Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Nat Commun ; 15(1): 4012, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740774

RESUMO

cGAS activates innate immune responses against cytosolic double-stranded DNA. Here, by determining crystal structures of cGAS at various reaction stages, we report a unifying catalytic mechanism. apo-cGAS assumes an array of inactive conformations and binds NTPs nonproductively. Dimerization-coupled double-stranded DNA-binding then affixes the active site into a rigid lock for productive metal•substrate binding. A web-like network of protein•NTP, intra-NTP, and inter-NTP interactions ensures the stepwise synthesis of 2'-5'/3'-5'-linked cGAMP while discriminating against noncognate NTPs and off-pathway intermediates. One divalent metal is sufficient for productive substrate binding, and capturing the second divalent metal is tightly coupled to nucleotide and linkage specificities, a process which manganese is preferred over magnesium by 100-fold. Additionally, we elucidate how mouse cGAS achieves more stringent NTP and linkage specificities than human cGAS. Together, our results reveal that an adaptable, yet precise lock-and-key-like mechanism underpins cGAS catalysis.


Assuntos
Nucleotídeos Cíclicos , Nucleotidiltransferases , Animais , Humanos , Camundongos , Domínio Catalítico , Cristalografia por Raios X , DNA , Modelos Moleculares , Nucleotídeos Cíclicos/genética , Nucleotídeos Cíclicos/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Ligação Proteica , Especificidade por Substrato
2.
Annu Rev Biochem ; 91: 599-628, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35287475

RESUMO

In the decade since the discovery of the innate immune cyclic GMP-AMP synthase (cGAS)-2'3'-cyclic GMP-AMP (cGAMP)-stimulator of interferon genes (STING) pathway, its proper activation and dysregulation have been rapidly implicated in many aspects of human disease. Understanding the biochemical, cellular, and regulatory mechanisms of this pathway is critical to developing therapeutic strategies that either harness it to boost defense or inhibit it to prevent unwanted inflammation. In this review, we first discuss how the second messenger cGAMP is synthesized by cGAS in response to double-stranded DNA and cGAMP's subsequent activation of cell-type-dependent STING signaling cascades with differential physiological consequences. We then review how cGAMP as an immunotransmitter mediates tightly controlled cell-cell communication by being exported from producing cells and imported into responding cells via cell-type-specific transporters. Finally, we review mechanisms by which thecGAS-cGAMP-STING pathway responds to different sources of mislocalized double-stranded DNA in pathogen defense, cancer, and autoimmune diseases.


Assuntos
Proteínas de Membrana , Nucleotídeos Cíclicos , DNA/genética , Humanos , Imunidade Inata/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Nucleotídeos Cíclicos/genética , Nucleotidiltransferases/genética
3.
J Clin Invest ; 132(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34905508

RESUMO

It has been revealed that 2'3'-cyclic-GMP-AMP (cGAMP), a second messenger that activates the antiviral stimulator of IFN genes (STING), elicits an antitumoral immune response. Since cGAMP cannot cross the cell membrane, it is not clear how intracellular STING has been activated by extracellular cGAMP until SLC19A1 was identified as an importer to transport extracellular cGAMP into the cytosol. However, SLC19A1-deficient cells also sense extracellular cGAMP, suggesting the presence of mechanisms other than the facilitating transporters for STING sensing extracellular cGAMP. Here, using immunoprecipitation, immunofluorescence, and flow cytometry, we identified an alternatively spliced STING isoform, plasmatic membrane STING (pmSTING), that localized in the plasma membrane with its C-terminus outside the cell, due to a lack of 1 transmembrane domain in its N-terminus compared with canonical STING. Further studies showed that extracellular cGAMP not only promoted the dimerization of pmSTING and interaction of pmSTING with TANK-binding kinase 1 (TBK1) and IFN regulatory factor 3 (IRF3), but also enhanced the phosphorylation of TBK1 and IRF3 and the production of IFN in pmSTING-transfected cells. Additionally, we also identified similar pmSTING isoforms in other species including human. This study suggests a conserved role for pmSTING in sensing extracellular cGAMP and provides insight into the role of cGAMP as an immunotransmitter.


Assuntos
Processamento Alternativo , Membrana Celular/metabolismo , Proteínas de Membrana/biossíntese , Nucleotídeos Cíclicos/metabolismo , Transdução de Sinais , Membrana Celular/genética , Células HEK293 , Humanos , Proteínas de Membrana/genética , Nucleotídeos Cíclicos/genética
4.
Nucleic Acids Res ; 49(16): 9389-9403, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34387695

RESUMO

Cyclic GMP-AMP synthase (cGAS) is a key DNA sensor that detects aberrant cytosolic DNA arising from pathogen invasions or genotoxic stresses. Upon binding to DNA, cGAS is activated and catalyzes the synthesis of cyclic GMP-AMP (cGAMP), which induces potent antimicrobial and antitumor responses. Kaposi sarcoma-associated herpesvirus (KSHV) is a human DNA tumor virus that causes Kaposi sarcoma and several other malignancies. We previously reported that KSHV inhibitor of cGAS (KicGAS) encoded by ORF52, inhibits cGAS enzymatic activity, but the underlying mechanisms remained unclear. To define the inhibitory mechanisms, here we performed in-depth biochemical and functional characterizations of KicGAS, and mapped its functional domains. We found KicGAS self-oligomerizes and binds to double stranded DNA cooperatively. This self-oligomerization is essential for its DNA binding and cGAS inhibition. Interestingly, KicGAS forms liquid droplets upon binding to DNA, which requires collective multivalent interactions with DNA mediated by both structured and disordered domains coordinated through the self-oligomerization of KicGAS. We also observed that KicGAS inhibits the DNA-induced phase separation and activation of cGAS. Our findings reveal a novel mechanism by which DNA viruses target the host protein phase separation for suppression of the host sensing of viral nucleic acids.


Assuntos
Herpesvirus Humano 8/genética , Interações Hospedeiro-Patógeno/genética , Nucleotidiltransferases/genética , Sarcoma de Kaposi/genética , Citosol/enzimologia , Citosol/microbiologia , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Dano ao DNA/genética , DNA Viral/genética , Proteínas de Ligação a DNA/genética , Herpesvirus Humano 8/patogenicidade , Humanos , Evasão da Resposta Imune/efeitos dos fármacos , Imunidade Inata/genética , Nucleotídeos Cíclicos/genética , Nucleotidiltransferases/antagonistas & inibidores , Sarcoma de Kaposi/tratamento farmacológico , Sarcoma de Kaposi/virologia , Proteínas Virais/genética
5.
Chem Commun (Camb) ; 57(46): 5630-5633, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34018507

RESUMO

We designed a new caging group that can be photoactivated only in the presence of a non-endogenous enzyme when exposed to 405 nm light. Because cells or tissues can be genetically tagged by an exogenously expressed enzyme, this novel method can serve as a strategy for adding targeting abilities to photocaged compounds.


Assuntos
Nucleotídeos Cíclicos/síntese química , Células HeLa , Humanos , Luz , Estrutura Molecular , Nucleotídeos Cíclicos/química , Nucleotídeos Cíclicos/genética , Processos Fotoquímicos , Células Tumorais Cultivadas
6.
Nat Cell Biol ; 23(4): 330-340, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33833429

RESUMO

Biomolecular condensates (biocondensates) formed via liquid-liquid phase-separation of soluble proteins have been studied extensively. However, neither the phase-separation of endoplasmic reticulum (ER) transmembrane protein nor a biocondensate with organized membranous structures has been reported. Here, we have discovered a spherical ER membranous biocondensate with puzzle-like structures caused by condensation of the ER-resident stimulator of interferon genes (STING) in DNA virus-infected or 2'3'-cGAMP (cyclic GMP-AMP)-treated cells, which required STING transmembrane domains, an intrinsically disordered region (IDR) and a dimerization domain. Intracellular 2'3'-cGAMP concentrations determined STING translocation or condensation. STING biocondensates constrained STING and TBK1 (TANK binding protein 1) to prevent innate immunity from overactivation, presumably acting like a 'STING-TBK1-cGAMP sponge'. Cells expressing STING-E336G/E337G showed notably enhanced innate immune responses due to impaired STING condensation after viral infection at later stages. Microtubule inhibitors impeded the STING condensate gel-like transition and augmented type I-interferon production in DNA virus-infected cells. This membranous biocondensate was therefore named the STING phase-separator.


Assuntos
Retículo Endoplasmático/genética , Imunidade Inata/genética , Extração Líquido-Líquido , Proteínas de Membrana/genética , Humanos , Nucleotídeos Cíclicos/genética , Ligação Proteica/genética , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/genética
8.
Sci Signal ; 13(660)2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33262294

RESUMO

We previously reported that an ortholog of STING regulates infection by picorna-like viruses in Drosophila In mammals, STING is activated by the cyclic dinucleotide 2'3'-cGAMP produced by cGAS, which acts as a receptor for cytosolic DNA. Here, we showed that injection of flies with 2'3'-cGAMP induced the expression of dSTING-regulated genes. Coinjection of 2'3'-cGAMP with a panel of RNA or DNA viruses resulted in substantially reduced viral replication. This 2'3'-cGAMP-mediated protection was still observed in flies with mutations in Atg7 and AGO2, genes that encode key components of the autophagy and small interfering RNA pathways, respectively. By contrast, this protection was abrogated in flies with mutations in the gene encoding the NF-κB transcription factor Relish. Transcriptomic analysis of 2'3'-cGAMP-injected flies revealed a complex response pattern in which genes were rapidly induced, induced after a delay, or induced in a sustained manner. Our results reveal that dSTING regulates an NF-κB-dependent antiviral program that predates the emergence of interferons in vertebrates.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas de Membrana/metabolismo , NF-kappa B/metabolismo , Nucleotídeos Cíclicos/metabolismo , Fatores de Transcrição/metabolismo , Vírus/metabolismo , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Proteínas de Membrana/genética , Mutação , NF-kappa B/genética , Nucleotídeos Cíclicos/genética , Fatores de Transcrição/genética , Vírus/genética
9.
Elife ; 92020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33191912

RESUMO

DNA viruses in the family Poxviridae encode poxin enzymes that degrade the immune second messenger 2'3'-cGAMP to inhibit cGAS-STING immunity in mammalian cells. The closest homologs of poxin exist in the genomes of insect viruses suggesting a key mechanism of cGAS-STING evasion may have evolved outside of mammalian biology. Here we use a biochemical and structural approach to discover a broad family of 369 poxins encoded in diverse viral and animal genomes and define a prominent role for 2'3'-cGAMP cleavage in metazoan host-pathogen conflict. Structures of insect poxins reveal unexpected homology to flavivirus proteases and enable identification of functional self-cleaving poxins in RNA-virus polyproteins. Our data suggest widespread 2'3'-cGAMP signaling in insect antiviral immunity and explain how a family of cGAS-STING evasion enzymes evolved from viral proteases through gain of secondary nuclease activity. Poxin acquisition by poxviruses demonstrates the importance of environmental connections in shaping evolution of mammalian pathogens.


Assuntos
Desoxirribonucleases/metabolismo , Nucleotídeos Cíclicos/metabolismo , Vaccinia virus/metabolismo , Proteínas Virais/metabolismo , Animais , Sítios de Ligação , Clonagem Molecular , Desoxirribonucleases/genética , Evolução Molecular , Genoma , Lepidópteros/virologia , Mamíferos/genética , Mamíferos/metabolismo , Modelos Moleculares , Nucleotídeos Cíclicos/genética , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Conformação Proteica , Vírus de RNA/enzimologia , Vaccinia virus/genética , Proteínas Virais/genética
10.
Front Immunol ; 11: 2090, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013881

RESUMO

Intratumoral recruitment of immune cells following innate immune activation is critical for anti-tumor immunity and involves cytosolic dsDNA sensing by the cGAS/STING pathway. We have previously shown that KRAS-LKB1 (KL) mutant lung cancer, which is resistant to PD-1 blockade, exhibits silencing of STING, impaired tumor cell production of immune chemoattractants, and T cell exclusion. Since the vasculature is also a critical gatekeeper of immune cell infiltration into tumors, we developed a novel microfluidic model to study KL tumor-vascular interactions. Notably, dsDNA priming of LKB1-reconstituted tumor cells activates the microvasculature, even when tumor cell STING is deleted. cGAS-driven extracellular export of 2'3' cGAMP by cancer cells activates STING signaling in endothelial cells and cooperates with type 1 interferon to increase vascular permeability and expression of E selectin, VCAM-1, and ICAM-1 and T cell adhesion to the endothelium. Thus, tumor cell cGAS-STING signaling not only produces T cell chemoattractants, but also primes tumor vasculature for immune cell escape.


Assuntos
Células Endoteliais/metabolismo , Neoplasias Pulmonares , Proteínas de Neoplasias/metabolismo , Neovascularização Patológica , Nucleotídeos Cíclicos/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Técnicas de Cocultura , Células Endoteliais/patologia , Humanos , Neoplasias Pulmonares/irrigação sanguínea , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas de Neoplasias/genética , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Nucleotídeos Cíclicos/genética
11.
BMC Biotechnol ; 20(1): 47, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32854679

RESUMO

BACKGROUND: Approximately 40% of prescribed drugs exert their activity via GTP-binding protein-coupled receptors (GPCRs). Once activated, these receptors cause transient changes in the concentration of second messengers, e.g., cyclic adenosine 3',5'-monophosphate (cAMP). Specific and efficacious genetically encoded biosensors have been developed to monitor cAMP fluctuations with high spatial and temporal resolution in living cells or tissue. A well characterized biosensor for cAMP is the Förster resonance energy transfer (FRET)-based Epac1-camps protein. Pharmacological characterization of newly developed ligands acting at GPCRs often includes numerical quantification of the second messenger amount that was produced. RESULTS: To quantify cellular cAMP concentrations, we bacterially over-expressed and purified Epac1-camps and applied the purified protein in a cell-free detection assay for cAMP in a multi-well format. We found that the biosensor can detect as little as 0.15 pmol of cAMP, and that the sensitivity is not impaired by non-physiological salt concentrations or pH values. Notably, the assay tolerated desiccation and storage of the protein without affecting Epac1-camps cyclic nucleotide sensitivity. CONCLUSIONS: We found that determination cAMP in lysates obtained from cell assays or tissue samples by purified Epac1-camps is a robust, fast, and sensitive assay suitable for routine and high throughput analyses.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Fluorescência , Nucleotídeos Cíclicos , Técnicas Biossensoriais/métodos , Técnicas de Cultura de Células , Clonagem Molecular , AMP Cíclico , Escherichia coli/genética , Fatores de Troca do Nucleotídeo Guanina , Concentração de Íons de Hidrogênio , Nucleotídeos Cíclicos/genética , Receptores Acoplados a Proteínas G , Proteínas Recombinantes
12.
Life Sci Alliance ; 3(9)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32661021

RESUMO

The innate immune system recognizes cytosolic DNA associated with microbial infections and cellular stress via the cGAS/STING pathway, leading to activation of phospho-IRF3 and downstream IFN-I and senescence responses. To prevent hyperactivation, cGAS/STING is presumed to be nonresponsive to chromosomal self-DNA during open mitosis, although specific regulatory mechanisms are lacking. Given a role for the Golgi in STING activation, we investigated the state of the cGAS/STING pathway in interphase cells with artificially vesiculated Golgi and in cells arrested in mitosis. We find that whereas cGAS activity is impaired through interaction with mitotic chromosomes, Golgi integrity has little effect on the enzyme's production of cGAMP. In contrast, STING activation in response to either foreign DNA (cGAS-dependent) or exogenous cGAMP is impaired by a vesiculated Golgi. Overall, our data suggest a secondary means for cells to limit potentially harmful cGAS/STING responses during open mitosis via natural Golgi vesiculation.


Assuntos
Complexo de Golgi/metabolismo , Proteínas de Membrana/metabolismo , Mitose/fisiologia , Nucleotidiltransferases/metabolismo , Citosol/metabolismo , DNA/metabolismo , Complexo de Golgi/genética , Células HaCaT , Humanos , Imunidade Inata/fisiologia , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Proteínas de Membrana/genética , Nucleotídeos Cíclicos/genética , Nucleotidiltransferases/genética , Transdução de Sinais
13.
Proc Natl Acad Sci U S A ; 117(27): 15947-15954, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32576686

RESUMO

The cytosolic DNA sensor cGMP-AMP synthase (cGAS) synthesizes the noncanonical cyclic dinucleotide 2'3'-cGAMP to activate the adaptor protein stimulator of IFN genes (STING), thus awakening host immunity in response to DNA pathogen infection. However, dengue virus (DENV), an RNA virus without a DNA stage in its life cycle, also manipulates cGAS-STING-mediated innate immunity by proteolytic degradation of STING. Here, we found that the sensitivity of STING to DENV protease varied with different human STING haplotypes. Exogenous DNA further enhanced DENV protease's ability to interact and cleave protease-sensitive STING. DNA-enhanced STING cleavage was reduced in cGAS-knockdown cells and triggered by the cGAS product 2'3'-cGAMP. The source of DNA may not be endogenous mitochondrial DNA but rather exogenous reactivated viral DNA. Cells producing 2'3'-cGAMP by overexpressing cGAS or with DNA virus reactivation enhanced STING cleavage in neighboring cells harboring DENV protease. DENV infection reduced host innate immunity in cells with the protease-sensitive STING haplotype, whose homozygote genotype frequency was found significantly reduced in Taiwanese people with dengue fever. Therefore, the human STING genetic background and DNA pathogen coinfection may be the missing links contributing to DENV pathogenesis.


Assuntos
Dengue/enzimologia , Endopeptidases/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Nucleotídeos Cíclicos/metabolismo , Células A549 , DNA Viral/genética , Dengue/imunologia , Endopeptidases/genética , Haplótipos , Humanos , Evasão da Resposta Imune , Imunidade Inata , Nucleotídeos Cíclicos/genética
14.
Mol Cell Biol ; 40(8)2020 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-31988106

RESUMO

Intracellular pathogen resistance 1 (Ipr1) has been found to be a mediator to integrate cyclic GMP-AMP synthase (cGAS)-interferon regulatory factor 3 (IRF3), activated by intracellular pathogens, with the p53 pathway. Previous studies have shown the process of Ipr1 induction by various immune reactions, including intracellular bacterial and viral infections. The present study demonstrated that Ipr1 is regulated by the cGAS-IRF3 pathway during pathogenic infection. IRF3 was found to regulate Ipr1 expression by directly binding the interferon-stimulated response element motif of the Ipr1 promoter. Knockdown of Ipr1 decreased the expression of immunity-related GTPase family M member 1 (Irgm1), which plays critical roles in autophagy initiation. Irgm1 promoter characterization revealed a p53 motif in front of the transcription start site. P53 was found to participate in regulation of Irgm1 expression and IPR1-related effects on P53 stability by affecting interactions between ribosomal protein L11 (RPL11) and transformed mouse 3T3 cell double minute 2 (MDM2). Our results indicate that Ipr1 integrates cGAS-IRF3 with p53-modulated Irgm1 expression.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Nucleotídeos Cíclicos/metabolismo , Transativadores/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Citoplasma/metabolismo , Proteínas de Ligação ao GTP/genética , Células HEK293 , Humanos , Fator Regulador 3 de Interferon/genética , Macrófagos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Células NIH 3T3 , Nucleotídeos Cíclicos/genética , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Células RAW 264.7 , Proteínas Ribossômicas/metabolismo , Transdução de Sinais , Transativadores/genética , Proteína Supressora de Tumor p53/genética
15.
Nat Cancer ; 1(2): 184-196, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-33768207

RESUMO

2'3'-cyclic GMP-AMP (cGAMP) is an intracellular second messenger that is synthesized in response to cytosolic double-stranded DNA and activates the innate immune STING pathway. Our previous discovery of its extracellular hydrolase ENPP1 hinted at the existence of extracellular cGAMP. Here, we detected that cGAMP is continuously exported but then efficiently cleared by ENPP1, explaining why it has previously escaped detection. By developing potent, specific, and cell impermeable ENPP1 inhibitors, we found that cancer cells continuously export cGAMP in culture at steady state and at higher levels when treated with ionizing radiation (IR). In mouse tumors, depletion of extracellular cGAMP decreased tumor-associated immune cell infiltration and abolished the curative effect of IR. Boosting extracellular cGAMP with ENPP1 inhibitors synergized with IR to delay tumor growth. In conclusion, extracellular cGAMP is an anti-cancer immunotransmitter that could be harnessed to treat cancers with low immunogenicity.


Assuntos
Neoplasias , Nucleotídeos Cíclicos , Animais , Camundongos , Neoplasias/radioterapia , Nucleotídeos Cíclicos/genética , Sistemas do Segundo Mensageiro
17.
Mol Cell ; 75(2): 372-381.e5, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31126740

RESUMO

2'3'-cyclic-GMP-AMP (cGAMP) is a second messenger that activates the antiviral stimulator of interferon genes (STING) pathway. We recently identified a novel role for cGAMP as a soluble, extracellular immunotransmitter that is produced and secreted by cancer cells. Secreted cGAMP is then sensed by host cells, eliciting an antitumoral immune response. Due to the antitumoral effects of cGAMP, other CDN-based STING agonists are currently under investigation in clinical trials for metastatic solid tumors. However, it is unknown how cGAMP and other CDNs cross the cell membrane to activate intracellular STING. Using a genome-wide CRISPR screen, we identified SLC19A1 as the first known importer of cGAMP and other CDNs, including the investigational new drug 2'3'-bisphosphosphothioate-cyclic-di-AMP (2'3'-CDAS). These discoveries will provide insight into cGAMP's role as an immunotransmitter and aid in the development of more targeted CDN-based cancer therapeutics.


Assuntos
Imunidade Inata/genética , Neoplasias/genética , Nucleotídeos Cíclicos/genética , Proteína Carregadora de Folato Reduzido/genética , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Membrana Celular/genética , Genoma Humano/genética , Humanos , Proteínas de Membrana/genética , Neoplasias/imunologia , Nucleotídeos Cíclicos/imunologia , Transdução de Sinais/genética
18.
J Immunol ; 202(9): 2671-2681, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30894428

RESUMO

Brucella abortus is a facultative intracellular bacterium that causes brucellosis, a prevalent zoonosis that leads to abortion and infertility in cattle, and undulant fever, debilitating arthritis, endocarditis, and meningitis in humans. Signaling pathways triggered by B. abortus involves stimulator of IFN genes (STING), which leads to production of type I IFNs. In this study, we evaluated the pathway linking the unfolded protein response (UPR) and the endoplasmic reticulum-resident transmembrane molecule STING, during B. abortus infection. We demonstrated that B. abortus infection induces the expression of the UPR target gene BiP and XBP1 in murine macrophages through a STING-dependent pathway. Additionally, we also observed that STING activation was dependent on the bacterial second messenger cyclic dimeric GMP. Furthermore, the Brucella-induced UPR is crucial for induction of multiple molecules linked to type I IFN signaling pathway, such as IFN-ß, IFN regulatory factor 1, and guanylate-binding proteins. Furthermore, IFN-ß is also important for the UPR induction during B. abortus infection. Indeed, IFN-ß shows a synergistic effect in inducing the IRE1 axis of the UPR. In addition, priming cells with IFN-ß favors B. abortus survival in macrophages. Moreover, Brucella-induced UPR facilitates bacterial replication in vitro and in vivo. Finally, these results suggest that B. abortus-induced UPR is triggered by bacterial cyclic dimeric GMP, in a STING-dependent manner, and that this response supports bacterial replication. In summary, association of STING and IFN-ß signaling pathways with Brucella-induced UPR unravels a novel link between innate immunity and endoplasmic reticulum stress that is crucial for bacterial infection outcome.


Assuntos
Brucella abortus/fisiologia , Brucelose/imunologia , Interações Hospedeiro-Patógeno/imunologia , Proteínas de Membrana/imunologia , Nucleotídeos Cíclicos/imunologia , Resposta a Proteínas não Dobradas/imunologia , Animais , Brucelose/genética , Interações Hospedeiro-Patógeno/genética , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Nucleotídeos Cíclicos/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia
19.
Cell Death Differ ; 26(9): 1735-1749, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30568238

RESUMO

STING (stimulator of interferon genes) is a central molecule that binds to cyclic dinucleotides produced by the cyclic GMP-AMP synthase (cGAS) to activate innate immunity against microbial infection. Here we report that STING harbors classic LC-3 interacting regions (LIRs) and mediates autophagy through its direct interaction with LC3. We observed that poly(dA:dT), cGAMP, and HSV-1 induced STING-dependent autophagy and degradation of STING immediately after TBK1 activation. STING induces non-canonical autophagy that is dependent on ATG5, whereas other autophagy regulators such as Beclin1, Atg9a, ULK1, and p62 are dispensable. LIR mutants of STING abolished its interaction with LC3 and its activation of autophagy. Also, mutants that abolish STING dimerization and cGAMP-binding diminished the STING-LC3 interaction and subsequent autophagy, suggesting that STING activation is indispensable for autophagy induction. Our results thus uncover dual functions of STING in activating the immune response and autophagy, and suggest that STING is involved in ensuring a measured innate immune response.


Assuntos
Autofagia/genética , Imunidade Inata/genética , Proteínas de Membrana/genética , Proteínas Associadas aos Microtúbulos/genética , Animais , Autofagia/imunologia , Proteína 5 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteínas Relacionadas à Autofagia/genética , Proteína Beclina-1/genética , Fibroblastos/imunologia , Células HeLa , Humanos , Imunidade Inata/imunologia , Camundongos , Nucleotídeos Cíclicos/genética , Nucleotídeos Cíclicos/metabolismo , Ligação Proteica/genética , Proteínas de Transporte Vesicular/genética
20.
Vet Microbiol ; 227: 34-40, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30473349

RESUMO

PCV2 is a single-stranded DNA virus that we previously found to induce IFN-ß production via RIG-I and MDA-5. cGAS is known to be the most important DNA sensor for the recognition of cytosolic DNA; however, it remains unclear whether the interferon production induced by PCV2 is associated with cGAS. In the present study, PCV2 infection was found to increase the level of cGAS and STING expression, promote the release of cyclic dinucleotide cGAMP, and induce STING dimerization and translocation into the nucleus of PK-15 cells. These findings indicate that PCV2 infection activates both cGAS and STING. Furthermore, the knockdown of cGAS and STING decreased both the mRNA expression and promoter activity of IFN-ß, demonstrating that the cGAS/STING signaling pathway contributes to the production of IFN-ß. In addition, a knockdown of cGAS and STING also decreased the PCV2 viral load and infectivity. Therefore, PCV2 infection activates the cGAS/STING signaling pathway to induce IFN-ß production and the knockdown of cGAS and STING decreases viral replication in PK-15 cells. These results provide further insight into the relationship between PCV2 and host innate immunity.


Assuntos
Circovirus/imunologia , Interferon beta/imunologia , Proteínas de Membrana/imunologia , Nucleotidiltransferases/imunologia , Transdução de Sinais/imunologia , Replicação Viral/imunologia , Animais , Linhagem Celular , Infecções por Circoviridae/virologia , Circovirus/genética , Circovirus/fisiologia , Imunidade Inata , Interferon beta/biossíntese , Interferon beta/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Nucleotídeos Cíclicos/genética , Nucleotídeos Cíclicos/imunologia , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Transdução de Sinais/genética , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA