Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Food Chem ; 459: 140334, 2024 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38981379

RESUMO

Avocado ripening entails intricate physicochemical transformations resulting in desirable characteristics for consumption; however, its impact on specific metabolites and its cultivar dependence remains largely unexplored. This study employed LC-MS to quantitatively monitor 30 avocado pulp metabolites, including phenolic compounds, amino acids, nucleosides, vitamins, phytohormones, and related compounds, from unripe to overripe stages, in three commercial varieties (Hass, Fuerte, and Bacon). Multivariate statistical analysis revealed significant metabolic variations between cultivars, leading to the identification of potential varietal markers. Most monitored metabolites exhibited dynamic quantitative changes. Although phenolic compounds generally increased during ripening, exceptions such as epicatechin and chlorogenic acid were noted. Amino acids and derivatives displayed a highly cultivar-dependent evolution, with Fuerte demonstrating the highest concentrations and most pronounced fluctuations. In contrast to penstemide, uridine and abscisic acid levels consistently increased during ripening. Several compounds characteristic of the Bacon variety were delineated but require further research for identification and role elucidation.


Assuntos
Frutas , Persea , Compostos Fitoquímicos , Cromatografia Líquida de Alta Pressão , Frutas/química , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Espectrometria de Massa com Cromatografia Líquida , Persea/crescimento & desenvolvimento , Persea/química , Persea/metabolismo , Fenóis/metabolismo , Fenóis/análise , Fenóis/química , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/química , Compostos Fitoquímicos/metabolismo
2.
Plant Physiol Biochem ; 210: 108621, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604012

RESUMO

To enhance the postharvest quality of avocado (Persea americana Mill.) fruit, this study investigates alterations in cell wall metabolism and reactive oxygen species (ROS) metabolism during near-freezing temperature (NFT) storage, and explores their impact on fruit softening. The fruit was stored at 25 °C, 5 °C, 2 °C, and NFT, respectively. NFT storage retarded firmness loss and chilling injury in comparison with 25 °C, 5 °C, and 2 °C. NFT storage delayed the decrease of ionic-soluble pectin (ISP) and cellulose (CLL) contents by suppressing cell wall degradation enzyme activities. Correlation analysis showed that cell wall degradation enzyme activities were positively correlated to rates of ethylene release and respiration. Moreover, NFT storage maintained higher levels of DPPH and ABTS scavenging abilities, activities of superoxide dismutase, peroxidase, and catalase, as well as ascorbate-glutathione cycle (ascorbic acid, glutathione, glutathione disulfide, ascorbate peroxidase, cycle-related enzymes), thereby inhibited the increase of ROS content, malondialdehyde content, and cell membrane permeability. Fruit firmness and chilling injury were correlated with the contents of hydrogen (H2O2), superoxide anion (O2.-), ISP, and CLL. These results suggested that NFT could suppress fruit softening and chilling injury by inhibiting cell wall degradation through delaying respiration and ethylene production and suppressing ROS production via activation of antioxidant systems, thereby maintaining quality and prolonged storage life during avocado fruit storage.


Assuntos
Parede Celular , Frutas , Persea , Espécies Reativas de Oxigênio , Persea/metabolismo , Parede Celular/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Frutas/metabolismo , Armazenamento de Alimentos/métodos , Temperatura Baixa , Congelamento , Etilenos/metabolismo , Pectinas/metabolismo , Celulose/metabolismo
3.
Mol Plant Pathol ; 25(4): e13453, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38590150

RESUMO

Plant cells undergo extensive transcriptional reprogramming following pathogen infection, with these reprogramming patterns becoming more complex when pathogens, such as hemibiotrophs, exhibit different lifestyles. These transcriptional changes are often orchestrated by MYB, WRKY and AP2/ERF transcription factors (TFs), which modulate both growth and defence-related gene expression. Transcriptional analysis of defence-related genes in avocado (Persea americana) infected with Phytophthora cinnamomi indicated differential immune response activation when comparing a partially resistant and susceptible rootstock. This study identified 226 MYB, 82 WRKY, and 174 AP2/ERF TF-encoding genes in avocado, using a genome-wide approach. Phylogenetic analysis revealed substantial sequence conservation within TF groups underscoring their functional significance. RNA-sequencing analysis in a partially resistant and susceptible avocado rootstock infected with P. cinnamomi was indicative of an immune response switch occurring in either rootstock after 24 and 6 h post-inoculation, respectively. Different clusters of co-expressed TF genes were observed at these times, suggesting the activation of necrotroph-related immune responses at varying intervals between the two rootstocks. This study aids our understanding of avocado immune response activation following P. cinnamomi infection, and the role of the TFs therein, elucidating the transcriptional reprogramming disparities between partially resistant and susceptible rootstocks.


Assuntos
Persea , Phytophthora , Persea/genética , Persea/metabolismo , Filogenia
4.
J Sci Food Agric ; 104(10): 5860-5868, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38385790

RESUMO

BACKGROUND: Avocado fruit is rich in xanthophylls, which have been related to positive effects on human health. Xanthophyl acetyltransferases (XATs) are enzymes catalyzing the esterification of carboxylic acids to the hydroxyl group of the xanthophyll molecule. This esterification is thought to increase the lipophilic nature of the xanthophyll and its stability in a lipophilic environment. Studies on XATs in fruits are very scarce, and no studies had been carried out in avocado fruit during postharvest. The objective of this work was to investigate the changes in the expression of genes encoding XAT, during avocado fruit ripening. RESULTS: Avocado fruits were obtained from a local market and stored at 15 °C for 8 days. The fruit respiration rate, ethylene production, and fruit peel's color space parameters (L*, a*, b*) were measured during storage. Fruit mesocarp samples were taken after 1, 3, 5, and 7 days of storage and frozen with liquid nitrogen. Total RNA was extracted from fruit mesocarp, and the quantification of the two genes designated as COGE_ID: 936743791 and COGE_ID: 936800185 encoding XATs was performed with real-time quantitative reverse transcription polymerase chain reaction using actin as a reference gene. The presence of a climacteric peak and large changes in color were recorded during postharvest. The two genes studied showed a large expression after 3 days of fruit storage. CONCLUSIONS: We conclude that during the last stages of ripening in avocado fruit there was an active esterification of xanthophylls with carboxylic acids, which suggests the presence of esterified xanthophylls in the fruit mesocarp. © 2024 Society of Chemical Industry.


Assuntos
Frutas , Regulação da Expressão Gênica de Plantas , Persea , Proteínas de Plantas , Persea/genética , Persea/crescimento & desenvolvimento , Persea/metabolismo , Persea/química , Persea/enzimologia , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Frutas/enzimologia , Frutas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Armazenamento de Alimentos , Xantofilas/metabolismo , Acetiltransferases/genética , Acetiltransferases/metabolismo
5.
Cell Biochem Biophys ; 82(1): 119-126, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37831306

RESUMO

Avocado paste (AP) is the main industrial byproduct of its processing, and retains various phenolic compounds (PCs). PCs are known to normalize the plasma lipid profile, but those from avocado byproducts have been minimally studied. We report the normalizing effects of an AP-derived phenolic extract (PE) on the plasma lipid profile of male Wistar rats. A standard (SD) and high-fat diet (HFD) were formulated, and the same diets were supplemented with 1 g/kg of diet of PE (SD + PE and HFD + PE). Rats were fed these diets during an 8-week period. The HFD induced signs of dyslipidemia, but PE treatment countered the decrease in HDL. Relative mRNA expression (real-time PCR) of the hepatic HDL receptor (SCARB1) increased in both groups (SD + PE and HFD + PE), while the LDR receptor (LDLR) increased in SD + PE group. The mRNA expression of apolipoproteins APOA1 and APOB was unaffected. We conclude that PCs from AP can counter a diet-induced decrease in plasma HDL by acting on the mRNA expression of its hepatic receptor.


Assuntos
Dieta Hiperlipídica , Persea , Ratos , Masculino , Animais , Ratos Wistar , Dieta Hiperlipídica/efeitos adversos , Persea/metabolismo , Fígado/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
J Trace Elem Med Biol ; 81: 127324, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37944220

RESUMO

BACKGROUND: Cadmium is widely reported to interfere with the proper functioning of cells by disrupting cellular redox balance, causing apoptosis, and leading to hepatocellular damage, neurotoxicity, pulmonary edema, cancer, and cardiac and neurodegenerative diseases. Treatment of Cd toxicity with drugs brings undesirable side effects, making it necessary to remove Cd from the body safely without harmful effects. OBJECTIVE: This study aimed to determine how Cd causing malfunctioning of cells could be treated with antioxidant-rich avocado and papaya fruit juices. This work fixated on elucidating and comparing the effects of avocado and papaya fruit juice on Cd-dependent impairment in memory and spatial learning. In addition, various markers of tissue damage, such as the concentration of biomarkers in liver and kidney tissue, the expression of antioxidant enzymes and Cd-induced lipid peroxidation, were analyzed. METHODOLOGY: in silico studies of the phytochemical constituents of avocado and papaya (ligands) were docked against antioxidant enzymes Catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD) as macromolecules showed strong hydrogen binding with significant binding capacities. To develop the Cd in vivo model, rats were administered CdCl2 (200 ppm) in drinking water for 7 weeks. After induction of Cd toxicity, rats were post-treated with avocado and papaya (10% w/v each) in a standard diet. After post-treatment, memory and learning were assessed using the Morris water maze behavioural test. Biochemical tests for liver and kidney biomarkers were monitored. To determine the level of ROS, lipid peroxidation was determined by Malondialdehyde (MDA) assay. Gene expression of SOD, CAT and GPx were determined via qRT-PCR. RESULTS: This study demonstrated that Cd accumulation in the liver, kidney and hippocampal tissues was reduced after treatment with avocado and papaya. SOD, CAT and GPX gene expression were upregulated after avocado and papaya juice treatment. Moreover, a comparative analysis between avocado and papaya fruit juices clarified that papaya has more active potential for improving memory and learning, upregulating the expression of antioxidant enzymes, and reducing lipid peroxidation in the liver, kidney, and hippocampus. CONCLUSION: This study suggests that a diet containing papaya and avocado can help treat the lethal effects caused by Cd. Because their active constituents can improve health at the cellular and molecular levels.


Assuntos
Carica , Doença Hepática Induzida por Substâncias e Drogas , Persea , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Cádmio/análise , Carica/metabolismo , Persea/metabolismo , Frutas/química , Frutas/metabolismo , Superóxido Dismutase/metabolismo , Biomarcadores/metabolismo , Estresse Oxidativo , Peroxidação de Lipídeos
7.
Molecules ; 28(15)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37570893

RESUMO

Nowadays, with consumers' requirements shifting towards more natural solutions and the advent of nutraceutical-based approaches, new alternatives for obesity management are being developed. This work aimed to show, for the first time, the potential of avocado oil-fortified cheese as a viable foodstuff for obesity management through complex in vitro cellular models. The results showed that oleic and palmitic acids' permeability through the Caco-2/HT29-MTX membrane peaked at the 2h mark, with the highest apparent permeability being registered for oleic acid (0.14 cm/s). Additionally, the permeated compounds were capable of modulating the metabolism of adipocytes present in the basal compartment, significantly reducing adipokine (leptin) and cytokine (MPC-1, IL-10, and TNF-α) production. The permeates (containing 3.30 µg/mL of palmitic acid and 2.16 µg/mL of oleic acid) also presented an overall anti-inflammatory activity upon Raw 264.7 macrophages, reducing IL-6 and TNF-α secretion. Despite in vivo assays being required, the data showed the potential of a functional dairy product as a valid food matrix to aid in obesity management.


Assuntos
Queijo , Persea , Humanos , Persea/metabolismo , Técnicas de Cocultura , Fator de Necrose Tumoral alfa/metabolismo , Células CACO-2 , Intestinos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Ácido Oleico/farmacologia
8.
Pharm Nanotechnol ; 11(5): 433-446, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37106516

RESUMO

BACKGROUND: Obesity is an immoderate or abnormal accretion of fat or adipose tissue in the body that is prone to damage the health of mankind. Persea americana (Avocados) is a nutritious fruit known for its several health benefits. The current research was planned to evaluate the anti-obesity activity of bioengineered Silver Nanoparticles (AgNPs) against a high-fat diet (HFD) treated obese albino rats. METHODS: AgNPs were synthesized and characterized for the Phytochemical constituents, UV-vis Spectroscopy, FTIR, SEM and XRD. Furthermore, the lipid profile in serum, biochemical parameters and histopathological changes in tissues of albino rats were determined. RESULTS: The present study revealed the presence of tannins, flavonoids, steroids and saponins, carbohydrates, alkaloids, phenols and glycosides. The peak was disclosed at 402 nm in UV-vis spectroscopy, confirming the synthesis of AgNPs. FTIR analysis showed two peaks at 3332.25 cm-1 which correspond to the O-H stretch of the carboxylic acid band, and 1636.40 cm-1 represents the N-H stretch of the amide of proteins, respectively. This result confirms their contribution to the capping and stabilization of AgNPs. The XRD results confirm the crystalline nature of AgNPs, and SEM results indicated that the synthesized AgNPs were spherical. Further, the results of the current study showed the improved lipid profile and biochemical parameters in rats supplemented with methanolic pulp extract of Persea americana AgNPs when compared with other experimental groups. The histopathological findings displayed improved results with reduced hepatocyte degradation under the influence of AgNPs treatment. CONCLUSION: All the experimental evidence indicated the possible anti-obesity effect of silver nanoparticles synthesized from the methanolic pulp extract of Persea americana.


Assuntos
Nanopartículas Metálicas , Persea , Ratos , Animais , Nanopartículas Metálicas/química , Persea/metabolismo , Prata/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Obesidade/tratamento farmacológico , Lipídeos
9.
Prep Biochem Biotechnol ; 53(1): 40-53, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35189071

RESUMO

Polyphenol oxidase (PPO) enzyme was purified from avocado (Persea americana) by ammonium sulfate precipitation 0-80%, dialysis and affinity chromatography. Characterization studies were performed with catechol (0.10 M, pH: 7.2, 37 °C), 4-methyl catechol (0.10 M, pH: 6.0, 37 °C), pyrogallol (0.02 M, pH: 8.5, 5 °C), chlorogenic acid (0.20 M, pH: 6.8, 10 °C) and caffeic acid (0.20 M, pH: 8.5, 10 °C), respectively. Vmax and KM values were determined for catechol (15789.96 U*mL-1*min-1, 10 mM), 4-methyl catechol (6768.40 U*mL-1*min-1, 2 mM), pyrogallol (6802.72 U*mL-1*min-1, 4 mM), chlorogenic acid (1377.97 U*mL-1*min-1, 14.29 mM) and caffeic acid (2567.24 U*mL-1*min-1, 5 mM). PPO was purified as 147.73-fold and 154.00-fold by Sepharose 4B-L-Tyrosine-p-aminobenzoic acid and Sepharose-6B-L-Tyrosine-p-aminobenzoic acid, respectively. 4B isolated PPO gave two bands at 35 and 50 kDa in SDS-PAGE while visible and slightly visible bands at 50-70 kDa and 100 kDa in Native-PAGE. 6B isolated PPO gave bands as distinctively at 50 kDa and unclearly at around 35 kDa in SDS-PAGE while visible and slightly visible bands at 50-70 and 100 kDa in Native-PAGE. The synthesis of original 6B-affinity gel and no any study found in literature on affinity purification of avocado PPO show importance of our study.


Assuntos
Persea , Persea/metabolismo , Pirogalol , Catecol Oxidase , Ácido Clorogênico , Ácido 4-Aminobenzoico , Catecóis , Cromatografia de Afinidade , Guaiacol , Tirosina , Concentração de Íons de Hidrogênio , Cinética , Especificidade por Substrato
10.
Molecules ; 27(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36431959

RESUMO

Previous studies reported disrupted hepatic function and structure following the administration of cyclosporine A (CsA) in humans and animals. Recently, we found that avocado seeds (AvS) ameliorated CsA-induced nephrotoxicity in rats. As a continuation, herein we checked whether AvS could also attenuate CsA-induced hepatotoxicity in rats. Subcutaneous injection of CsA (5 mg/kg) for 7 days triggered hepatotoxicity in rats, as indicated by liver dysfunction, redox imbalance, and histopathological changes. Oral administration of 5% AvS powder for 4 weeks ameliorated CsA-induced hepatotoxicity, as evidenced by (1) decreased levels of liver damage parameters (alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and bilirubin), (2) resumed redox balance in the liver (reduced malondialdehyde (MDA) and increased superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx)), (3) downregulated hepatic expression of endoplasmic reticulum (ER) stress-related genes (X-box binding protein 1 (XBP1), binding immunoglobulin protein (BIP), C/EBP homologous protein (CHOP)), and apoptosis-related genes (Bax and Casp3), (4) upregulated expression of the anti-apoptotic gene Bcl2, (5) reduced DNA damage, and (6) improved liver histology. These results highlight the ability of AvS to ameliorate CsA-induced hepatotoxicity via the inhibition of oxidative stress and proapoptotic ER stress.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Doenças do Sistema Digestório , Hepatopatias , Persea , Humanos , Ratos , Animais , Ciclosporina/efeitos adversos , Persea/metabolismo , Estresse do Retículo Endoplasmático , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Antioxidantes/farmacologia , Estresse Oxidativo , Sementes/metabolismo
11.
Andrologia ; 54(11): e14580, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36068645

RESUMO

Lufenuron is a benzoylurea pesticide that causes significant histological and histochemical damage in mammals. Avocado is a common food in the human diet that contains antioxidant and antitumor properties. In male rats, avocado oil's protection against lufenuron-induced reproductive deterioration, oxidative stress, and DNA damages was investigated. Twenty-eight mature male rats were selected and distributed into four groups: Group 1, control group were administered distilled water orally; Group 2 received 4 ml/kg avocado; Group 3 was given lufenuron (1.6 mg/kg), and Group 4 was given avocado oil/lufenuron. The findings show that lufenuron treatment reduces reproductive hormone levels, sperm count, motility, viability and causes negative histopathological changes in testicular tissue, such as decreased epithelial height and increased luminal diameter degenerated spermatogenesis. Furthermore, lufenuron reduced the content of antioxidant enzymes while increasing the level of malondialdehyde, nitric oxide and corresponding DNA damage. Results showed that lufenuron is associated with testicular function impairment, which leads to infertility. Treatment with avocado oil improved reproductive hormone secretions, enzymatic activity, histological and DNA damage parameters in testis tissues, reducing the negative effects of lufenuron, proving that it may have a therapeutic role against lufenuron-mediated testicular toxicity.


Assuntos
Infertilidade Masculina , Persea , Humanos , Masculino , Ratos , Animais , Testículo , Persea/metabolismo , Antioxidantes/farmacologia , Sementes , Espermatozoides , Infertilidade Masculina/etiologia , Estresse Oxidativo , Hormônios/metabolismo , Motilidade dos Espermatozoides , Mamíferos/metabolismo
12.
Sci Rep ; 12(1): 11593, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35804002

RESUMO

To investigate the effects of short-term low temperatures, three-year-old avocado (Persea americana cv. Hass) seedlings were treated with 1, - 2, or - 5 °C for 1 h and subsequently recovered in ambient condition for 24 h. Leaf color changes were investigated with chlorophyll, carotenoid, and phenolic contents. Photosynthetic responses were examined using gas exchange analysis. With H2O2 contents as oxidative stresses, enzymatic (ascorbate peroxidase, APX; glutathione reductase, GR; catalase, CAT; peroxidase, POD) and non-enzymatic antioxidant activities were determined using spectrophotometry. Leaves in the avocado seedlings started to be discolored with changes in the contents of chlorophyll a, carotenoids, and phenolics when treated with - 5 °C. However, the H2O2 content was not different in leaves treated with low temperatures. Photosynthetic activities decreased in leaves in the seedlings treated with - 5 °C. Of antioxidant enzymes, APX and GR have high activities in leaves in the seedlings treated with 1 and - 2 °C. In leaves in the seedlings treated with - 5 °C, the activities of all enzymes decreased. Non-enzymatic antioxidant activity was not different among leaves treated with low temperatures. These results indicated that APX and GR would play a critical role in withstanding chilling stress in 'Hass' avocado seedlings. However, under lethal temperature, even for a short time, the plants suffered irreversible damage with the breakdown of photosystem and antioxidant system.


Assuntos
Antioxidantes , Persea , Antioxidantes/metabolismo , Catalase/metabolismo , Clorofila A/metabolismo , Glutationa Redutase/metabolismo , Peróxido de Hidrogênio/metabolismo , Persea/metabolismo , Folhas de Planta/metabolismo , Plântula/metabolismo , Temperatura
13.
J Nutr ; 152(8): 1851-1861, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35700149

RESUMO

BACKGROUND: Diets emphasizing unsaturated fat and high fiber are associated with reducing cardiometabolic risk factors. Avocados are rich in MUFA and PUFA fats and fiber. OBJECTIVES: Assess replacement of carbohydrate energy with avocado energy for 12 wk on glucose homeostasis and cardiometabolic risk factors in self-selecting free-living adults who are overweight or with obesity and have insulin resistance. METHODS: In a single-center, randomized, 2-arm, controlled, 12-wk parallel trial, adults [n = 93; male/female: 39/54; mean ± SD age: 42 ± 12 y; BMI: 32.6 ± 3.9 (in kg/m2);  HOMA-IR: 2.7 ± 1.7] were counseled to exchange avocado (AV) or control food (C; low fat, low fiber, energy matched) for carbohydrate food in their usual diet for 12 wk. The primary outcome was the change in Matsuda Insulin Sensitivity Index (MISI) after 12-wk interventions. Secondary outcomes were changes in fasting and post-oral glucose tolerance test glycemic variables, fasting lipids, endothelial activation and inflammation markers. Automated Self-Administered 24-h Dietary Assessment Tool captured weekly dietary intake. Intervention effects were mainly determined by ANCOVA using PC-SAS version 9.4. RESULTS: Dietary total, MUFA, and PUFA fat; fiber; and vegetable intake were higher in the AV group compared with the C group (P < 0.05), and no change in body weight or composition was observed (P > 0.05). Differences between the changes in MISI after AV compared with C were not different (Δ0-12 wk, P = 0.1092). Differences in fasting insulin (Δ0-12 wk, P = 0.0855) and improved glycated hemoglobin (Δ0-12 wk, P = 0.0632) after AV compared with C were suggested. C-reactive protein was significantly lower after AV compared with C at 12 wk (P = 0.0418). Select biomarkers of endothelial activation and lipoproteins by NMR were also influenced by AV compared with C food intake. CONCLUSIONS: Avocado intake was associated with a healthier dietary pattern and trends favoring improved glucose control and reduced biomarkers of cardiometabolic risk when replacing avocado energy for carbohydrate energy in free-living adults who are overweight or with obesity and have insulin resistance. This trial was registered at clinicaltrials.gov as NCT02695433.


Assuntos
Doenças Cardiovasculares , Resistência à Insulina , Persea , Adulto , Biomarcadores , Glicemia/metabolismo , Doenças Cardiovasculares/prevenção & controle , Dieta com Restrição de Gorduras , Fibras na Dieta , Feminino , Humanos , Insulina , Masculino , Pessoa de Meia-Idade , Obesidade/metabolismo , Sobrepeso/metabolismo , Persea/metabolismo
14.
Food Chem ; 394: 133447, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35717919

RESUMO

When the recipient of the product is relatively distant from the production area, it is necessary to use cold storage and controlled humidity to transport the avocado fruits. One of the main advantages of local avocado consumption lies on the possibility of prolonging on-tree maturation; this could foreseeably modify the metabolic profile of the fruit that reaches the consumer. In this work, the effect of prolonged on tree maturation (during different time intervals) on the final composition of avocado fruit (at edible ripeness) was evaluated and compared with the impact of the same periods after prolonged cold storage. The quantitative evolution of nine bioactive metabolites (7 phenolic compounds, pantothenic and abscisic acids) over 40 days (10-days intervals) was studied by using a solid-liquid extraction protocol and a LC-MS methodology. The results were discussed both considering the quantitative evolution of each individual compound and the sum of all of them.


Assuntos
Persea , Ácido Abscísico/metabolismo , Cromatografia Líquida , Frutas/metabolismo , Persea/metabolismo , Árvores
15.
Sci Rep ; 12(1): 4966, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35322072

RESUMO

Seven avocado "Persea americana" seeds belonging to 4 varieties, collected from different localities across the world, were profiled using HPLC-MS/MS and GC/MS to explore the metabolic makeup variabilities and antidiabetic potential. For the first time, 51 metabolites were tentatively-identified via HPLC-MS/MS, belonging to different classes including flavonoids, biflavonoids, naphthodianthrones, dihydrochalcones, phloroglucinols and phenolic acids while 68 un-saponified and 26 saponified compounds were identified by GC/MS analysis. The primary metabolic variabilities existing among the different varieties were revealed via GC/MS-based metabolomics assisted by unsupervised pattern recognition methods. Fatty acid accumulations were proved as competent, and varietal-discriminatory metabolites. The antidiabetic potential of the different samples was explored using in-vitro amylase and glucosidase inhibition assays, which pointed out to Gwen (KG) as the most potent antidiabetic sample. This could be attributed to its enriched content of poly-unsaturated fatty acids and polyphenolics. Molecular docking was then performed to predict the most promising phytoligands in KG variety to be posed as antidiabetic drug leads. The highest in-silico α-amylase inhibition was observed with chrysoeriol-4'-O-pentoside-7-O-rutinoside, apigenin-7-glucuronide and neoeriocitrin which might serve as potential drug leads for the discovery of new antidiabetic remedies.


Assuntos
Persea , Cromatografia Líquida de Alta Pressão/métodos , Hipoglicemiantes/metabolismo , Hipoglicemiantes/farmacologia , Metabolômica/métodos , Simulação de Acoplamento Molecular , Persea/metabolismo , Extratos Vegetais/metabolismo , Espectrometria de Massas em Tandem/métodos
16.
J Virol Methods ; 301: 114455, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34998829

RESUMO

An easy, rapid and inexpensive method of preparing RNA template for a reverse transcription qPCR assay for avocado sunblotch viroid (ASBVd) is described. This method depends on the principle of reversible binding of viroid RNA to filter paper under different concentrations of monovalent cation. Lysis buffers containing either sodium chloride or lithium chloride were compared, and 1.5 M lithium chloride was shown to be optimal for the adsorption of the viroid RNA to the filter paper. The extraction method was validated using field samples and equivalent yields of viroid RNA were obtained using this method and either a commercial RNA extraction kit or a dsRNA chromatography method. The filter paper method of RNA extraction is ideally suited for the large-scale surveillance for ASBVd.


Assuntos
Persea , Vírus de Plantas , Viroides , Persea/genética , Persea/metabolismo , Vírus de Plantas/genética , RNA Viral/química , Transcrição Reversa , Viroides/genética , Viroides/metabolismo
17.
J Food Biochem ; 46(3): e13895, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34397122

RESUMO

Avocatin-B (Avo-B), an avocado-derived 1:1 mixture of the polyhydroxylated alcohols avocadyne (AYNE) and avocadene, eliminated leukemia cells by suppressing fatty acid oxidation (FAO) in vivo and in vitro while sparing healthy blood cells. In this study, we identified AYNE as the most potent FAO inhibitor within the Avo-B mixture capable of inducing cell death in leukemia cells lines (IC50 : 3.10 ± 0.14 µM in TEX cells; 11.53 ± 3.32 µM in OCI-AML2) and patient-derived acute myeloid leukemia cells. When added individually, the two Avo-B constituents demonstrated antagonism (Combination Index values >1), highlighting the need for future studies to assess AYNE alone. Together, this work highlighted AYNE as the most potent FAO inhibitor within the Avo-B mixture. PRACTICAL APPLICATIONS: This work identifies which of the two molecules in avocatin B (Avo-B), an avocado-derived mixture of two molecules with demonstrated human safety, utility against leukemia, insulin resistance and diabetes, is most useful. Therefore, it provides the basis for future clinical studies that will focus on testing and developing the most active Avo-B constituent.


Assuntos
Leucemia Mieloide Aguda , Persea , Ácidos Graxos/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo , Metabolismo dos Lipídeos , Persea/metabolismo , Policetídeos
18.
Biometals ; 34(5): 1141-1153, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34365580

RESUMO

Cadmium is a toxic metal and poses a high environmental risk to animals and humans, alike. It is thus pertinent to search for medicinal plants in protecting against cadmium toxicity. This study aims at investigating the ability of aqueous extract of Persea americana seeds (AEPA) in ameliorating the toxic effects of cadmium in the kidneys of cadmium-exposed Wistar rats. Male Wistar rats were grouped into five, of six animals each. Different groups of animals received normal saline (control group), 200 mg/kg body weight AEPA, 400 mg/kg AEPA, and standard drug, Livolin Forte, respectively. A last group of animals was left untreated. To induce toxicity, all animals, except the control group, were exposed to cadmium (200 mg/L, as CdCl2) in their main drinking water for 21 days. Biochemical analysis of serum kidney markers, oxidative stress and antioxidant status, as well as anti-inflammatory activities, was done using standard methods and kits. In silico analysis was performed on phytochemicals reported to be abundant in AEPA. Treatment with 400 mg/kg AEPA significantly reversed (P ≤ 0.05) the adverse effect of cadmium on serum creatinine, urea, uric acid and blood urea nitrogen, and restored (P ≤ 0.05) antioxidant status, evidenced by its significant effect on superoxide dismutase, catalase, glutathione-S-transferase, glutathione peroxidase, reduced glutathione, and lipid peroxidation activities. AEPA, at 400 mg/kg also exhibited significant anti-inflammatory effects, which was shown by reduced interleukin-2 and tumour necrosis factor α activities. Molecular docking of phytochemicals with the selected protein target also confirmed the therapeutic potential of AEPA. The study concluded that aqueous extract of AEPA protects against cadmium-induced kidney toxicity and inflammation.


Assuntos
Cádmio , Persea , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Cádmio/metabolismo , Rim/metabolismo , Peroxidação de Lipídeos , Masculino , Simulação de Acoplamento Molecular , Estresse Oxidativo , Persea/metabolismo , Ratos , Ratos Wistar , Sementes
19.
ACS Appl Mater Interfaces ; 13(32): 38688-38699, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34346668

RESUMO

The industrial processing of avocados annually generates more than 1.2 million tons of avocado peels (APs) and avocado seeds (ASs) that have great potential in the production of active bioplastics, although they have never been considered for this aim until now. Separately, the APs and ASs, as well as a combination of avocado peels and seeds (APSs), were evaluated here for the first time for the preparation of antioxidant films, with application in food packaging. Films were prepared by casting, after their processing by three different methods: (1) hydrolysis in acid media, (2) hydrolysis followed by plasticization, and (3) hydrolysis and plasticization followed by blending with pectin polymers in different proportions (25 and 50 wt %). The results indicate that the combination of hydrolysis, plasticization, and pectin blending is essential to obtain materials with competitive mechanical properties, optical clarity, excellent oxygen barrier properties, high antioxidant activity, biodegradability, and migration of components in TENAX suitable for food contact applications. In addition, the materials prepared with APSs are advantageous from the point of view of the industrial waste valorization, since the entire avocado wastes are used for the production of bioplastics, avoiding further separation processes for their valorization.


Assuntos
Embalagem de Alimentos/métodos , Persea , Sementes/metabolismo , Antioxidantes/química , Pectinas/química , Persea/química , Persea/metabolismo
20.
Molecules ; 26(14)2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34299459

RESUMO

Osteosarcoma is the most common malignant bone tumor in both children and dogs. It is an aggressive and metastatic cancer with a poor prognosis for long-term survival. The search for new anti-cancer drugs with fewer side effects has become an essential goal for cancer chemotherapy; in this sense, the bioactive compounds from avocado have proved their efficacy as cytotoxic molecules. The objective of this study was to determine the cytotoxic and antiproliferative effect of a lipid-rich extract (LEAS) from Mexican native avocado seed (Persea americana var. drymifolia) on canine osteosarcoma D-17 cell line. Also, the combined activity with cytostatic drugs was evaluated. LEAS was cytotoxic to D-17 cells in a concentration-dependent manner with an IC50 = 15.5 µg/mL. Besides, LEAS induced caspase-dependent cell apoptosis by the extrinsic and intrinsic pathways. Moreover, LEAS induced a significant loss of mitochondrial membrane potential and increased superoxide anion production and mitochondrial ROS. Also, LEAS induced the arrest of the cell cycle in the G0/G1 phase. Finally, LEAS improved the cytotoxic activity of cisplatin, carboplatin, and in less extension, doxorubicin against the canine osteosarcoma cell line through a synergistic effect. In conclusion, avocado could be a potential source of bioactive molecules in the searching treatments for osteosarcoma.


Assuntos
Osteossarcoma/tratamento farmacológico , Persea/metabolismo , Extratos Vegetais/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Citostáticos/farmacologia , Cães , Sinergismo Farmacológico , Lipídeos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Osteossarcoma/metabolismo , Extratos Vegetais/isolamento & purificação , Sementes/química , Sementes/efeitos dos fármacos , Sementes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA