Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(26): e2207037119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35727984

RESUMO

While biofilms formed by bacteria have received great attention due to their importance in pathogenesis, much less research has been focused on the biofilms formed by archaea. It has been known that extracellular filaments in archaea, such as type IV pili, hami, and cannulae, play a part in the formation of archaeal biofilms. We have used cryo-electron microscopy to determine the atomic structure of a previously uncharacterized class of archaeal surface filaments from hyperthermophilic Pyrobaculum calidifontis. These filaments, which we call archaeal bundling pili (ABP), assemble into highly ordered bipolar bundles. The bipolar nature of these bundles most likely arises from the association of filaments from at least two different cells. The component protein, AbpA, shows homology, both at the sequence and structural level, to the bacterial protein TasA, a major component of the extracellular matrix in bacterial biofilms, contributing to biofilm stability. We show that AbpA forms very stable filaments in a manner similar to the donor-strand exchange of bacterial TasA fibers and chaperone-usher pathway pili where a ß-strand from one subunit is incorporated into a ß-sheet of the next subunit. Our results reveal likely mechanistic similarities and evolutionary connection between bacterial and archaeal biofilms, and suggest that there could be many other archaeal surface filaments that are as yet uncharacterized.


Assuntos
Proteínas Arqueais , Biofilmes , Fímbrias Bacterianas , Pyrobaculum , Proteínas Arqueais/química , Microscopia Crioeletrônica , Fímbrias Bacterianas/química , Conformação Proteica em Folha beta , Pyrobaculum/química , Pyrobaculum/fisiologia
2.
J Phys Chem A ; 125(1): 139-145, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33389998

RESUMO

Mössbauer spectroscopy, nuclear forward scattering, and Raman spectroscopy were applied to study redox transformations of the synthesized mixed-valence (III/V) antimony oxide. The transformations were induced by a culture of a hyperthermophilic archaeon of the genus Pyrobaculum. The applied methods allowed us to reveal the minor decrease of ca. 11.0 ± 1.2% of the antimony(V) content of the mixed-valence oxide with the concomitant increase of antimony(III). The method sensitivities for the quantitative assessment of the Sb(III/V) ratio have been considered.


Assuntos
Antimônio/análise , Óxidos/análise , Pyrobaculum/química , Antimônio/metabolismo , Oxirredução , Óxidos/metabolismo , Pyrobaculum/metabolismo , Espectroscopia de Mossbauer , Análise Espectral Raman
3.
J Mol Biol ; 432(16): 4658-4672, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32569746

RESUMO

Protein glycosylation constitutes a critical post-translational modification that supports a vast number of biological functions in living organisms across all domains of life. A seemingly boundless number of enzymes, glycosyltransferases, are involved in the biosynthesis of these protein-linked glycans. Few glycan-biosynthetic glycosyltransferases have been characterized in vitro, mainly due to the majority being integral membrane proteins and the paucity of relevant acceptor substrates. The crenarchaeote Pyrobaculum calidifontis belongs to the TACK superphylum of archaea (Thaumarchaeota, Aigarchaeota, Crenarchaeota, Korarchaeota) that has been proposed as an eukaryotic ancestor. In archaea, N-glycans are mainly found on cell envelope surface-layer proteins, archaeal flagellins and pili. Archaeal N-glycans are distinct from those of eukaryotes, but one noteworthy exception is the high-mannose N-glycan produced by P. calidifontis, which is similar in sugar composition to the eukaryotic counterpart. Here, we present the characterization and crystal structure of the first member of a crenarchaeal membrane glycosyltransferase, PcManGT. We show that the enzyme is a GDP-, dolichylphosphate-, and manganese-dependent mannosyltransferase. The membrane domain of PcManGT includes three transmembrane helices that topologically coincide with "half" of the six-transmembrane helix cellulose-binding tunnel in Rhodobacter spheroides cellulose synthase BcsA. Conceivably, this "half tunnel" would be suitable for binding the dolichylphosphate-linked acceptor substrate. The PcManGT gene (Pcal_0472) is located in a large gene cluster comprising 14 genes of which 6 genes code for glycosyltransferases, and we hypothesize that this cluster may constitute a crenarchaeal N-glycosylation (PNG) gene cluster.


Assuntos
Manosiltransferases/química , Manosiltransferases/metabolismo , Polissacarídeos/metabolismo , Pyrobaculum/enzimologia , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Cristalografia por Raios X , Glicosilação , Modelos Moleculares , Conformação Proteica , Processamento de Proteína Pós-Traducional , Pyrobaculum/química
4.
Proteins ; 88(5): 669-678, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31693208

RESUMO

A gene encoding galactose 1-phosphate uridylyltransferase (GalT) was identified in the hyperthermophilic archaeon Pyrobaculum aerophilum. The gene was overexpressed in Escherichia coli, after which its product was purified and characterized. The expressed enzyme was highly thermostable and retained about 90% of its activity after incubation for 10 minutes at temperatures up to 90°C. Two different crystal structures of P. aerophilum GalT were determined: the substrate-free enzyme at 2.33 Å and the UDP-bound H140F mutant enzyme at 1.78 Å. The main-chain coordinates of the P. aerophilum GalT monomer were similar to those in the structures of the E. coli and human GalTs, as was the dimeric arrangement. However, there was a striking topological difference between P. aerophilum GalT and the other two enzymes. In the E. coli and human enzymes, the N-terminal chain extends from one subunit into the other and forms part of the substrate-binding pocket in the neighboring subunit. By contrast, the N-terminal chain in P. aerophilum GalT extends to the substrate-binding site in the same subunit. Amino acid sequence alignment showed that a shorter surface loop in the N-terminal region contributes to the unique topology of P. aerophilum GalT. Structural comparison of the substrate-free enzyme with UDP-bound H140F suggests that binding of the glucose moiety of the substrate, but not the UDP moiety, gives rise to a large structural change around the active site. This may in turn provide an appropriate environment for the enzyme reaction.


Assuntos
Proteínas Arqueais/química , Galactosefosfatos/química , Subunidades Proteicas/química , Pyrobaculum/química , UTP-Hexose-1-Fosfato Uridililtransferase/química , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Galactosefosfatos/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Temperatura Alta , Humanos , Cinética , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Pyrobaculum/enzimologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , UTP-Hexose-1-Fosfato Uridililtransferase/genética , UTP-Hexose-1-Fosfato Uridililtransferase/metabolismo
5.
PLoS Comput Biol ; 15(4): e1006683, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30951524

RESUMO

The actin family of cytoskeletal proteins is essential to the physiology of virtually all archaea, bacteria, and eukaryotes. While X-ray crystallography and electron microscopy have revealed structural homologies among actin-family proteins, these techniques cannot probe molecular-scale conformational dynamics. Here, we use all-atom molecular dynamic simulations to reveal conserved dynamical behaviors in four prokaryotic actin homologs: MreB, FtsA, ParM, and crenactin. We demonstrate that the majority of the conformational dynamics of prokaryotic actins can be explained by treating the four subdomains as rigid bodies. MreB, ParM, and FtsA monomers exhibited nucleotide-dependent dihedral and opening angles, while crenactin monomer dynamics were nucleotide-independent. We further show that the opening angle of ParM is sensitive to a specific interaction between subdomains. Steered molecular dynamics simulations of MreB, FtsA, and crenactin dimers revealed that changes in subunit dihedral angle lead to intersubunit bending or twist, suggesting a conserved mechanism for regulating filament structure. Taken together, our results provide molecular-scale insights into the nucleotide and polymerization dependencies of the structure of prokaryotic actins, suggesting mechanisms for how these structural features are linked to their diverse functions.


Assuntos
Actinas/química , Proteínas de Bactérias/química , Biologia Computacional , Cristalografia por Raios X , Proteínas do Citoesqueleto/química , Proteínas de Escherichia coli/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Pyrobaculum/química , Homologia Estrutural de Proteína
6.
Acta Crystallogr D Struct Biol ; 73(Pt 5): 420-427, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28471366

RESUMO

The family B DNA polymerase from Pyrobaculum calidifontis (Pc-polymerase) consists of 783 amino acids and is magnesium-ion dependent. It has an optimal pH of 8.5, an optimal temperature of 75°C and a half-life of 4.5 h at 95°C, giving it greater thermostability than the widely used Taq DNA polymerase. The enzyme is also capable of PCR-amplifying larger DNA fragments of up to 7.5 kb in length. It was shown to have functional, error-correcting 3'-5' exonuclease activity, as do the related high-fidelity DNA polymerases from Pyrococcus furiosus, Thermococcus kodakarensis KOD1 and Thermococcus gorgonarius, which have extensive commercial applications. Pc-polymerase has a quite low sequence identity of approximately 37% to these enzymes, which, in contrast, have very high sequence identity to each other, suggesting that the P. calidifontis enzyme is distinct. Here, the structure determination of Pc-polymerase is reported, which has been refined to an R factor of 24.47% and an Rfree of 28.81% at 2.80 Šresolution. The domains of the enzyme are arranged in a circular fashion to form a disc with a narrow central channel. One face of the disc has a number of connected crevices in it, which allow the protein to bind duplex and single-stranded DNA. The central channel is thought to allow incoming nucleoside triphosphates to access the active site. The enzyme has a number of unique structural features which distinguish it from other archaeal DNA polymerases and may account for its high processivity. A model of the complex with the primer-template duplex of DNA indicates that the largest conformational change that occurs upon DNA binding is the movement of the thumb domain, which rotates by 7.6° and moves by 10.0 Å. The surface potential of the enzyme is dominated by acidic groups in the central region of the molecule, where catalytic magnesium ions bind at the polymerase and exonuclease active sites. The outer regions are richer in basic amino acids that presumably interact with the sugar-phosphate backbone of DNA. The large number of salt bridges may contribute to the high thermal stability of this enzyme.


Assuntos
DNA Polimerase Dirigida por DNA/química , Pyrobaculum/enzimologia , Sequência de Aminoácidos , Cristalografia por Raios X , Estabilidade Enzimática , Modelos Moleculares , Pyrobaculum/química , Alinhamento de Sequência , Temperatura
7.
Int J Mol Sci ; 18(1)2017 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-28067849

RESUMO

Serine protease inhibitors (serpins) are native inhibitors of serine proteases, constituting a large protein family with members spread over eukaryotes and prokaryotes. However, only very few prokaryotic serpins, especially from extremophiles, have been characterized to date. In this study, Pnserpin, a putative serine protease inhibitor from the thermophile Pyrobaculum neutrophilum, was overexpressed in Escherichia coli for purification and characterization. It irreversibly inhibits chymotrypsin-, trypsin-, elastase-, and subtilisin-like proteases in a temperature range from 20 to 100 °C in a concentration-dependent manner. The stoichiometry of inhibition (SI) of Pnserpin for proteases decreases as the temperature increases, indicating that the inhibitory activity of Pnserpin increases with the temperature. SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis) showed that Pnserpin inhibits proteases by forming a SDS-resistant covalent complex. Homology modeling and molecular dynamic simulations predicted that Pnserpin can form a stable common serpin fold. Results of the present work will help in understanding the structural and functional characteristics of thermophilic serpin and will broaden the current knowledge about serpins from extremophiles.


Assuntos
Extremófilos/química , Pyrobaculum/química , Inibidores de Serina Proteinase/isolamento & purificação , Sequência de Aminoácidos , Eletroforese em Gel de Poliacrilamida , Concentração de Íons de Hidrogênio , Cinética , Simulação de Dinâmica Molecular , Estabilidade Proteica , Reprodutibilidade dos Testes , Alinhamento de Sequência , Análise de Sequência de Proteína , Inibidores de Serina Proteinase/química , Homologia Estrutural de Proteína , Temperatura
8.
Elife ; 52016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27852434

RESUMO

The similarity of eukaryotic actin to crenactin, a filament-forming protein from the crenarchaeon Pyrobaculum calidifontis supports the theory of a common origin of Crenarchaea and Eukaryotes. Monomeric structures of crenactin and actin are similar, although their filament architectures were suggested to be different. Here we report that crenactin forms bona fide double helical filaments that show exceptional similarity to eukaryotic F-actin. With cryo-electron microscopy and helical reconstruction we solved the structure of the crenactin filament to 3.8 Å resolution. When forming double filaments, the 'hydrophobic plug' loop in crenactin rearranges. Arcadin-2, also encoded by the arcade gene cluster, binds tightly with its C-terminus to the hydrophobic groove of crenactin. Binding is reminiscent of eukaryotic actin modulators such as cofilin and thymosin ß4 and arcadin-2 is a depolymeriser of crenactin filaments. Our work further supports the theory of shared ancestry of Eukaryotes and Crenarchaea.


Assuntos
Citoesqueleto de Actina/química , Fatores de Despolimerização de Actina/química , Actinas/química , Proteínas de Bactérias/genética , Proteínas dos Microfilamentos/genética , Citoesqueleto de Actina/ultraestrutura , Fatores de Despolimerização de Actina/ultraestrutura , Actinas/ultraestrutura , Microscopia Crioeletrônica , Citoesqueleto/química , Citoesqueleto/ultraestrutura , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/ultraestrutura , Conformação Proteica , Estrutura Secundária de Proteína , Pyrobaculum/química
9.
Proteins ; 84(12): 1786-1796, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27616573

RESUMO

A gene encoding an sn-glycerol-1-phosphate dehydrogenase (G1PDH) was identified in the hyperthermophilic archaeon Pyrobaculum calidifontis. The gene was overexpressed in Escherichia coli, and its product was purified and characterized. In contrast to conventional G1PDHs, the expressed enzyme showed strong preference for NADH: the reaction rate (Vmax ) with NADPH was only 2.4% of that with NADH. The crystal structure of the enzyme was determined at a resolution of 2.45 Å. The asymmetric unit consisted of one homohexamer. Refinement of the structure and HPLC analysis showed the presence of the bound cofactor NADPH in subunits D, E, and F, even though it was not added in the crystallization procedure. The phosphate group at C2' of the adenine ribose of NADPH is tightly held through the five biased hydrogen bonds with Ser40 and Thr42. In comparison with the known G1PDH structure, the NADPH molecule was observed to be pushed away from the normal coenzyme binding site. Interestingly, the S40A/T42A double mutant enzyme acquired much higher reactivity than the wild-type enzyme with NADPH, which suggests that the biased interactions around the C2'-phosphate group make NADPH binding insufficient for catalysis. Our results provide a unique structural basis for coenzyme preference in NAD(P)-dependent dehydrogenases. Proteins 2016; 84:1786-1796. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas Arqueais/química , Coenzimas/química , Glicerolfosfato Desidrogenase/química , NADP/química , NAD/química , Subunidades Proteicas/química , Pyrobaculum/química , Motivos de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Sítios de Ligação , Clonagem Molecular , Coenzimas/metabolismo , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Glicerolfosfato Desidrogenase/genética , Glicerolfosfato Desidrogenase/metabolismo , Ligação de Hidrogênio , Cinética , Modelos Moleculares , NAD/metabolismo , NADP/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Secundária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Pyrobaculum/enzimologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica
10.
Proc Natl Acad Sci U S A ; 112(30): 9340-5, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26124094

RESUMO

The prokaryotic origins of the actin cytoskeleton have been firmly established, but it has become clear that the bacterial actins form a wide variety of different filaments, different both from each other and from eukaryotic F-actin. We have used electron cryomicroscopy (cryo-EM) to examine the filaments formed by the protein crenactin (a crenarchaeal actin) from Pyrobaculum calidifontis, an organism that grows optimally at 90 °C. Although this protein only has ∼ 20% sequence identity with eukaryotic actin, phylogenetic analyses have placed it much closer to eukaryotic actin than any of the bacterial homologs. It has been assumed that the crenactin filament is double-stranded, like F-actin, in part because it would be hard to imagine how a single-stranded filament would be stable at such high temperatures. We show that not only is the crenactin filament single-stranded, but that it is remarkably similar to each of the two strands in F-actin. A large insertion in the crenactin sequence would prevent the formation of an F-actin-like double-stranded filament. Further, analysis of two existing crystal structures reveals six different subunit-subunit interfaces that are filament-like, but each is different from the others in terms of significant rotations. This variability in the subunit-subunit interface, seen at atomic resolution in crystals, can explain the large variability in the crenactin filaments observed by cryo-EM and helps to explain the variability in twist that has been observed for eukaryotic actin filaments.


Assuntos
Actinas/química , Pyrobaculum/química , Citoesqueleto de Actina , Alanina/química , Sequência de Aminoácidos , Biologia Computacional , Simulação por Computador , Microscopia Crioeletrônica , Citoesqueleto/química , Concentração de Íons de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Ligação Proteica , Conformação Proteica , Pyrobaculum/genética , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos , Software
12.
Biochim Biophys Acta ; 1844(4): 803-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24583237

RESUMO

Studies on thiamin biosynthesis have so far been achieved in eubacteria, yeast and plants, in which the thiamin structure is formed as thiamin phosphate from a thiazole and a pyrimidine moiety. This condensation reaction is catalyzed by thiamin phosphate synthase, which is encoded by the thiE gene or its orthologs. On the other hand, most archaea do not seem to have the thiE gene, but instead their thiD gene, coding for a 2-methyl-4-amino-5-hydroxymethylpyrimidine (HMP) kinase/HMP phosphate kinase, possesses an additional C-terminal domain designated thiN. These two proteins, ThiE and ThiN, do not share sequence similarity. In this study, using recombinant protein from the hyperthermophile archaea Pyrobaculum calidifontis, we demonstrated that the ThiN protein is an analog of the ThiE protein, catalyzing the formation of thiamin phosphate with the release of inorganic pyrophosphate from HMP pyrophosphate and 4-methyl-5-ß-hydroxyethylthiazole phosphate (HET-P). In addition, we found that the ThiN protein can liberate an inorganic pyrophosphate from HMP pyrophosphate in the absence of HET-P. A structure model of the enzyme-product complex of P. calidifontis ThiN domain was proposed on the basis of the known three-dimensional structure of the ortholog of Pyrococcus furiosus. The significance of Arg320 and His341 residues for thiN-coded thiamin phosphate synthase activity was confirmed by site-directed mutagenesis. This is the first report of the experimental analysis of an archaeal thiamin synthesis enzyme.


Assuntos
Alquil e Aril Transferases/química , Proteínas Arqueais/química , Quitina/química , Modelos Moleculares , Pyrobaculum/química , Tiamina Monofosfato/química , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Domínio Catalítico , Quitina/metabolismo , Difosfatos/química , Difosfatos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Hidrólise , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Pirimidinas/química , Pirimidinas/metabolismo , Pyrobaculum/enzimologia , Pyrobaculum/genética , Pyrococcus furiosus/química , Pyrococcus furiosus/enzimologia , Pyrococcus furiosus/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia Estrutural de Proteína , Especificidade por Substrato , Termodinâmica , Tiamina Monofosfato/biossíntese
13.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 2): 492-500, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24531483

RESUMO

The crystal structure of the archaeal actin, crenactin, from the rod-shaped hyperthermophilic (optimal growth at 90°C) crenarchaeon Pyrobaculum calidifontis is reported at 3.35 Šresolution. Despite low amino-acid sequence identity, the three-dimensional structure of the protein monomer is highly similar to those of eukaryotic actin and the bacterial MreB protein. Crenactin-specific features are also evident, as well as elements that are shared between crenactin and eukaryotic actin but are not found in MreB. In the crystal, crenactin monomers form right-handed helices, demonstrating that the protein is capable of forming filament-like structures. Monomer interactions in the helix, as well as interactions between crenactin and ADP in the nucleotide-binding pocket, are resolved at the atomic level and compared with those of actin and MreB. The results provide insights into the structural and functional properties of a heat-stable archaeal actin and contribute to the understanding of the evolution of actin-family proteins in the three domains of life.


Assuntos
Actinas/química , Proteínas Arqueais/química , Proteínas de Bactérias/química , Proteínas do Citoesqueleto/química , Pyrobaculum/química , Proteínas de Saccharomyces cerevisiae/química , Actinas/genética , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas de Bactérias/genética , Cristalografia por Raios X , Proteínas do Citoesqueleto/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Evolução Molecular , Temperatura Alta , Modelos Moleculares , Dados de Sequência Molecular , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Pyrobaculum/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Thermotoga maritima/química , Thermotoga maritima/metabolismo
14.
PLoS One ; 9(1): e86050, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465865

RESUMO

The OB-fold is a small, versatile single-domain protein binding module that occurs in all forms of life, where it binds protein, carbohydrate, nucleic acid and small-molecule ligands. We have exploited this natural plasticity to engineer a new class of non-immunoglobulin alternatives to antibodies with unique structural and biophysical characteristics. We present here the engineering of the OB-fold anticodon recognition domain from aspartyl tRNA synthetase taken from the thermophile Pyrobaculum aerophilum. For this single-domain scaffold we have coined the term OBody. Starting from a naïve combinatorial library, we engineered an OBody with 3 nM affinity for hen egg-white lysozyme, by optimising the affinity of a naïve OBody 11,700-fold over several affinity maturation steps, using phage display. At each maturation step a crystal structure of the engineered OBody in complex with hen egg-white lysozyme was determined, showing binding elements in atomic detail. These structures have given us an unprecedented insight into the directed evolution of affinity for a single antigen on the molecular scale. The engineered OBodies retain the high thermal stability of the parental OB-fold despite mutation of up to 22% of their residues. They can be expressed in soluble form and also purified from bacteria at high yields. They also lack disulfide bonds. These data demonstrate the potential of OBodies as a new scaffold for the engineering of specific binding reagents and provide a platform for further development of future OBody-based applications.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Aspartato-tRNA Ligase/química , Aspartato-tRNA Ligase/metabolismo , Engenharia de Proteínas , Pyrobaculum/química , Pyrobaculum/metabolismo , Sequência de Aminoácidos , Animais , Anticódon/metabolismo , Proteínas Arqueais/genética , Aspartato-tRNA Ligase/genética , Sítios de Ligação , Galinhas , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Muramidase/metabolismo , Conformação Proteica , Estabilidade Proteica , Pyrobaculum/genética
15.
Biosci Biotechnol Biochem ; 76(9): 1601-10, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22972344

RESUMO

The enzymes from hyperthermophiles are generally extremely thermostable and lose little or no activity during long periods under a variety conditions. This high stability is very attractive, in that it gives the enzymes potential for use in numerous bioprocesses. My research group has investigated this high stability from the viewpoint of the relationship between function and structure. In this review, I describe the molecular mechanism underlying the extreme stability of unboiled NAD-dependent glutamate dehydrogenase from the hyperthermophile Pyrobaculum islandicum. I also describe the activation of the inactive recombinant enzyme produced in mesophilic Escherichia coli from the viewpoint of the relationship between structure and activity.


Assuntos
Proteínas Arqueais/química , Glutamato Desidrogenase/química , Ácido Glutâmico/química , Pyrobaculum/enzimologia , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Ativação Enzimática , Estabilidade Enzimática , Escherichia coli/genética , Glutamato Desidrogenase/genética , Glutamato Desidrogenase/metabolismo , Ácido Glutâmico/metabolismo , Temperatura Alta , Modelos Moleculares , Estrutura Terciária de Proteína , Pyrobaculum/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
16.
Appl Microbiol Biotechnol ; 91(4): 1061-72, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21614503

RESUMO

The highly thermostable esterase from the hyperthermophilic archaeon Pyrobaculum calidifontis VA1 (PestE) shows high enantioselectivity (E > 100) in the kinetic resolution of racemic chiral carboxylic acids, but little selectivity towards acetates of tertiary alcohols (E = 2-4). To explain these unique properties, its crystal structure has been determined at 2.0 Å resolution. The enzyme is a member of the hormone-sensitive lipase group (group H) of the esterase/lipase superfamily on the basis of the amino acid sequence identity. The PestE structure shows a canonical α/ß-hydrolase fold as core domain with a cap structure at the C-terminal end of the ß-sheet. A tetramer in the crystal packing is formed of two dimers; the dimeric form is observed in solution. Conserved dimers and even tetramers are found in other group H proteins. The amino acid residues Ser157, His284, and Asp254 form the catalytic triad, which is typically found in α/ß-hydrolases. The oxyanion hole is composed of Gly85 and Gly86 within the conserved sequence motif HGGG(M,F,W) (amino acid residues 83-87) and Ala158. With the elucidated structure, experimental results about enantioselectivity towards the two model substrate classes (as exemplified for 3-phenylbutanoic acid ethyl ester and 1,1,1-trifluoro-2-phenylbut-3-yn-2-yl acetate) could be explained by molecular modeling. For both enantiomers of the tertiary alcohol, orientations in two binding pockets were obtained without significant energy differences corresponding to the observed low enantioselectivity due to missing steric repulsions. In contrast, for the carboxylic acid ester, two different orientations with significant energy differences for each enantiomer were found matching the high E values.


Assuntos
Esterases/química , Esterases/metabolismo , Pyrobaculum/enzimologia , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Multimerização Proteica , Estrutura Quaternária de Proteína , Pyrobaculum/química , Especificidade por Substrato
17.
J Mol Biol ; 405(5): 1215-32, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21134383

RESUMO

Protein synthesis occurs in macromolecular particles called ribosomes. All ribosomes are composed of RNA and proteins. While the protein composition of bacterial and eukaryotic ribosomes has been well-characterized, a systematic analysis of archaeal ribosomes has been lacking. Here we report the first comprehensive two-dimensional PAGE and mass spectrometry analysis of archaeal ribosomes isolated from the thermophilic Pyrobaculum aerophilum and the thermoacidophilic Sulfolobus acidocaldarius Crenarchaeota. Our analysis identified all 66 ribosomal proteins (r-proteins) of the P. aerophilum small and large subunits, as well as all but two (62 of 64; 97%) r-proteins of the S. acidocaldarius small and large subunits that are predicted genomically. Some r-proteins were identified with one or two lysine methylations and N-terminal acetylations. In addition, we identify three hypothetical proteins that appear to be bona fide r-proteins of the S. acidocaldarius large subunit. Dissociation of r-proteins from the S. acidocaldarius large subunit indicates that the novel r-proteins establish tighter interactions with the large subunit than some integral r-proteins. Furthermore, cryo electron microscopy reconstructions of the S. acidocaldarius and P. aerophilum 50S subunits allow for a tentative localization of the binding site of the novel r-proteins. This study illustrates not only the potential diversity of the archaeal ribosomes but also the necessity to experimentally analyze the archaeal ribosomes to ascertain their protein composition. The discovery of novel archaeal r-proteins and factors may be the first step to understanding how archaeal ribosomes cope with extreme environmental conditions.


Assuntos
Proteínas Arqueais/química , Pyrobaculum/química , Proteínas Ribossômicas/química , Ribossomos/química , Proteínas Arqueais/classificação , Proteínas Arqueais/isolamento & purificação , Sítios de Ligação , Lisina/química , Metilação , Nucleosídeo-Trifosfatase/metabolismo , Filogenia , Proteômica , Proteínas Ribossômicas/classificação , Proteínas Ribossômicas/isolamento & purificação , Sulfolobus acidocaldarius/química
18.
J Mol Biol ; 383(1): 224-37, 2008 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-18625240

RESUMO

Phi-value analysis was used to characterise the structure of the transition state (TS) for folding of POB L146A Y166W, a peripheral subunit-binding domain that folds in microseconds. Helix 2 was structured in the TS with consolidating interactions from the structured loop that connects the two alpha-helices. This distribution of Phi-values was very similar to that determined for E3BD F166W, a homologue with high sequence and structural similarity. The extrapolated folding rate constants in water at 298 K were 210,000 s(-1) for POB and 27,500 s(-1) for E3BD. A contribution to the faster folding of POB came from its having significantly greater helical propensity in helix 2, the folding nucleus. The folding rate also appeared to be influenced by differences in the sequence and structural properties of the loop connecting the two helices. Unimodal downhill folding has been proposed as a conserved, biologically important property of peripheral subunit-binding domains. POB folds five times faster and E3BD folds slower than a proposed limit of 40,000 s(-1) for barrier-limited folding. However, experimental evidence strongly suggests that both POB L146A Y166W and E3BD F166W fold in a barrier-limited process through a very similar TS ensemble.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Escherichia coli/química , Escherichia coli/genética , Geobacillus stearothermophilus/química , Geobacillus stearothermophilus/genética , Ligação de Hidrogênio , Modelos Moleculares , Mutagênese Sítio-Dirigida , Concentração Osmolar , Desnaturação Proteica , Engenharia de Proteínas , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Pyrobaculum/química , Pyrobaculum/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Termodinâmica
19.
J Mol Biol ; 380(1): 181-92, 2008 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-18513746

RESUMO

Cystathionine beta-synthase domains are found in a myriad of proteins from organisms across the tree of life and have been hypothesized to function as regulatory modules that sense the energy charge of cells. Here we characterize the structure and stability of PAE2072, a dimeric tandem cystathionine beta-synthase domain protein from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. Crystal structures of the protein in unliganded and AMP-bound forms, determined at resolutions of 2.10 and 2.35 A, respectively, reveal remarkable conservation of key functional features seen in the gamma subunit of the eukaryotic AMP-activated protein kinase. The structures also confirm the presence of a suspected intermolecular disulfide bond between the two subunits that is shown to stabilize the protein. Our AMP-bound structure represents a first step in investigating the function of a large class of uncharacterized prokaryotic proteins. In addition, this work extends previous studies that have suggested that, in certain thermophilic microbes, disulfide bonds play a key role in stabilizing intracellular proteins and protein-protein complexes.


Assuntos
Monofosfato de Adenosina/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Cistationina beta-Sintase/química , Pyrobaculum/química , Sequência de Aminoácidos , Cristalografia por Raios X , Dimerização , Dissulfetos/química , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Análise de Sequência de Proteína , Relação Estrutura-Atividade , Temperatura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA