/farmacologia , Simulação de Acoplamento Molecular , Reação em Cadeia da Polimerase em Tempo Real , Levofloxacino/farmacologia , Antibacterianos/farmacologia , Imipenem/farmacologia , Resistência a Medicamentos , Testes de Sensibilidade Microbiana , beta-Lactamases/genética
15.
BMC Microbiol ; 24(1): 144, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664608

RESUMO

BACKGROUND: Klebsiella pneumoniae infections have become a major cause of hospital acquired infection worldwide with the increased rate of acquisition of resistance to antibiotics. Carbapenem resistance mainly among Gram negative is an ongoing problem which causes serious outbreaks dramatically limiting treatment options. This prospective cross-sectional study was designed to detect blaKPC gene from carbapenem resistant K. pneumoniae. MATERIALS AND METHODS: A totally of 1118 different clinical specimens were screened and confirmed for KPC producing K. pneumoniae phenotypically using Meropenem (10 µg) disc. The blaKPC gene was amplified from the isolates of K. pneumoniae to detect the presence of this gene. RESULT: Of the total samples processed, 18.6% (n = 36) were K. pneumoniae and among 36 K. pneumoniae, 61.1% (n = 22/36) were meropenem resistant. This study demonstrated the higher level of MDR 91.7% (n = 33) and KPC production 47.2% (n = 17) among K. pneumoniae isolates. The blaKPC gene was detected in 8.3% (n = 3) of meropenem resistant isolates. CONCLUSION: Since the study demonstrates the higher level of MDR and KPC producing K. pneumoniae isolates that has challenged the use of antimicrobial agents, continuous microbiology, and molecular surveillance to assist early detection and minimize the further dissemination of blaKPC should be initiated. We anticipate that the findings of this study will be useful in understanding the prevalence of KPC-producing K. pneumoniae in Nepal.


Assuntos
Antibacterianos , Proteínas de Bactérias , Infecções por Klebsiella , Klebsiella pneumoniae , Meropeném , Testes de Sensibilidade Microbiana , Centros de Atenção Terciária , beta-Lactamases , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/enzimologia , beta-Lactamases/genética , Humanos , Nepal/epidemiologia , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/epidemiologia , Centros de Atenção Terciária/estatística & dados numéricos , Proteínas de Bactérias/genética , Estudos Transversais , Estudos Prospectivos , Antibacterianos/farmacologia , Meropeném/farmacologia , Masculino , Farmacorresistência Bacteriana Múltipla/genética , Feminino , Adulto , Pessoa de Meia-Idade , Adulto Jovem , Idoso , Adolescente
16.
Mikrobiyol Bul ; 58(2): 135-147, 2024 Apr.
Artigo em Turco | MEDLINE | ID: mdl-38676582

RESUMO

Pseudomonas aeruginosa is a non-fermentative gram-negative bacillus. Many virulence factors play a role in the pathogenesis of P.aeruginosa. The aim of this study was to early detection of ST111, ST175, ST235, ST253, ST395 which are named high-risk clones with increased epidemic potential due to multidrug resistance in P.aeruginosa isolates by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) method and to evaluate the relationship between high-risk clones and the presence of P.aeruginosa virulence factors and carbapenemase production genes.P.aeruginosa isolates (n= 100) found to be resistant to at least imipenem or meropenem antibiotics isolated from the various clinical samples in the medical microbiology laboratory between 01.01.2021 and 07.06.2022 were included in the study. For the detection of virulence genes uniplex polymerase chain reaction (PCR) for toxA and multiplex PCR for algD, plcN, lasB, plcH were performed in P.aeruginosa isolates. In the detection of carbapenemase genes, two separate multiplex PCRs used for blaKPC , blaNDM , blaVIM , blaOXA-48 and for blaIMP , blaSPM , blaSIM , blaGIM , blaGES . Investigation of the peaks specific to high-risk clones was performed by using VITEK®-MS (bioMérieux, France) system. P.aeruginosa isolates were mostly isolated from intensive care units (45%) and respiratory tract samples (46%). The antibiotic to which the isolates were found to be most susceptible was amikacin, while highest resistance was detected for piperacillin. In PCR results, toxA, lasB, plcH, plcN and algD were detected as 89%, 99%, 98%, 100%, 100%, respectively. When the presence of characteristic peaks belonging to high-risk clones was evaluated with MALDI-TOF MS, ST253 (7%) and ST175 (2%) were detected. The peaks specific to ST235 and ST395 clones were not detected in our study. blaVIM was detected in two isolates and blaGES-5 carbapenemase was detected in two isolates. Virulence factors were detected at high rates in both high-risk clones and other strains and no significant relationship was found between high-risk clones and virulence factors. Early detection of high-risk clones, identification of antimicrobial resistance mechanisms will help to develop strategic treatment options and prevent their worldwide spread.


Assuntos
Reação em Cadeia da Polimerase , Pseudomonas aeruginosa , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fatores de Virulência , beta-Lactamases , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/isolamento & purificação , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Humanos , beta-Lactamases/genética , Fatores de Virulência/genética , Proteínas de Bactérias/genética , Infecções por Pseudomonas/microbiologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Imipenem/farmacologia , Meropeném/farmacologia , Virulência/genética
17.
BMC Microbiol ; 24(1): 149, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678219

RESUMO

BACKGROUND: Recognition of seasonal trends in bacterial infection and drug resistance rates may enhance diagnosis, direct therapeutic strategies, and inform preventive measures. Limited data exist on the seasonal variability of Acinetobacter baumannii. We investigated the seasonality of A. baumannii, the correlation between temperature and meropenem resistance, and the impact of temperature on this bacterium. RESULTS: Meropenem resistance rates increased with lower temperatures, peaking in winter/colder months. Nonresistant strain detection exhibited temperature-dependent seasonality, rising in summer/warmer months and declining in winter/colder months. In contrast, resistant strains showed no seasonality. Variations in meropenem-resistant and nonresistant bacterial resilience to temperature changes were observed. Nonresistant strains displayed growth advantages at temperatures ≥ 25 °C, whereas meropenem-resistant A. baumannii with ß-lactamase OXA-23 exhibited greater resistance to low-temperature (4 °C) stress. Furthermore, at 4 °C, A. baumannii upregulated carbapenem resistance-related genes (adeJ, oxa-51, and oxa-23) and increased meropenem stress tolerance. CONCLUSIONS: Meropenem resistance rates in A. baumannii display seasonality and are negatively correlated with local temperature, with rates peaking in winter, possibly linked to the differential adaptation of resistant and nonresistant isolates to temperature fluctuations. Furthermore, due to significant resistance rate variations between quarters, compiling monthly or quarterly reports might enhance comprehension of antibiotic resistance trends. Consequently, this could assist in formulating strategies to control and prevent resistance within healthcare facilities.


Assuntos
Acinetobacter baumannii , Antibacterianos , Meropeném , Testes de Sensibilidade Microbiana , Estações do Ano , Temperatura , beta-Lactamases , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Meropeném/farmacologia , Antibacterianos/farmacologia , beta-Lactamases/genética , Adaptação Fisiológica/genética , Farmacorresistência Bacteriana/genética , Humanos , Infecções por Acinetobacter/microbiologia , Proteínas de Bactérias/genética
18.
PLoS One ; 19(4): e0298577, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635685

RESUMO

BACKGROUND: Infections caused by Stenotrophomonas maltophilia and related species are increasing worldwide. Unfortunately, treatment options are limited, whereas the antimicrobial resistance is increasing. METHODS: We included clinical isolates identified as S. maltophilia by VITEK 2 Compact. Ceftazidime/avibactam, meropenem/vaborbactam, imipenem/relebactam, cefiderocol, quinolones, and tetracycline family members were evaluated by broth microdilution method and compared with first-line treatment drugs. Minimum inhibitory concentrations (MICs) were reported for all antibiotics. We sequenced the Whole Genome of cefiderocol resistant strains (CRSs) and annotated their genes associated with cefiderocol resistance (GACR). Presumptive phylogenetic identification employing the 16S marker was performed. RESULTS: One hundred and one clinical strains were evaluated, sulfamethoxazole and trimethoprim, levofloxacin and minocycline showed susceptibilities of 99.01%, 95.04% and 100% respectively. Ceftazidime was the antibiotic with the highest percentage of resistance in all samples (77.22%). Five strains were resistant to cefiderocol exhibiting MIC values ≥ 2 µg/mL (4.95%). The ß-lactamase inhibitors meropenem/vaborbactam and imipenem/relebactam, failed to inhibit S. maltophilia, preserving both MIC50 and MIC90 ≥64 µg/mL. Ceftazidime/avibactam restored the activity of ceftazidime decreasing the MIC range. Tigecycline had the lowest MIC range, MIC50 and MIC90. Phylogeny based on 16S rRNA allowed to identify to cefiderocol resistant strains as putative species clustered into Stenotrophomonas maltophilia complex (Smc). In these strains, we detected GARCs such as Mutiple Drug Resistance (MDR) efflux pumps, L1-type ß-lactamases, iron transporters and type-1 fimbriae. CONCLUSION: Antimicrobial resistance to first-line treatment is low. The in vitro activity of new ß-lactamase inhibitors against S. maltophilia is poor, but avibactam may be a potential option. Cefiderocol could be considered as a potential new option for multidrug resistant infections. Tetracyclines had the best in vitro activity of all antibiotics evaluated.


Assuntos
Ácidos Borônicos , Ceftazidima , Stenotrophomonas maltophilia , Ceftazidima/farmacologia , Cefiderocol , Meropeném , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/uso terapêutico , Stenotrophomonas , Filogenia , RNA Ribossômico 16S , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos/farmacologia , Combinação de Medicamentos , Imipenem/farmacologia , Testes de Sensibilidade Microbiana , beta-Lactamases/genética
19.
Antimicrob Agents Chemother ; 68(5): e0017424, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38557171

RESUMO

Mycobacterium abscessus (MAB) infections pose a growing public health threat. Here, we assessed the in vitro activity of the boronic acid-based ß-lactamase inhibitor, vaborbactam, with different ß-lactams against 100 clinical MAB isolates. Enhanced activity was observed with meropenem and ceftaroline with vaborbactam (1- and >4-fold MIC50/90 reduction). CRISPRi-mediated blaMAB gene knockdown showed a fourfold MIC reduction to ceftaroline but not the other ß-lactams. Our findings demonstrate vaborbactam's potential in combination therapy against MAB infections.


Assuntos
Antibacterianos , Ácidos Borônicos , Cefoxitina , Ceftarolina , Cefalosporinas , Imipenem , Meropeném , Testes de Sensibilidade Microbiana , Mycobacterium abscessus , Mycobacterium abscessus/efeitos dos fármacos , Meropeném/farmacologia , Ácidos Borônicos/farmacologia , Antibacterianos/farmacologia , Cefalosporinas/farmacologia , Imipenem/farmacologia , Cefoxitina/farmacologia , Humanos , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Inibidores de beta-Lactamases/farmacologia
20.
Antimicrob Agents Chemother ; 68(5): e0166923, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564665

RESUMO

Japan is a country with an approximate 10% prevalence rate of carbapenem-resistant Pseudomonas aeruginosa (CRPA). Currently, a comprehensive overview of the genotype and phenotype patterns of CRPA in Japan is lacking. Herein, we conducted genome sequencing and quantitative antimicrobial susceptibility testing for 382 meropenem-resistant CRPA isolates that were collected from 78 hospitals across Japan from 2019 to 2020. CRPA exhibited susceptibility rates of 52.9%, 26.4%, and 88.0% against piperacillin-tazobactam, ciprofloxacin, and amikacin, respectively, whereas 27.7% of CRPA isolates was classified as difficult-to-treat resistance P. aeruginosa. Of the 148 sequence types detected, ST274 (9.7%) was predominant, followed by ST235 (7.6%). The proportion of urine isolates in ST235 was higher than that in other STs (P = 0.0056, χ2 test). Only 4.1% of CRPA isolates carried the carbapenemase genes: blaGES (2) and blaIMP (13). One ST235 isolate carried the novel blaIMP variant blaIMP-98 in the chromosome. Regarding chromosomal mutations, 87.1% of CRPA isolates possessed inactivating or other resistance mutations in oprD, and 28.8% showed mutations in the regulatory genes (mexR, nalC, and nalD) for the MexAB-OprM efflux pump. Additionally, 4.7% of CRPA isolates carried a resistance mutation in the PBP3-encoding gene ftsI. The findings from this study and other surveillance studies collectively demonstrate that CRPA exhibits marked genetic diversity and that its multidrug resistance in Japan is less prevailed than in other regions. This study contributes a valuable data set that addresses a gap in genotype/phenotype information regarding CRPA in the Asia-Pacific region, where the epidemiological background markedly differs between regions.


Assuntos
Antibacterianos , Proteínas de Bactérias , Carbapenêmicos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/isolamento & purificação , Japão/epidemiologia , Carbapenêmicos/farmacologia , Antibacterianos/farmacologia , Humanos , Proteínas de Bactérias/genética , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/epidemiologia , Infecções por Pseudomonas/tratamento farmacológico , beta-Lactamases/genética , Genoma Bacteriano/genética , Combinação Piperacilina e Tazobactam/uso terapêutico , Combinação Piperacilina e Tazobactam/farmacologia , Sequenciamento Completo do Genoma , Meropeném/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Amicacina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA