Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.604
Filtrar
1.
Nature ; 629(8012): 597-602, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658762

RESUMO

Hydroformylation is an industrial process for the production of aldehydes from alkenes1,2. Regioselective hydroformylation of propene to high-value n-butanal is particularly important, owing to a wide range of bulk applications of n-butanal in the manufacture of various necessities in human daily life3. Supported rhodium (Rh) hydroformylation catalysts, which often excel in catalyst recyclability, ease of separation and adaptability for continuous-flow processes, have been greatly exploited4. Nonetheless, they usually consist of rotationally flexible and sterically unconstrained Rh hydride dicarbonyl centres, only affording limited regioselectivity to n-butanal5-8. Here we show that proper encapsulation of Rh species comprising Rh(I)-gem-dicarbonyl centres within a MEL zeolite framework allows the breaking of the above model. The optimized catalyst exhibits more than 99% regioselectivity to n-butanal and more than 99% selectivity to aldehydes at a product formation turnover frequency (TOF) of 6,500 h-1, surpassing the performance of all heterogeneous and most homogeneous catalysts developed so far. Our comprehensive studies show that the zeolite framework can act as a scaffold to steer the reaction pathway of the intermediates confined in the space between the zeolite framework and Rh centres towards the exclusive formation of n-butanal.


Assuntos
Aldeídos , Alcenos , Ródio , Zeolitas , Catálise , Ródio/química , Zeolitas/química , Alcenos/química , Aldeídos/química , Estereoisomerismo
2.
J Am Chem Soc ; 146(17): 11866-11875, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38621677

RESUMO

The available methods of chemical synthesis have arguably contributed to the prevalence of aromatic rings, such as benzene, toluene, xylene, or pyridine, in modern pharmaceuticals. Many such sp2-carbon-rich fragments are now easy to synthesize using high-quality cross-coupling reactions that click together an ever-expanding menu of commercially available building blocks, but the products are flat and lipophilic, decreasing their odds of becoming marketed drugs. Converting flat aromatic molecules into saturated analogues with a higher fraction of sp3 carbons could improve their medicinal properties and facilitate the invention of safe, efficacious, metabolically stable, and soluble medicines. In this study, we show that aromatic and heteroaromatic drugs can be readily saturated under exceptionally mild rhodium-catalyzed hydrogenation, acid-mediated reduction, or photocatalyzed-hydrogenation conditions, converting sp2 carbon atoms into sp3 carbon atoms and leading to saturated molecules with improved medicinal properties. These methods are productive in diverse pockets of chemical space, producing complex saturated pharmaceuticals bearing a variety of functional groups and three-dimensional architectures. The rhodium-catalyzed method tolerates traces of dimethyl sulfoxide (DMSO) or water, meaning that pharmaceutical compound collections, which are typically stored in wet DMSO, can finally be reformatted for use as substrates for chemical synthesis. This latter application is demonstrated through the late-stage saturation (LSS) of 768 complex and densely functionalized small-molecule drugs.


Assuntos
Ródio , Catálise , Ródio/química , Preparações Farmacêuticas/química , Preparações Farmacêuticas/síntese química , Hidrogenação , Estrutura Molecular
3.
Org Lett ; 26(16): 3338-3342, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38608176

RESUMO

Isoquinolone is one of the most common heterocyclic core structures in countless natural products and many bioactive compounds. Here, a highly efficient approach to synthesize isoquinolone scaffolds on DNA via rhodium(III)-catalyzed C-H activation has been described. This chemistry transformation is robust and has shown good compatibility with DNA, which is suitable for DNA-encoded library synthesis.


Assuntos
DNA , Ródio , Ródio/química , Catálise , Estrutura Molecular , DNA/química , Isoquinolinas/química , Isoquinolinas/síntese química
4.
ACS Appl Mater Interfaces ; 16(17): 21653-21664, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38644787

RESUMO

Analogous to thermal ablation techniques in clinical settings, cell necrosis induced during tumor photothermal therapy (PTT) can provoke an inflammatory response that is detrimental to the treatment of tumors. In this study, we employed a straightforward one-step liquid-phase reduction process to synthesize uniform RhRe nanozymes with an average hydrodynamic size of 41.7 nm for non-inflammatory photothermal therapy. The obtained RhRe nanozymes showed efficient near-infrared (NIR) light absorption for effective PTT, coupled with a remarkable capability to scavenge reactive oxygen species (ROS) for anti-inflammatory treatment. After laser irradiation, the 4T1 tumors were effectively ablated without obvious tumor recurrence within 14 days, along with no obvious increase in pro-inflammatory cytokine levels. Notably, these RhRe nanozymes demonstrated high biocompatibility with normal cells and tissues, both in vitro and in vivo, as evidenced by the lack of significant toxicity in female BALB/c mice treated with 10 mg/kg of RhRe nanozymes over a 14 day period. This research highlights RhRe alloy nanoparticles as bioactive nanozymes for non-inflammatory PTT in tumor therapy.


Assuntos
Ligas , Camundongos Endogâmicos BALB C , Terapia Fototérmica , Rênio , Ródio , Animais , Ródio/química , Ródio/farmacologia , Camundongos , Ligas/química , Ligas/farmacologia , Feminino , Rênio/química , Rênio/farmacologia , Linhagem Celular Tumoral , Humanos , Espécies Reativas de Oxigênio/metabolismo
5.
Chem Pharm Bull (Tokyo) ; 72(3): 313-318, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38494725

RESUMO

Generating reliable data on functional group compatibility and chemoselectivity is essential for evaluating the practicality of chemical reactions and predicting retrosynthetic routes. In this context, we performed systematic studies using a functional group evaluation kit including 26 kinds of additives to assess the functional group tolerance of carbene-mediated reactions. Our findings revealed that some intermolecular heteroatom-hydrogen insertion reactions proceed faster than intramolecular cyclopropanation reactions. Lewis basic functionalities inhibited rhodium-catalyzed C-H functionalization of indoles. While performing these studies, we observed an unexpected C-H functionalization of a 1-naphthol variant used as an additive.


Assuntos
Metano/análogos & derivados , Ródio , Catálise , Ródio/química , Metano/química , Hidrogênio/química
6.
Steroids ; 204: 109362, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38278283

RESUMO

Research published between 2001 and 2022 on the functionalization of remote positions of steroids, as well as the use of this technique in the generation of biologically active compounds has been reviewed. In the first section of the analysis established and novel methods for activation of sites deemed to be remote were reported. A series of manganese- (mainly), rhodium-, ruthenium- and osmium-centered porphyrins as catalysts in the presence of PIDA as oxidant have effected hydroxylation at C-1, -5, -6, -7, -11, -14, -15, -16, -17, -20, -24 and -25. Dioxiranes have been utilized in inserting hydroxyl groups at the 5, 12, 14, 15, 16, 17, 20, 24 and 25 positions (tertiary centers for the most part). Alcohols at C-12 and -16 were oxidized further to ketones. The Schönecker oxidation, discovered and developed during the period, has revolutionized the selective functionalization at C-12 of steroids possessing a 17-keto group. In the presence of iron-centered PDP- and MCP-based catalysts, hydrogen peroxide and acetic acid, substrates tended to be hydroxylated at C-6 and -12, with further oxidation to ketones often accompanying this reaction. The hypohalite reaction, utilizing the more modern Suarez conditions (irradiation in the presence of iodine and PIDA), was reported to facilitate the insertion of a hydroxyl moiety five atoms away from an existing alcohol oxygen. Steroidal-3ß-diazoacetates tend to decompose on heating with di-rhodium-centered catalysts while activating carbons four or five atoms away. Chromium- and iron-based acetates were observed to functionalize C-5 and -25. Other reactions involving ring cleavage and halogenation, ketone irradiation and α-hydroxylation of ethers were also covered. The syntheses of compounds with marked biological activity from readily available steroids is described in the second section of the study. Cyclopamine, cephalostatin-1, ritterazine B and three polyhydroxypregnanaes (pergularin, utendin and tomentogenin) were generated in sequences in which a key step required hydroxylation at C-12 using the Schönecker reaction. A crucial stage in the preparation of cortistatin A, the saundersioside core, eurysterol A, 5,6-dihydroglaucogenin C, as well as clinostatins A and B involved the functionalization of C-18 or -19 utilizing hypohalite chemistry. The synthetic route to xestobergsterol A, pavonin-4-aglycone and ouagabagenin included a transformation where ketone irradiation played a part in either producing a Δ14 or a C-19 activated steroid. The radical relay reaction, where a 17α-chloro-steroid was formed, was central in the generation of pythocholic acid. The lead tetraacetate reaction was pivotal in the functionalization of C-19 during the synthesis of cyclocitrinol.


Assuntos
Ródio , Ródio/química , Esteroides/química , Hidroxilação , Álcoois , Cetonas , Ferro , Catálise
7.
Inorg Chem ; 63(2): 1296-1316, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38174357

RESUMO

Organometallic half-sandwich complexes [(η5-Cp)IrCl(L)]PF6 (1) and [(η5-Cp)RhCl(L)]PF6 (2) were prepared using pentamethylcyclopentadienyl chloride dimers of iridium(III) or rhodium(III) with the 4-amino-N-(2,2'-bipyridin-5-yl)benzenesulfonamide ligand (L) and ammonium hexafluorophosphate. The crystal structures of L, 1, and 2 were analyzed in detail. The coordination reactions of the ligand with the central ions were confirmed using various spectroscopic techniques. Additionally, the interactions between sulfaligand, Ir(III), and Rh(III) complexes with carbonic anhydrase (CA), human serum albumin (HSA), and CT-DNA were investigated. The iridium(III) complex (1) did not show any antiproliferative properties against four different cancer cell lines, i.e., nonsmall cell lung cancer A549, colon cancer HCT-116, breast cancer MCF7, lymphoblastic leukemia Nalm-6, and a nonmalignant human embryonic kidney cell line HEK293, due to high binding affinity to GSH. The sulfonamide ligand (L) and rhodium(III) complex (2) were further studied. L showed competitive inhibition toward CA, while complexes 1 and 2, uncompetitive. All compounds interacted with HSA, causing a conformational change in the protein's α-helical structure, suggesting the induction of a more open conformation in HSA, reducing its biological activity. Both L and 2 were found to induce cell death through a caspase-dependent pathway. These findings position L and 2 as potential starting compounds for pharmaceutical, therapeutic, or medicinal research.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Complexos de Coordenação , Neoplasias Pulmonares , Ródio , Humanos , Complexos de Coordenação/química , Ligantes , Irídio/farmacologia , Irídio/química , Ródio/farmacologia , Ródio/química , Células HEK293 , Antineoplásicos/química , Linhagem Celular Tumoral
8.
J Inorg Biochem ; 251: 112435, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38016327

RESUMO

Anionic cyclopentadienyl (Cp) and its pentamethyl-substituted derivative (Cp*) serve as crucial ligands for creating stable π-coordinated materials, including catalysts. From a structural perspective, the π-extended analog of Cp, known as an N-fused porphyrin (NFP), is recognized as an intriguing 18π aromatic chromophore, offering near-infrared (NIR) optical properties that can be fine-tuned through metal complexation. When coordinated with rhodium at the central NFP core, it forms a sandwich binuclear rhodium(III) complex along with terminal and bridging chloride ligands, denoted as Rh-1, and its bromo derivative, Rh-1-Br. In contrast to the bis-NFP complex of iron(II) reported previously by our team, both Rh-1 and Rh-1-Br complexes exhibit strong NIR optical properties and narrow HOMO-LUMO energy gaps, attributed to minimal orbital interactions between the two co-facial NFP ligands. Leveraging these NIR absorption properties, we assessed the photothermal conversion properties of Rh-1 and ligand 1, revealing high conversion efficiency. This suggests their potential application as photothermal agents for use in photothermal therapy.


Assuntos
Porfirinas , Ródio , Ródio/química , Porfirinas/química , Cloretos , Catálise , Ligantes
9.
Org Lett ; 25(42): 7673-7677, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37853547

RESUMO

Pyridyloxy-directed Rh(III)-catalyzed regioselective C3Ar-H alkenylation of protected tyrosines was achieved with N-aryl and N-alkyl maleimides, furnishing a series of maleimide-appended tyrosine-based unnatural amino acids in good yields. Further, the late-stage exemplification of the strategy was successfully accomplished on tyrosine-containing dipeptides, tripeptides, and tetrapeptides in moderate reactivity. Also, the chemical applications of the strategy were successfully executed toward nailing tyrosine with other amino acids via a maleimide linker and intramolecular hydroarylation to produce tyrosine-centered stapled products and succinimide-glued macrocyclized products, respectively.


Assuntos
Ródio , Estrutura Molecular , Ródio/química , Tirosina , Aminoácidos , Maleimidas/química , Peptídeos , Catálise
10.
Chem Commun (Camb) ; 59(87): 13030-13033, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37842954

RESUMO

Proximity-induced methodologies for peptide and protein modification have been developed using recognition elements like inhibitors, antibodies, or affinity tags on amino acids. However, the recognition of saccharides for chemical modification remains widely unexplored. Studies exploring boronic acids and their derivatives have shown their alluring capabilities as selective molecular recognition elements for saccharides, and in this study we describe the application of these ideas to the discovery of a catalytic proximity-induced methodology for covalent modification of glycopeptides using boronic acids as a saccharide recognition element.


Assuntos
Ródio , Ródio/química , Ácidos Borônicos/química , Peptídeos/química , Carboidratos , Catálise
11.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37569655

RESUMO

Here, seven new double-complex salts, [M1(NH3)6][M2(C2O4)3] (M1, M2 = Co, Rh) and K3[Rh(NH3)6][Rh(C2O4)3]2∙6H2O types, are synthesised. The crystal structure and composition of DCS (double-complex salts) are studied by SCXRD, XRD, CHN and IR methods. The complex salts of the [M1(NH3)6][M2(C2O4)3] (M1, M2 = Co, Rh) type can be crystallised both as a crystalline hydrate [M1(NH3)6][M2(C2O4)3]·3H2O (sp. gr. P-3) and as an anhydrous complex (sp. gr. P-1) depending on the synthesis conditions. The process of [Rh(NH3)6][Rh(C2O4)3] formation is significantly dependent on the synthesis temperature. At room temperature, a mixture is formed comprising [Rh(NH3)6][Rh(C2O4)3] and K3[Rh(NH3)6][Rh(C2O4)3]2∙6H2O, while the [Rh(NH3)6][Rh(C2O4)3] target product crystallises at elevated temperatures. The thermal behaviour of double-complex salts is studied by the STA, EGA-MS, IR and XRD methods. The complete decomposition of complex salts in helium and hydrogen atmospheres resulting in metals or CoxRh1-x solid solutions is achieved at temperatures of 320-450 °C.


Assuntos
Ródio , Sais , Temperatura , Ródio/química
12.
Nat Commun ; 14(1): 3986, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37414774

RESUMO

The precise activation of C-H bonds will eventually provide chemists with transformative methods to access complex molecular architectures. Current approaches to selective C-H activation relying on directing groups are effective for the generation of five-membered, six-membered and even larger ring metallacycles but show narrow applicability to generate three- and four-membered rings bearing high ring strain. Furthermore, the identification of distinct small intermediates remains unsolved. Here, we developed a strategy to control the size of strained metallacycles in the rhodium-catalysed C-H activation of aza-arenes and applied this discovery to tunably incorporate the alkynes into their azine and benzene skeletons. By merging the rhodium catalyst with a bipyridine-type ligand, a three-membered metallacycle was obtained in the catalytic cycle, while utilizing an NHC ligand favours the generation of the four-membered metallacycle. The generality of this method was demonstrated with a range of aza-arenes, such as quinoline, benzo[f]quinolone, phenanthridine, 4,7-phenanthroline, 1,7-phenanthroline and acridine. Mechanistic studies revealed the origin of the ligand-controlled regiodivergence in the strained metallacycles.


Assuntos
Ródio , Estrutura Molecular , Ródio/química , Ligantes , Compostos Azo , Catálise
13.
Nanoscale ; 15(30): 12710-12717, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37470373

RESUMO

Rh-catalysed NH carbene insertion reactions were exported to living cells with help of amphiphilic polymeric nanoparticles. Hereto, hydrophobic dirhodium carboxylate catalysts were efficiently encapsulated in amphiphilic polymeric nanoparticles comprising dodecyl and Jeffamine as side grafts. The developed catalytic nanoparticles promoted NH carbene insertions between α-keto diazocarbenes and 2,3-diaminonaphthalene, followed by intramolecular cyclisation to form fluorescent or biologically active benzoquinoxalines. These reactions were studied in reaction media of varying complexity. The best-performing catalyst was exported to HeLa cells, where fluorescent and cytotoxic benzoquinoxalines were synthesized in situ at low catalyst loading within a short time. Most of the developed bioorthogonal transition metal catalysts reported to date are easily deactivated by the reactive biomolecules in living cells, limiting their applications. The high catalytic efficiency of the Rh-based polymeric nanoparticles reported here opens the door to expanding the repertoire of bioorthogonal reactions and is therefore promising for biomedical applications.


Assuntos
Nanopartículas , Ródio , Humanos , Ródio/química , Células HeLa , Metano , Catálise
14.
J Inorg Biochem ; 247: 112337, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37517330

RESUMO

Heme enzymes are involved in the binding and metabolism of hydroxylamine (RNHOH) and aldoxime (RCH=NOH) compounds (R = H, alkyl, aryl). We report the synthesis and X-ray crystal structure of a metalloporphyrin in complex with an arylhydroxylamine, namely that of (TPP)Rh(PhNHOH)(C6H4Cl) (TPP = tetraphenylpophryinato dianion). The crystal structure reveals, in addition to N-binding of PhNHOH to Rh, the presence of an intramolecular H-bond between the hydroxylamine -OH proton and a porphyrin N-atom. Results from density functional theory (DFT) calculations support the presence of this intramolecular H-bond in this global minimum structure, and a natural bond order (NBO) analysis reveals that this H-bond comprises a donor π N=C (porphyrin) to acceptor σ* O-H (hydroxylamine) interaction of 2.32 kcal/mol. While DFT calculations predict the presence of similar intramolecular H-bond interactions in the related aldoxime complexes (TPP)Rh(RCH=NOH)(C6H4Cl) in their global minima structures, the X-ray crystal structure obtained for the (TPP)Rh(CH3(CH2)2CH=NOH)(C6H4Cl) complex is consistent with the local (non-global) minima conformation that does not have this intramolecular H-bond interaction.


Assuntos
Metaloporfirinas , Porfirinas , Ródio , Ródio/química , Metaloporfirinas/química , Hidroxilaminas , Oximas
15.
J Org Chem ; 88(13): 8179-8191, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37294269

RESUMO

Presented herein is an efficient synthesis of pyrazolidinone-fused benzotriazines through the cascade reaction of 1-phenylpyrazolidinones with oxadiazolones. The formation of the title products is initiated by Rh(III)-catalyzed C-H/N-H bond metallation of 1-phenylpyrazolidinone and subsequent coordination with oxadiazolone followed by migratory insertion along with CO2 liberation, proto-demetallation, and intramolecular condensation. To our knowledge, this is the first synthesis of pyrazolidinone-fused benzotriazines based on the C-H bond activation strategy by using oxadiazolone as an easy-to-handle amidine surrogate. In general, this new protocol has advantages such as valuable products, easily accessible substrates, redox neutral conditions, concise synthetic procedure, high efficiency, and compatibility with diverse functional groups. Moreover, the usefulness of this method is further showcased by scale-up synthetic scenario and suitability to substrates derived from natural products such as thymol and nerol.


Assuntos
Produtos Biológicos , Ródio , Catálise , Ródio/química , Oxirredução
16.
Molecules ; 28(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37298892

RESUMO

A controllable synthesis of trisubstituted imidazoles and pyrroles has been developed through rhodium(II)-catalyzed regioselective annulation of N-sulfonyl-1,2,3-trizaoles with ß-enaminones. The imidazole ring was formed through a 1,1-insertion of the N-H bond to α-imino rhodium carbene, followed by a subsequent intramolecular 1,4-conjugate addition. This occurred when the α-carbon atom of the amino group was bearing a methyl group. Additionally, the pyrrole ring was constructed by utilizing a phenyl substituent and undergoing intramolecular nucleophilic addition. The mild conditions, good tolerance towards functional groups, gram-scale synthesis capability, and ability to undergo valuable transformations of the products qualify this unique protocol as an efficient tool for the synthesis of N-heterocycles.


Assuntos
Pirróis , Ródio , Pirróis/química , Triazóis/química , Catálise , Ródio/química
17.
J Org Chem ; 88(13): 9056-9065, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37335974

RESUMO

We describe the various escape channels available to dirhodium carbene intermediates from cycloheptatrienyl diazo compounds located with density functional theory. An intramolecular cyclopropanation would, in principle, provide a new route to semibullvalenes (SBVs). A detailed exploration of the potential energy surface reveals that methylating carbon-7 suppresses a competing ß-hydride migration pathway to heptafulvene products, giving SBV formation a reasonable chance. During our explorations, we additionally discovered unusual spirononatriene, spironorcaradiene, and metal-stabilized 9-barbaralyl cation structures as local minima.


Assuntos
Ródio , Ródio/química , Catálise , Compostos Azo/química , Carbono
18.
Chem Commun (Camb) ; 59(57): 8818-8821, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37357798

RESUMO

Herein, we have demonstrated a rhodium-catalyzed carboamination of olefin with the double bond intact. For the first time, deacylative carboamination of the maleimide has been achieved wherein phenoxyacetamide has behaved as the aminating source. In addition to carboamination, we have also disclosed the C-H olefination protocol where the maleimide group has been installed successfully in the ortho-position of phenoxyacetamide. In this protocol, phenoxyacetamide behaved as a traceless directing group with the in situ release of acetamide. The base-assisted E2-elimination is the key to the success of the olefination reaction.


Assuntos
Ródio , Catálise , Estrutura Molecular , Ródio/química , Alcenos/química
19.
Org Lett ; 25(22): 3995-3999, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37253354

RESUMO

The rhodium-catalyzed enantioselective C-H functionalization of unactivated C-H bonds by means of donor/acceptor carbene-induced C-H insertion was extended to substrates containing nitrogen functionality. The rhodium-stabilized donor/acceptor carbenes were generated by rhodium-catalyzed decomposition of aryldiazoacetates. The phthalimido group was the optimum nitrogen protecting group. C-H functionalization at the most sterically accessible methylene site was achieved using Rh2(S-2-Cl-5-BrTPCP)4 as catalyst, whereas Rh2(S-TPPTTL)4 was the most effective catalyst for C-H functionalization at tertiary C-H bonds and for the desymmetrization of N-phthalimidocyclohexane.


Assuntos
Ródio , Estrutura Molecular , Ródio/química , Estereoisomerismo , Catálise , Ftalimidas
20.
Org Lett ; 25(22): 4000-4004, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37249358

RESUMO

Rhodium-catalyzed C-H functionalization of cyclohexadiene derivatives with diaryldiazomethanes followed by oxidation with DDQ provides ready access to triarylmethanes. Two chiral dirhodium tetracarboxylates, Rh2(S-PTAD)4 and Rh2(S-TPPTTL)4, were found to be the optimum chiral catalysts for these transformations. This method showcases the ability of diaryldiazomethanes to perform intermolecular C-H insertion with high enantioselectivity and good yields. The method has a broad substrate scope, leading to triarylmethane products with a variety of aryl and heteroaryl substituents, including benzofuran and pyridine heterocycles.


Assuntos
Ródio , Estereoisomerismo , Oxirredução , Catálise , Ródio/química , Cicloexenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA