Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adipocyte ; 10(1): 242-250, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33896367

RESUMO

Obesity, caused by an excess adipose tissue, is one of the biggest health-threats of the 21st century. Adipose tissue expansion occurs through two processes: (i) hypertrophy, and (ii) hyperplasia, the formation of new adipocytes, also termed adipogenesis. Recently, serum amyloid A3 (Saa3) has been implicated in adipogenesis. Therefore, the aim of this study was to investigate the effect of Saa3 on adipogenesis using both an in vitro and in vivo murine model. Saa3 gene silenced pre-adipocytes ha a lower expression of pro-adipogenic markers and less lipid accumulation, indicating impaired adipogenesis. Furthermore, male NUDE mice, injected with Saa3 gene silenced pre-adipocytes developed smaller fat pads with smaller adipocytes and lower expression of pro-adipogenic markers than their control counterparts. This confirms that Saa3 gene silencing indeed impairs adipogenesis, both in vitro and in vivo. These results indicate a clear role for Saa3 in adipogenesis and open new perspectives in the battle against obesity.


Assuntos
Adipócitos/metabolismo , Proteína Amiloide A Sérica/metabolismo , Células 3T3 , Adipogenia , Animais , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteína Amiloide A Sérica/deficiência , Proteína Amiloide A Sérica/genética
3.
J Lipid Res ; 61(3): 328-337, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31915139

RESUMO

Liver-derived serum amyloid A (SAA) is present in plasma where it is mainly associated with HDL and from which it is cleared more rapidly than are the other major HDL-associated apolipoproteins. Although evidence suggests that lipid-free and HDL-associated forms of SAA have different activities, the pathways by which SAA associates and disassociates with HDL are poorly understood. In this study, we investigated SAA lipidation by hepatocytes and how this lipidation relates to the formation of nascent HDL particles. We also examined hepatocyte-mediated clearance of lipid-free and HDL-associated SAA. We prepared hepatocytes from mice injected with lipopolysaccharide or an SAA-expressing adenoviral vector. Alternatively, we incubated primary hepatocytes from SAA-deficient mice with purified SAA. We analyzed conditioned media to determine the lipidation status of endogenously produced and exogenously added SAA. Examining the migration of lipidated species, we found that SAA is lipidated and forms nascent particles that are distinct from apoA-I-containing particles and that apoA-I lipidation is unaltered when SAA is overexpressed or added to the cells, indicating that SAA is not incorporated into apoA-I-containing HDL during HDL biogenesis. Like apoA-I formation, generation of SAA-containing particles was dependent on ABCA1, but not on scavenger receptor class B type I. Hepatocytes degraded significantly more SAA than apoA-I. Taken together, our results indicate that SAA's lipidation and metabolism by the liver is independent of apoA-I and that SAA is not incorporated into HDL during HDL biogenesis.


Assuntos
Lipoproteínas HDL/metabolismo , Proteína Amiloide A Sérica/metabolismo , Animais , Apolipoproteína A-I/deficiência , Apolipoproteína A-I/metabolismo , Hepatócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Amiloide A Sérica/deficiência , Proteína Amiloide A Sérica/genética
4.
Am J Physiol Lung Cell Mol Physiol ; 318(2): L314-L322, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31851532

RESUMO

Pseudomonas aeruginosa is a gram-negative bacterium associated with serious illnesses, including ventilator-associated pneumonia and various sepsis syndromes in humans. Understanding the host immune mechanisms against P. aeruginosa is, therefore, of clinical importance. The present study identified serum amyloid A3 (SAA3) as being highly inducible in mouse bronchial epithelium following P. aeruginosa infection. Genetic deletion of Saa3 rendered mice more susceptible to P. aeruginosa infection with decreased neutrophil superoxide anion production, and ex vivo treatment of mouse neutrophils with recombinant SAA3 restored the ability of neutrophils to produce superoxide anions. The SAA3-deficient mice showed exacerbated inflammatory responses, which was characterized by pronounced neutrophil infiltration, elevated expression of TNF-α, KC/CXCL1, and MIP-2/CXCL2 in bronchoalveolar lavage fluid (BALF), and increased lung microvascular permeability compared with their wild-type littermates. BALF neutrophils from Saa3 knockout mice exhibited reduced superoxide anion production compared with neutrophils from wild-type mice. Adoptive transfer of SAA3-treated neutrophils to Saa3 knockout mice ameliorated P. aeruginosa-induced acute lung injury. These findings demonstrate that SAA3 not only serves as a biomarker for infection and inflammation, but also plays a protective role against P. aeruginosa infection-induced lung injury in part through augmentation of neutrophil bactericidal functions.


Assuntos
Lesão Pulmonar Aguda/microbiologia , Lesão Pulmonar Aguda/prevenção & controle , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/prevenção & controle , Pseudomonas aeruginosa/fisiologia , Proteína Amiloide A Sérica/metabolismo , Animais , Quimiocinas/metabolismo , Epitélio/patologia , Pulmão/irrigação sanguínea , Pulmão/microbiologia , Pulmão/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microvasos/patologia , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Pneumonia/complicações , Pneumonia/microbiologia , Pneumonia/patologia , Proteína Amiloide A Sérica/deficiência
5.
Arterioscler Thromb Vasc Biol ; 38(8): 1890-1900, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29976766

RESUMO

Objective- SAA (serum amyloid A) is a family of acute-phase reactants that have proinflammatory and proatherogenic activities. SAA is more lipophilic than apoA-I (apolipoprotein A-I), and during an acute-phase response, <10% of plasma SAA is found lipid-free. In most reports, SAA is found exclusively associated with high-density lipoprotein; however, we and others have reported SAA on apoB (apolipoprotein B)-containing lipoproteins in both mice and humans. The goal of this study was to determine whether SAA is an exchangeable apolipoprotein. Approach and Results- Delipidated human SAA was incubated with SAA-free human lipoproteins; then, samples were reisolated by fast protein liquid chromatography, and SAA analyzed by ELISA and immunoblot. Both in vitro and in vivo, we show that SAA associates with any lipoprotein and does not remain in a lipid-free form. Although SAA is preferentially found on high-density lipoprotein, it can exchange between lipoproteins. In the presence of CETP (cholesterol ester transfer protein), there is greater exchange of SAA between lipoproteins. Subjects with diabetes mellitus, but not those with metabolic syndrome, showed altered SAA lipoprotein distribution postprandially. Proteoglycan-mediated lipoprotein retention is thought to be an underlying mechanism for atherosclerosis development. SAA has a proteoglycan-binding domain. Lipoproteins containing SAA had increased proteoglycan binding compared with SAA-free lipoproteins. Conclusions- Thus, SAA is an exchangeable apolipoprotein and increases apoB-containing lipoproteins' proteoglycan binding. We and others have previously reported the presence of SAA on low-density lipoprotein in individuals with obesity, diabetes mellitus, and metabolic syndrome. We propose that the presence of SAA on apoB-containing lipoproteins may contribute to cardiovascular disease development in these populations.


Assuntos
Apolipoproteínas/metabolismo , Proteína Amiloide A Sérica/metabolismo , Idoso , Animais , Apolipoproteína B-100/metabolismo , Apolipoproteínas/sangue , Proteínas de Transferência de Ésteres de Colesterol/genética , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Diabetes Mellitus/sangue , Feminino , Humanos , Lipoproteínas HDL/metabolismo , Masculino , Síndrome Metabólica/sangue , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Pessoa de Meia-Idade , Obesidade/sangue , Período Pós-Prandial , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteoglicanas/metabolismo , Proteína Amiloide A Sérica/deficiência , Proteína Amiloide A Sérica/genética
6.
Atherosclerosis ; 268: 32-35, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29175652

RESUMO

BACKGROUND AND AIMS: Serum amyloid A (SAA) predicts cardiovascular events. Overexpression of SAA increases atherosclerosis development; however, deficiency of two of the murine acute phase isoforms, SAA1.1 and SAA2.1, has no effect on atherosclerosis. SAA3 is a pseudogene in humans, but is an expressed acute phase isoform in mice. The goal of this study was to determine if SAA3 affects atherosclerosis in mice. METHODS: ApoE-/- mice were used as the model for all studies. SAA3 was overexpressed by an adeno-associated virus or suppressed using an anti-sense oligonucleotide approach. RESULTS: Over-expression of SAA3 led to a 4-fold increase in atherosclerosis lesion area compared to control mice (p = 0.01). Suppression of SAA3 decreased atherosclerosis in mice genetically deficient in SAA1.1 and SAA2.1 (p < 0.0001). CONCLUSIONS: SAA3 augments atherosclerosis in mice. Our results resolve a previous paradox in the literature and support extensive epidemiological data that SAA is pro-atherogenic.


Assuntos
Aorta/metabolismo , Doenças da Aorta/sangue , Aterosclerose/sangue , Placa Aterosclerótica , Proteína Amiloide A Sérica/metabolismo , Animais , Aorta/patologia , Doenças da Aorta/diagnóstico , Doenças da Aorta/patologia , Doenças da Aorta/prevenção & controle , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Modelos Animais de Doenças , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Proteína Amiloide A Sérica/deficiência , Proteína Amiloide A Sérica/genética
7.
J Lipid Res ; 59(2): 339-347, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29247043

RESUMO

Serum amyloid A (SAA) is a family of acute-phase reactants. Plasma levels of human SAA1/SAA2 (mouse SAA1.1/2.1) can increase ≥1,000-fold during an acute-phase response. Mice, but not humans, express a third relatively understudied SAA isoform, SAA3. We investigated whether mouse SAA3 is an HDL-associated acute-phase SAA. Quantitative RT-PCR with isoform-specific primers indicated that SAA3 and SAA1.1/2.1 are induced similarly in livers (∼2,500-fold vs. ∼6,000-fold, respectively) and fat (∼400-fold vs. ∼100-fold, respectively) of lipopolysaccharide (LPS)-injected mice. In situ hybridization demonstrated that all three SAAs are produced by hepatocytes. All three SAA isoforms were detected in plasma of LPS-injected mice, although SAA3 levels were ∼20% of SAA1.1/2.1 levels. Fast protein LC analyses indicated that virtually all of SAA1.1/2.1 eluted with HDL, whereas ∼15% of SAA3 was lipid poor/free. After density gradient ultracentrifugation, isoelectric focusing demonstrated that ∼100% of plasma SAA1.1 was recovered in HDL compared with only ∼50% of SAA2.1 and ∼10% of SAA3. Thus, SAA3 appears to be more loosely associated with HDL, resulting in lipid-poor/free SAA3. We conclude that SAA3 is a major hepatic acute-phase SAA in mice that may produce systemic effects during inflammation.


Assuntos
Reação de Fase Aguda/metabolismo , Proteína Amiloide A Sérica/metabolismo , Animais , Células Cultivadas , Lipopolissacarídeos/farmacologia , Lipoproteínas HDL/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Amiloide A Sérica/deficiência , Proteína Amiloide A Sérica/genética
8.
J Neuroinflammation ; 13: 28, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26838764

RESUMO

BACKGROUND: Accumulation of hyperphosphorylated tau is a major neuropathological feature of tauopathies including Alzheimer's disease (AD). Serum amyloid A (SAA), an acute-phase protein with cytokine-like property, has been implicated in amyloid deposition. It remains unclear whether SAA affects tau hyperphosphorylation. METHODS: Potential involvement of SAA in tau hyperphosphorylation was examined using intracerebral injection of SAA, and in Saa3 (-/-) mice receiving systemic administration of lipopolysaccharide (LPS). Induced SAA expression and microglial activation were evaluated in these mice using real-time PCR and/or immunofluorescence staining. Cultured primary neuronal cells were treated with condition media (CM) from SAA-stimulated primary microglial cells. The alteration in tau hyperphosphorylation was determined using Western blotting. RESULTS: Saa3 is the predominant form of SAA proteins induced by LPS in the mouse brain that co-localizes with neurons. Overexpression of SAA by intracerebral injection attenuated tau hyperphosphorylation in the brain. Conversely, Saa3 deficiency enhanced tau phosphorylation induced by systemic LPS administration. Intracerebral injection of SAA also induced the activation of microglia in the brains. IL-10 released to CM from SAA-stimulated microglia attenuated tau hyperphosphorylation in cultured primary neurons. IL-10 neutralizing antibody reversed the effect of SAA in the attenuation of tau phosphorylation. CONCLUSIONS: LPS-induced expression of SAA proteins in the brain leads to the activation of microglia and release of IL-10, which in turn suppresses tau hyperphosphorylation in a mouse model of systemic inflammation.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Citocinas/metabolismo , Proteína Amiloide A Sérica/farmacologia , Proteínas tau/metabolismo , Animais , Anticorpos Neutralizantes/farmacologia , Encéfalo/citologia , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Citocinas/genética , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Interleucina-10/imunologia , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neurônios/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteína Amiloide A Sérica/deficiência , Proteína Amiloide A Sérica/genética , Estatísticas não Paramétricas , Proteínas tau/genética
9.
J Am Heart Assoc ; 4(7)2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26187995

RESUMO

BACKGROUND: Atherosclerosis is a chronic inflammatory disorder, and several studies have demonstrated a positive association between plasma serum amyloid A (SAA) levels and cardiovascular disease risk. The aim of the study was to examine whether SAA has a role in atherogenesis, the underlying basis of most cardiovascular disease. METHODS AND RESULTS: Mice globally deficient in acute-phase isoforms Saa1 and Saa2 (Saa(-/-)) were crossed to Ldlr(-/-) mice (Saa(-/-)Ldlr(-/-)). Saa(-/-)Ldlr(-/-) mice demonstrated a 31% reduction in lesional area in the ascending aorta but not in the aortic root or innominate artery after consuming a high-fat, high-cholesterol Western-type diet for 6 weeks. The lesions were predominantly macrophage foam cells. The phenotype was lost in more mature lesions in mice fed a Western-type diet for 12 weeks, suggesting that SAA is involved in early lesion development. The decreased atherosclerosis in the Saa(-/-)Ldlr(-/-) mice occurred despite increased levels of blood monocytes and was independent of plasma lipid levels. SAA is produced predominantly by hepatocytes and macrophages. To determine which source of SAA may have a dominant role in lesion development, bone marrow transplantation was performed. Ldlr(-/-) mice that received bone marrow from Saa(-/-)Ldlr(-/-) mice had slightly reduced ascending aorta atherosclerosis compared with Saa(-/-)Ldlr(-/-) mice receiving bone marrow from Ldlr(-/-) mice, indicating that the expression of SAA by macrophages may have an important influence on atherogenesis. CONCLUSIONS: The results indicate that SAA produced by macrophages promotes early lesion formation in the ascending aorta.


Assuntos
Aorta/metabolismo , Doenças da Aorta/sangue , Aterosclerose/sangue , Células Espumosas/metabolismo , Receptores de LDL/deficiência , Proteína Amiloide A Sérica/metabolismo , Animais , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/patologia , Aterosclerose/genética , Aterosclerose/patologia , Transplante de Medula Óssea , Dieta Hiperlipídica , Modelos Animais de Doenças , Progressão da Doença , Feminino , Células Espumosas/patologia , Genótipo , Lipídeos/sangue , Macrófagos Peritoneais/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Fenótipo , Placa Aterosclerótica , Receptores de LDL/genética , Proteína Amiloide A Sérica/deficiência , Proteína Amiloide A Sérica/genética , Fatores de Tempo
10.
J Lipid Res ; 56(8): 1519-30, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25995210

RESUMO

Recent studies demonstrate that HDL's ability to promote cholesterol efflux from macrophages associates strongly with cardioprotection in humans independently of HDL-cholesterol (HDL-C) and apoA-I, HDL's major protein. However, the mechanisms that impair cholesterol efflux capacity during vascular disease are unclear. Inflammation, a well-established risk factor for cardiovascular disease, has been shown to impair HDL's cholesterol efflux capacity. We therefore tested the hypothesis that HDL's impaired efflux capacity is mediated by specific changes of its protein cargo. Humans with acute inflammation induced by low-level endotoxin had unchanged HDL-C levels, but their HDL-C efflux capacity was significantly impaired. Proteomic analyses demonstrated that HDL's cholesterol efflux capacity correlated inversely with HDL content of serum amyloid A (SAA)1 and SAA2. In mice, acute inflammation caused a marked impairment of HDL-C efflux capacity that correlated with a large increase in HDL SAA. In striking contrast, the efflux capacity of mouse inflammatory HDL was preserved with genetic ablation of SAA1 and SAA2. Our observations indicate that the inflammatory impairment of HDL-C efflux capacity is due in part to SAA-mediated remodeling of HDL's protein cargo.


Assuntos
HDL-Colesterol/metabolismo , Proteoma/metabolismo , Adulto , Animais , HDL-Colesterol/sangue , HDL-Colesterol/química , Citoproteção , Endotoxinas/toxicidade , Humanos , Inflamação/sangue , Inflamação/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Miocárdio/citologia , Miocárdio/metabolismo , Proteína Amiloide A Sérica/deficiência , Proteína Amiloide A Sérica/metabolismo
11.
Arterioscler Thromb Vasc Biol ; 35(5): 1156-65, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25745063

RESUMO

OBJECTIVE: Rupture of abdominal aortic aneurysm (AAA), a major cause of death in the aged population, is characterized by vascular inflammation and matrix degradation. Serum amyloid A (SAA), an acute-phase reactant linked to inflammation and matrix metalloproteinase induction, correlates with aortic dimensions before aneurysm formation in humans. We investigated whether SAA deficiency in mice affects AAA formation during angiotensin II (Ang II) infusion. APPROACH AND RESULTS: Plasma SAA increased ≈60-fold in apoE(-/-) mice 24 hours after intraperitoneal Ang II injection (100 µg/kg; n=4) and ≈15-fold after chronic 28-day Ang II infusion (1000 ng/kg per minute; n=9). AAA incidence and severity after 28-day Ang II infusion was significantly reduced in apoE(-/-) mice lacking both acute-phase SAA isoforms (SAAKO; n=20) compared with apoE(-/-) mice (SAAWT; n=20) as assessed by in vivo ultrasound and ex vivo morphometric analyses, despite a significant increase in systolic blood pressure in SAAKO mice compared with SAAWT mice after Ang II infusion. Atherosclerotic lesion area of the aortic arch was similar in SAAKO and SAAWT mice after 28-day Ang II infusion. Immunostaining detected SAA in AAA tissues of Ang II-infused SAAWT mice that colocalized with macrophages, elastin breaks, and enhanced matrix metalloproteinase activity. Matrix metalloproteinase-2 activity was significantly lower in aortas of SAAKO mice compared with SAAWT mice after 10-day Ang II infusion. CONCLUSIONS: Lack of endogenous acute-phase SAA protects against experimental AAA through a mechanism that may involve reduced matrix metalloproteinase-2 activity.


Assuntos
Angiotensina II/farmacologia , Aneurisma da Aorta Abdominal/prevenção & controle , Apolipoproteínas E/deficiência , Metaloproteinase 2 da Matriz/metabolismo , Proteína Amiloide A Sérica/deficiência , Animais , Aneurisma da Aorta Abdominal/patologia , Biomarcadores/sangue , Modelos Animais de Doenças , Elastina/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Distribuição Aleatória , Sensibilidade e Especificidade , Proteína Amiloide A Sérica/metabolismo
12.
Arterioscler Thromb Vasc Biol ; 34(2): 255-61, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24265416

RESUMO

OBJECTIVE: Although elevated plasma concentrations of serum amyloid A (SAA) are associated strongly with increased risk for atherosclerotic cardiovascular disease in humans, the role of SAA in the pathogenesis of lesion formation remains obscure. Our goal was to determine the impact of SAA deficiency on atherosclerosis in hypercholesterolemic mice. APPROACH AND RESULTS: Apolipoprotein E-deficient (apoE(-/-)) mice, either wild type or deficient in both major acute phase SAA isoforms, SAA1.1 and SAA2.1, were fed a normal rodent diet for 50 weeks. Female mice, but not male apoE-/- mice deficient in SAA1.1 and SAA2.1, had a modest increase (22%; P≤0.05) in plasma cholesterol concentrations and a 53% increase in adipose mass compared with apoE-/- mice expressing SAA1.1 and SAA2.1 that did not affect the plasma cytokine levels or the expression of adipose tissue inflammatory markers. SAA deficiency did not affect lipoprotein cholesterol distributions or plasma triglyceride concentrations in either male or female mice. Atherosclerotic lesion areas measured on the intimal surfaces of the arch, thoracic, and abdominal regions were not significantly different between apoE-/- mice deficient in SAA1.1 and SAA2.1 and apoE-/- mice expressing SAA1.1 and SAA2.1 in either sex. To accelerate lesion formation, mice were fed a Western diet for 12 weeks. SAA deficiency had effect neither on diet-induced alterations in plasma cholesterol, triglyceride, or cytokine concentrations nor on aortic atherosclerotic lesion areas in either male or female mice. In addition, SAA deficiency in male mice had no effect on lesion areas or macrophage accumulation in the aortic roots. CONCLUSIONS: The absence of endogenous SAA1.1 and 2.1 does not affect atherosclerotic lipid deposition in apolipoprotein E-deficient mice fed either normal or Western diets.


Assuntos
Doenças da Aorta/metabolismo , Apolipoproteínas E/deficiência , Aterosclerose/metabolismo , Proteína Amiloide A Sérica/deficiência , Tecido Adiposo/metabolismo , Tecido Adiposo/fisiopatologia , Adiposidade , Animais , Aorta Abdominal/metabolismo , Aorta Abdominal/patologia , Aorta Torácica/metabolismo , Aorta Torácica/patologia , Doenças da Aorta/genética , Doenças da Aorta/patologia , Doenças da Aorta/fisiopatologia , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/fisiopatologia , Colesterol/sangue , Citocinas/sangue , Modelos Animais de Doenças , Feminino , Hipercolesterolemia/complicações , Hipercolesterolemia/genética , Hipercolesterolemia/metabolismo , Mediadores da Inflamação/sangue , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Amiloide A Sérica/genética , Fatores de Tempo , Triglicerídeos/sangue
13.
Cytokine ; 61(2): 506-12, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23165195

RESUMO

SAA has been shown to have potential proinflammatory properties in inflammatory diseases such as atherosclerosis. These include induction of tumor necrosis factor α, interleukin-6, and monocyte chemoattractant protein 1 in vitro. However, concern has been raised that these effects might be due to use of recombinant SAA with low level of endotoxin contaminants or its non-native forms. Therefore, physiological relevance has not been fully elucidated. In this study, we investigated the role of SAA in the production of inflammatory cytokines. Stimulation of mouse monocyte J774 cells with lipid-poor recombinant human SAA and purified SAA derived from cardiac surgery patients, but not ApoA-I and ApoA-II, elicited pro-inflammatory cytokines like granulocyte colony stimulating factor (G-CSF). However, HDL-associated SAA failed to stimulate production of these cytokines. Using neutralizing antibodies against toll like receptor (TLR) 2 and 4, we could evaluate that TLR 2 is responsible for G-CSF production by lipid-poor SAA. To confirm these data in vivo, we expressed mouse SAA in SAA deficient C57BL/6 mice using an adenoviral vector. G-CSF was identically expressed in SAA-Adenoviral infected mice as well as in control null-Adenoviral mice at the early time points (4-8h) and could not be detected in plasma 24h after infection when plasma SAA levels were maximally elevated, indicating that adenoviral vector rather than SAA affected G-CSF levels. Taken together, our findings suggest that lipid-poor SAA, but not HDL-associated SAA, stimulates G-CSF production and this stimulation is mediated through TLR 2 in J774 cells. However, its physiological role in vivo remains ambiguous.


Assuntos
Citocinas/biossíntese , Proteína Amiloide A Sérica/metabolismo , Animais , Apolipoproteína A-I/metabolismo , Apolipoproteína A-II/metabolismo , Fator Estimulador de Colônias de Granulócitos/metabolismo , Humanos , Lipopolissacarídeos , Lipoproteínas HDL/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Substâncias Protetoras/farmacologia , Proteína Amiloide A Sérica/deficiência , Receptor 2 Toll-Like/metabolismo
14.
J Lipid Res ; 51(11): 3117-25, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20667817

RESUMO

Serum amyloid A (SAA) is an acute-phase protein mainly associated with HDL. To study the role of SAA in mediating changes in HDL composition and metabolism during inflammation, we generated mice in which the two major acute-phase SAA isoforms, SAA1.1 and SAA2.1, were deleted [SAA knockout (SAAKO) mice], and induced an acute phase to compare lipid and apolipoprotein parameters between wild-type (WT) and SAAKO mice. Our data indicate that SAA does not affect apolipoprotein A-I (apoA-I) levels or clearance under steady-state conditions. HDL and plasma triglyceride levels following lipopolysaccharide administration, as well as the decline in liver expression of apoA-I and apoA-II, did not differ between both groups of mice. The expected size increase of WT acute-phase HDL was surprisingly also seen in SAAKO acute-phase HDL despite the absence of SAA. HDLs from both mice showed increased phospholipid and unesterified cholesterol content during the acute phase. We therefore conclude that in the mouse, SAA does not impact HDL levels, apoA-I clearance, or HDL size during the acute phase and that the increased size of acute-phase HDL in mice is associated with an increased content of surface lipids, particularly phospholipids, and not surface proteins. These data need to be transferred to humans with caution due to differences in apoA-I structure and remodeling functions.


Assuntos
Lipoproteínas HDL/sangue , Lipoproteínas HDL/química , Proteína Amiloide A Sérica/metabolismo , Animais , Apolipoproteína A-I/sangue , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Feminino , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Fígado/metabolismo , Masculino , Camundongos , Proteína Amiloide A Sérica/deficiência , Proteína Amiloide A Sérica/genética
15.
Proc Natl Acad Sci U S A ; 104(51): 20466-71, 2007 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-18077329

RESUMO

Obesity has been suggested to be associated with an increased susceptibility to bacterial infection. However, few studies have examined the effect of obesity on the immune response to bacterial infections. In the present study, we investigated the effect of obesity on innate immune responses to Porphyromonas gingivalis infection, an infection strongly associated with periodontitis. Mice with diet-induced obesity (DIO) and lean control C57BL/6 mice were infected orally or systemically with P. gingivalis, and periodontal pathology and systemic immune responses were examined postinfection. After oral infection with P. gingivalis, mice with DIO had a significantly higher level of alveolar bone loss than the lean controls. Oral microbial sampling disclosed higher levels of P. gingivalis in mice with DIO vs. lean mice during and after infection. Furthermore, animals with DIO exposed to oral infection or systemic inoculation of live P. gingivalis developed a blunted inflammatory response with reduced expression of TNF-alpha, IL-6, and serum amyloid A (SAA) at all time points compared with lean mice. Finally, peritoneal macrophages harvested from mice with DIO and exposed to P. gingivalis exhibited reduced levels of proinflammatory cytokines compared with lean mice and when exposed to P. gingivalis LPS treatment had a significantly reduced recruitment of NF-kappaB to both TNF-alpha and IL-10 promoters 30 min after exposure. These data indicate that obesity interferes with the ability of the immune system to appropriately respond to P. gingivalis infection and suggest that this immune dysregulation participates in the increased alveolar bone loss after bacterial infection observed in mice with DIO.


Assuntos
Perda do Osso Alveolar/etiologia , Infecções por Bacteroidaceae/imunologia , Obesidade/complicações , Periodontite/imunologia , Porphyromonas gingivalis , Animais , Imunoprecipitação da Cromatina , Dieta , Interleucina-6/sangue , Interleucina-6/deficiência , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Periodontite/microbiologia , Proteína Amiloide A Sérica/análise , Proteína Amiloide A Sérica/deficiência , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA