Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 365
Filtrar
1.
Integr Cancer Ther ; 23: 15347354241247061, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38641964

RESUMO

To investigate the effect of Jiedu Xiaozheng Yin (JXY) on the polarization of macrophages in colitis-associated colon cancer (CAC). An orthotopic model of CAC was established to monitor changes in the pathological state of mice. Colon length, number of colon tumors were recorded, and indices for liver, spleen, and thymus were calculated. Hematoxylin and eosin (H&E) staining was employed to observe intestinal mucosal injury and tumor formation. Immunohistochemistry (IHC) staining was utilized to investigate the effect of JXY on M1 and M2 polarization of macrophages in the colonic mucosa of CAC mice. For in vitro experiments, RT-qPCR (Reverse Transcription-quantitative PCR) and flow cytometry were used to observe the effect of JXY on various M1-related molecules such as IL-1ß, TNF-α, iNOS, CD80, CD86, and its phagocytic function as well as M2-related molecules including Arg-1, CD206, and IL-10. Subsequently, after antagonizing the TLR4 pathway with antagonists (TAK242, PDTC, KG501, SR11302, LY294002), the expression of IL-6, TNF-α, iNOS, and IL-1ß mRNA were detected by RT-qPCR. In vivo experiments, the results showed that JXY improved the pathological condition of mice in general. And JXY treatment decreased the shortening of colon length and number of tumors as compared to non-treated CAC mice. Additionally, JXY treatment improved the lesions in the colonic tissue and induced a polarization of intestinal mucosal macrophages towards the M1 phenotype, while inhibiting polarization towards the M2 phenotype. In vitro experiments further confirmed that JXY treatment promoted the activation of macrophages towards the M1 phenotype, leading to increased expression of IL-1ß, TNF-α, iNOS, CD80, CD86, as well as enhanced phagocytic function. JXY treatment concomitantly inhibited the expression of M2-phenotype related molecules Arginase-1 (Arg-1), CD206, and IL-10. Furthermore, JXY inhibited M1-related molecules such as IL-6, TNF-α, iNOS, and IL-1ß after antagonizing the TLR4 pathway. Obviously, JXY could exhibit inhibitory effects on the development of colon tumors in mice with CAC by promoting M1 polarization through TLR4-mediated signaling and impeding M2 polarization of macrophages.


Assuntos
Neoplasias Associadas a Colite , Medicamentos de Ervas Chinesas , Macrófagos , Animais , Camundongos , Neoplasias Associadas a Colite/tratamento farmacológico , Neoplasias Associadas a Colite/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Fenótipo , Receptor 4 Toll-Like/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
2.
J Cell Mol Med ; 28(9): e18338, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38683122

RESUMO

Respiratory syncytial virus (RSV) infects neuronal cells in the central nervous system (CNS), resulting in neurological symptoms. In the present study, we intended to explore the mechanism of RSV infection-induced neuroinflammatory injury from the perspective of the immune response and sought to identify effective protective measures against the injury. The findings showed that toll-like receptor 4 (TLR4) was activated after RSV infection in human neuronal SY5Y cells. Furthermore, TLR4 activation induced autophagy and apoptosis in neuronal cells, promoted the formation of the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, and increased the secretion of downstream inflammatory cytokines such as interleukin-1ß (IL-1ß), interleukin-18 (IL-18) and tumour necrosis factor-α (TNF-α). Interestingly, blockade of TLR4 or treatment with exogenous melatonin significantly suppressed TLR4 activation as well as TLR4-mediated apoptosis, autophagy and immune responses. Therefore, we infer that melatonin may act on the TLR4 to ameliorate RSV-induced neuronal injury, which provides a new therapeutic target for RSV infection.


Assuntos
Apoptose , Autofagia , Inflamassomos , Melatonina , Proteína 3 que Contém Domínio de Pirina da Família NLR , Infecções por Vírus Respiratório Sincicial , Receptor 4 Toll-Like , Humanos , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Sistema Nervoso Central/virologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/patologia , Citocinas/metabolismo , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Melatonina/farmacologia , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/virologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Infecções por Vírus Respiratório Sincicial/virologia , Infecções por Vírus Respiratório Sincicial/metabolismo , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/patologia , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Vírus Sinciciais Respiratórios/fisiologia , Receptor 4 Toll-Like/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
3.
Neuroreport ; 35(8): 518-528, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38597275

RESUMO

The objective of this study is to disclose the role of emodin, a natural anthraquinone derivative that has been proposed to suppress microglial activation and inflammation, in morphine tolerance. Here, cell counting kit-8 method assayed the viability of BV2 microglial cells treated by ascending concentrations of emodin. In emodin-pretreated BV2 microglial cells challenged with morphine with or without transfection of toll-like receptor 4 (TLR4) overexpression plasmids, transwell assay measured cell migration. Immunofluorescence staining and western blot detected the expression of microglial markers. Inflammatory levels were subjected to ELISA and western blot. BODIPY 581/591 C11 assay estimated lipid reactive oxygen species activity. Iron assay kit examined total iron content. Western blot tested the expression of ferroptosis- and TLR4/nuclear factor-kappaB (NF-κB)/NOD-like receptor 3 (NLRP3) pathway-associated proteins. Molecular docking predicted the binding affinity of emodin to TLR4. Emodin was noted to obstruct the migration, activation, inflammatory response, and ferroptosis of BV2 microglial cells induced by morphine. In addition, emodin had a high binding affinity with TLR4 and inactivated TLR4/NF-κB/NLRP3 pathway in morphine-challenged BV2 microglial cells. Upregulation of TLR4 partially countervailed the protective role of emodin against morphine-elicited BV2 microglial cell migration, activation, inflammation, and ferroptosis. Accordingly, emodin might target TLR4 and act as an inactivator of TLR4/NF-κB/NLRP3 pathway, thus inhibiting BV2 microglial activation and inflammation to mitigate morphine tolerance.


Assuntos
Emodina , Inflamação , Microglia , Morfina , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR , Transdução de Sinais , Receptor 4 Toll-Like , Emodina/farmacologia , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/efeitos dos fármacos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Morfina/farmacologia , NF-kappa B/metabolismo , NF-kappa B/efeitos dos fármacos , Animais , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Linhagem Celular
4.
Folia Neuropathol ; 62(1): 76-82, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38174675

RESUMO

This study investigated the protective effect of vanillin against Parkinson's disease (PD). 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 30 mg/kg) was administered s.c. for 6 consecutive days to induce PD and mice were treated with vanillin (100 and 200 mg/kg, p.o.) for 15 days. Cognitive, motor and non-motor functions were assessed to evaluate the effect of vanillin in PD mice. Levels of dopamine and glutamate and activity of monoamine oxidaseB (MAO-B) were estimated in vanillin-treated PD mice. The effect of vanillin on the level of lipid peroxidation and superoxide dismutase in brain tissue of PD mice was estimated. Data of the study revealed that vanillin reversed the altered cognitive, motor and non-motor function in PD mice. Activity of MAO-B and neurochemical level were attenuated with vanillin in PD mice. Inflammatory cytokines, nuclear factor kappa B (NF-kB) and Toll-like receptor 4 (TLR-4) levels were lower in the vanillin-treated group compared to the PD group of mice. Data of the study suggest that vanillin protects against neuronal injury and recovers the altered behaviour in PD mice by regulating neurochemical balance and the TLR-4/NF-kB pathway.


Assuntos
Benzaldeídos , Estresse Oxidativo , Receptor 4 Toll-Like , Animais , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/efeitos dos fármacos , Benzaldeídos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Camundongos , Masculino , Inflamação/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/tratamento farmacológico
5.
Front Biosci (Landmark Ed) ; 28(11): 309, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38062827

RESUMO

BACKGROUND: Alcohol abuse leads to alcoholic liver disease (ALD), for which no effective treatment is yet known. Gentiana Scabra Bge is a traditional Chinese medicine; its extract has a significant liver protection effect, but its effects on the mechanism of improving alcohol-induced toxicity remain unclear. Therefore, this study used cell and mouse models to investigate how Gentiana Scabra Bge extract (GSE) might affect the TLT4/NF-κB inflammation pathway in ALD. METHODS: In mice, we induced the alcoholic liver injury model by applying alcohol and induced the inflammatory cell model by lipopolysaccharide (LPS)-induced macrophages. Using an enzyme-linked immunosorbent assay (ELISA) kit, aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and interleukin 1ß (IL-1ß), interleukin 6 (IL-6), and tumor necrosis factor-α (TNF-α) levels were measured in liver tissue; we also performed histological analysis of liver tissue sections to assess the hepatoprotective effect of GSE on alcohol. Using real-time fluorescence quantification, we determined the expression of toll-like receptor 4 (TLR4) and nuclear factor κB (NF-κB) mRNA levels; we used Western blotting to detect the expression of TLR4/NF-κB signaling pathway-related proteins. RESULTS: We demonstrate that GSE decreased AST and ALT activity, ameliorated liver dysfunction, decreased cytokine levels, and reduced LPS-induced cellular inflammation. In addition, GSE protected mouse liver cells from the inflammatory response by reducing alcohol-induced liver pathological damage and downregulating genes and proteins such as nuclear factors. CONCLUSIONS: GSE can attenuate liver injury in mice through the TLR4/NF-κB pathway by inhibiting the activation of nuclear factors.


Assuntos
Gentiana , Hepatopatias Alcoólicas , Animais , Camundongos , Gentiana/química , Inflamação/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Fígado/metabolismo , Hepatopatias Alcoólicas/tratamento farmacológico , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/prevenção & controle , NF-kappa B/efeitos dos fármacos , Receptor 4 Toll-Like/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
6.
Phytother Res ; 37(12): 5974-5990, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37778741

RESUMO

Acute kidney injury (AKI) is a common clinical condition associated with increased incidence and mortality rates. Hederasaponin C (HSC) is one of the main active components of Pulsatilla chinensis (Bunge) Regel. HSC possesses various pharmacological activities, including anti-inflammatory activity. However, the protective effect of HSC against lipopolysaccharide (LPS)-induced AKI in mice remains unclear. Therefore, we investigated the protective effect of HSC against LPS-induced renal inflammation and the underlying molecular mechanisms. Herein, using MTT and LDH assays to assess both cell viability and LDH activity; using dual staining techniques to identify different cell death patterns; conducting immunoblotting, QRT-PCR, and immunofluorescence analyses to evaluate levels of protein and mRNA expression; employing immunoblotting, molecular docking, SPR experiments, and CETSA to investigate the interaction between HSC and TLR4; and studying the anti-inflammatory effects of HSC in the LPS-induced AKI. The results indicate that HSC inhibits the expression of TLR4 and the activation of NF-κB and PIP2 signaling pathways, while simultaneously suppressing the activation of the NLRP3 inflammasome. In animal models, HSC ameliorated LPS-induced AKI and diminished inflammatory response and the level of renal injury markers. These findings suggest that HSC has potential as a therapeutic agent to mitigate sepsis-related AKI.


Assuntos
Injúria Renal Aguda , NF-kappa B , Saponinas , Animais , Camundongos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Lipopolissacarídeos/farmacologia , Simulação de Acoplamento Molecular , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Saponinas/farmacologia , Saponinas/uso terapêutico , Fosfoinositídeo Fosfolipase C
7.
J Chem Neuroanat ; 134: 102349, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37879571

RESUMO

Depression is a common but serious sickness which causes a considerable burden on individuals and society. Recently, it has been well established that the occurrence of depression was related to the microbiota-gut-brain axis. The toll-like receptor 4 (TLR4)/ nuclear factor kappa-B kinase (NFκB)/ NOD-like receptor thermal protein domain associated protein 3 (NLRP3) pathway is closely associated with the regulation of microbiota-gut-brain axis. Suanzaoren Decoction (SZRD), which recorded in Jin Gui Yao Lve in Han dynasty, has been used for treating insomnia and depression for a long time. However, the action mechanism of the depression regulation through the TLR4/NFκB/NLRP3 pathway by SZRD was still unclear. In this study, SZRD was firstly performed on a chronic unpredictable mild stress (CUMS) mice model. The results of behavioral tests showed that SZRD treatment could ameliorate the depressive-like behaviors of CUMS mice effectively. According to our previous researches about the components of SZRD in vitro and in vivo, the identification of serum metabolites in depression model rats was further analyzed qualitatively using ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry. 27 prototypes and 44 metabolites were identified. The main types of metabolic reactions are glucuronization, sulfation, and so on. Then, using immunohistochemistry and western blotting to monitor the difference in activation of TLR4/NFκB/NLRP3 signaling pathway in mice brain and colon. The results showed that SZRD treatment could reduce expression levels of related factors. Additionally, the SZRD treatment could also inhibit the histopathological damage in the path morphology of the hippocampus and colon. The results of 16SrRNA demonstrated that SZRD could reduce the dysbiosis of the intestinal flora of depressive mice. The above results provided important information for studying the action mechanism of SZRD in treating depression by regulating microbiota-gut-brain axis via inhibiting TLR4/NFκB/NLRP3 pathway.


Assuntos
Eixo Encéfalo-Intestino , Proteína 3 que Contém Domínio de Pirina da Família NLR , Receptor 4 Toll-Like , Animais , Camundongos , Ratos , Eixo Encéfalo-Intestino/efeitos dos fármacos , Depressão/tratamento farmacológico , Depressão/etiologia , Inflamação/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo
8.
Exp Cell Res ; 422(1): 113429, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36402426

RESUMO

This study aimed to explore the effect of PF in regulating the progression of T1D through regulating gut microbiota and inhibiting TLR4-myD88/TRIF pathway. T1D mouse models were established and received PF treatment through intraperitoneal injection. The glucose, sugar tolerance, the incidence of T1D and H&E staining were detected to verify the effect of PF on T1D. Meanwhile, the changes of gut microbiota and the permeability of intestines in mice were also measured. On parallel, the number and function of immune cells were detected by Flow Cytometry. The expressions of ZO-1, ZO-2 and TLR4-myD88/TRIF pathway related proteins were detected by western blotting. Mice received PF treatment had decreased incidence of T1D and inflammatory infiltration in islet tissues compared with those received PBS treatment. In addition to that, PF treated mice had increased Sutterella species and decreased intestinal permeability, in which the decreased ratio of Th1/Th17 and increased Treg cells were also identified. The expression of TLR4-myD88/TRIF pathway was also suppressed in response to PF treatment. Moreover, further treatment with TLR4 agonist, LPS, could reverse the effect of PF on T1D mice. PF can suppress the TLR4 mediated myD88/TRIF pathway to change the distribution of gut microbiota, so as to protect NOD mice from T1D.


Assuntos
Diabetes Mellitus Experimental , Microbioma Gastrointestinal , Animais , Camundongos , Proteínas Adaptadoras de Transporte Vesicular/genética , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/microbiologia
9.
Mol Pharmacol ; 103(3): 158-165, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36460345

RESUMO

Cisplatin is an effective chemotherapeutic agent, yet its use is limited by several adverse drug reactions, known as cisplatin-induced toxicities (CITs). We recently demonstrated that cisplatin could elicit proinflammatory responses associated with CITs through Toll-like receptor 4 (TLR4). TLR4 is best recognized for binding bacterial lipopolysaccharide (LPS) via its coreceptor, MD-2. TLR4 is also proposed to directly bind transition metals, such as nickel. Little is known about the nature of the cisplatin-TLR4 interaction. Here, we show that soluble TLR4 was capable of blocking cisplatin-induced, but not LPS-induced, TLR4 activation. Cisplatin and nickel, but not LPS, were able to directly bind soluble TLR4 in a microscale thermophoresis binding assay. Interestingly, TLR4 histidine variants that abolish nickel binding reduced, but did not eliminate, cisplatin-induced TLR4 activation. This was corroborated by binding data that showed cisplatin, but not nickel, could directly bind mouse TLR4 that lacks these histidine residues. Altogether, our findings suggest that TLR4 can directly bind cisplatin in a manner that is enhanced by, but not dependent on, histidine residues that facilitate binding to transition metals. SIGNIFICANCE STATEMENT: This work describes how the xenobiotic cisplatin interacts with Toll-like receptor 4 (TLR4) to initiate proinflammatory signaling that underlies cisplatin toxicities, which are severe adverse outcomes in cisplatin treatment. Here, this study provides a mechanistic bridge between cisplatin extracellular interactions with TLR4 and previous observations that genetic and chemical inhibition of TLR4 mitigates cisplatin-induced toxicity.


Assuntos
Cisplatino , Receptor 4 Toll-Like , Animais , Camundongos , Alérgenos , Cisplatino/toxicidade , Histidina , Lipopolissacarídeos/farmacologia , Antígeno 96 de Linfócito/química , Antígeno 96 de Linfócito/genética , Antígeno 96 de Linfócito/metabolismo , Receptor 4 Toll-Like/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
10.
Int J Mol Sci ; 23(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35805952

RESUMO

TLR4/NF-κB is a key inflammatory signaling transduction pathway, closely involved in cell differentiation, proliferation, apoptosis, and pro-inflammatory response. Toll like receptor 4 (TLR4), the first mammalian TLR to be characterized, is the innate immune receptor that plays a key role in inflammatory signal transductions. Nuclear factor kappa B (NF-κB), the TLR4 downstream, is the key to accounting for the expression of multiple genes involved in inflammatory responses, such as pro-inflammatory cytokines. Inflammatory bowel disease (IBD) in humans is a chronic inflammatory disease with high incidence and prevalence worldwide. Targeting the TLR4/NF-κB signaling pathway might be an effective strategy to alleviate intestinal inflammation. Polyphenol phytochemicals have shown noticeable alleviative effects by acting on the TLR4/NF-κB signaling pathway in intestinal inflammation. This review summarizes the pharmacological effects of more than 20 kinds of polyphenols on intestinal inflammation via targeting the TLR4/NF-κB signaling pathway. We expected that polyphenol phytochemicals targeting the TLR4/NF-κB signaling pathway might be an effective approach to treat IBD in future clinical research applications.


Assuntos
Doenças Inflamatórias Intestinais , Intestinos , NF-kappa B , Polifenóis , Receptor 4 Toll-Like , Animais , Humanos , Inflamação/tratamento farmacológico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/imunologia , Intestinos/efeitos dos fármacos , Camundongos , NF-kappa B/efeitos dos fármacos , Polifenóis/farmacologia , Ratos , Transdução de Sinais , Receptor 4 Toll-Like/efeitos dos fármacos
11.
Behav Brain Res ; 423: 113775, 2022 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-35101458

RESUMO

The NLRP3 inflammasome activation and neuroinflammation play a crucial role in nerve damage, which can lead to sickness and depressive-like behavior. Dihydromyricetin (DMY) is an important flavanone extracted from Ampelopsis grossedentata. It has been shown to have a significant anti-inflammatory effect in multiple disease models. However, its protective effects on sickness and depressive-like behavior caused by neuroinflammation and its underlying mechanism are still unclear. In this study, we investigated the effects and mechanism of DMY on lipopolysaccharide (LPS)-treated mice with sickness behavior and BV2 cells in Vitro. The effects of LPS treatment and DMY administration on behavioral changes were determined by using behavioral tests including an open field test, tail suspension test and a sucrose preference test. The anti-inflammatory effects of DMY in conditions of neuroinflammatory injury in Vitro and in Vivo were analyzed by using real-time PCR analysis and western blot. The results indicated that DMY improved sickness and depressive-like behaviors in mice induced by LPS. DMY suppressed the expression of microglia markers CD11b, accompanied by reduced expression of pro-inflammatory cytokines, such as TNFα, IL-6, IL-1ß, COX-2, and iNOS in a dose-dependent manner. Interestingly, DMY dramatically inhibited the expression of TLR4/Akt/HIF1a/NLRP3 signaling pathway-related proteins both in Vitro and in Vivo, including TLR4, CD14, PDPk1, p-Akt, p-NF-κB p65, p-GSK-3ß, HIF1a, NLRP3, ASC, and caspase-1. The above results suggested that DMY suppressed the activation of the TLR4/Akt/HIF1a/NLRP3 pathway, which may contribute to its anti-depressive effects.


Assuntos
Depressão/tratamento farmacológico , Flavonóis/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/efeitos dos fármacos , Comportamento de Doença/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Receptor 4 Toll-Like/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Depressão/induzido quimicamente , Modelos Animais de Doenças , Lipopolissacarídeos/farmacologia , Camundongos , Transdução de Sinais/efeitos dos fármacos
12.
J Ethnopharmacol ; 290: 115119, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35182669

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Several Amomum species are commonly used in food as flavoring agents and traditional Chinese medicine to treat inflammation-related diseases. AIM OF THE STUDY: This study aims to investigate the protective effects of Chinese herbal medicines, including six Amomum Roxb. essential oils (AEOs), against acute lung injury (ALI) induced by lipopolysaccharide (LPS) in mice. MATERIALS AND METHODS: The compositions of AEOs were analyzed using gas chromatography - mass spectrometry. RAW264.7 cells were treated with AEOS (0-100 µg/mL) and stimulated with LPS. C57 mice received AEOs (100 mg/kg) via atomization system for seven consecutive days, and then, intratracheal instillation of LPS was applied to establish an in vivo model of acute lung injury. RESULTS: We identified three AEOs demonstrating anti-inflammatory effects and amelioration of LPS-induced lung tissue pathological damage. Furthermore, we found that these AEOs reduced lung wet/dry weight ratios and protein concentrations in the bronchoalveolar lavage fluid of mice with LPS-induced ALI. Additionally, AEOs reduced the levels of malondialdehyde, TNF-α, IL-6, and IL-1ß but increased the levels of superoxide dismutase and catalase in lung tissue, alveolar lavage fluid, and serum samples. We also found that these three AEOs affected proteins related to the TLR4/Myd88/NF-κB pathway. CONCLUSIONS: In summary, our findings revealed that AEOs ameliorate inflammatory and oxidative stress in mice with ALI through the TLR4/Myd88/NF-κB pathway.


Assuntos
Lesão Pulmonar Aguda/patologia , Amomum , Óleos Voláteis/farmacologia , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Líquido da Lavagem Broncoalveolar/química , Catalase/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão/efeitos dos fármacos , Masculino , Glicoproteínas de Membrana/efeitos dos fármacos , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/efeitos dos fármacos , Células RAW 264.7 , Distribuição Aleatória , Superóxido Dismutase/efeitos dos fármacos , Receptor 4 Toll-Like/efeitos dos fármacos
13.
Biomed Pharmacother ; 146: 112496, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34959117

RESUMO

Intestinal injury is one of the major side effects that are induced by medical radiation exposure, and has limited effective therapies. In this study, we investigated the beneficial effects of sanguinarine (SAN) on intestinal injury induced by ionizing radiation (IR) both in vitro and in vivo. Mice were exposed to whole abdominal irradiation (WAI) to mimic clinical scenarios. SAN was injected intraperitoneally to mitigate IR-induced injury. Histological examination was performed to assess the tissue injuries of the spleen and small intestine. A small intestinal epithelial cell line-6 (IEC-6) was analyzed for its viability and apoptosis in vitro under different treatments. Inflammation-related pathways and serum inflammatory cytokines were detected via Western blot analysis and ELISA, respectively. High-throughput sequencing was used to characterize the gut microbiota profile. High-performance liquid chromatography was performed to assess short-chain fatty acid contents in the colon. In vitro, SAN pretreatment protected cell viability and reduced apoptosis in IEC-6 cells. In vivo, SAN pretreatment protected immune organs, alleviated intestinal injury, and promoted intestinal recovery. SAN also reduced the levels of inflammatory cytokines, suppressed high mobility group box 1 (HMGB1)/ Toll-like receptor 4 (TLR4) pathway activation, and modulated gut microbiota composition. Our findings demonstrate that the beneficial properties of SAN alleviated intestinal radiation injury. Thus, SAN represents a therapeutic option for protecting against IR-induced intestinal injury in preclinical settings.


Assuntos
Benzofenantridinas/farmacologia , Intestino Delgado/efeitos dos fármacos , Isoquinolinas/farmacologia , Lesões Experimentais por Radiação/prevenção & controle , Baço/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocinas/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação para Baixo , Ácidos Graxos Voláteis , Microbioma Gastrointestinal/efeitos dos fármacos , Proteína HMGB1/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Injeções Intraperitoneais , Intestino Delgado/patologia , Intestino Delgado/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Lesões Experimentais por Radiação/patologia , Radiação Ionizante , Transdução de Sinais/efeitos dos fármacos , Baço/patologia , Baço/efeitos da radiação , Receptor 4 Toll-Like/efeitos dos fármacos
14.
Brain Res Bull ; 178: 120-130, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838642

RESUMO

In addition to motor dysfunction, cognitive impairments have been reported to occur in patients with early-stage Parkinson's disease (PD). In this study, we examined a PD mouse model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). This treatment led to the degeneration of nigrostriatal dopaminergic neurons in mice, a phenomenon that is consistent with previous studies. Besides, spatial memory and object recognition of MPTP-treated mice were impaired, as denoted by the Morris water maze (MWM) and novel object recognition (NOR) tests, respectively. Moreover, hippocampal synaptic plasticity (long-term potentiation and depotentiation) and the levels of synaptic proteins in hippocampus were decreased after MPTP treatment. We also found that MPTP resulted in the microglial activation and an inflammatory response in the striatum and hippocampus. Mammalian asparagine endopeptidase (AEP), a cysteine lysosomal protease, is involved in the cleavage and activation of Toll-like receptors (TLRs). The deletion of AEP can inhibit TLR4 in a mouse model of Alzheimer's disease, and TLR4 is upregulated in PD, inducing microglial activation and inflammation. We found that AEP deletion provided greater resistance to the toxic effects of MPTP. AEP knockout ameliorated the cognition and the synaptic plasticity defects in the hippocampus. Furthermore, AEP deletion decreased the expression of TLR4 and reduced microglial activation and the levels of several proinflammatory cytokines. Thus, we suggest that AEP plays a role in the inflammation induced by MPTP, and TLR4 might also involve in this process. AEP deletion could be a possible treatment strategy for the cognitive deficits of PD.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Disfunção Cognitiva/induzido quimicamente , Cisteína Endopeptidases/metabolismo , Dopaminérgicos/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Intoxicação por MPTP , Doenças Neuroinflamatórias/induzido quimicamente , Plasticidade Neuronal/efeitos dos fármacos , Receptor 4 Toll-Like/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Intoxicação por MPTP/metabolismo , Intoxicação por MPTP/fisiopatologia , Camundongos , Camundongos Knockout , Reconhecimento Psicológico/efeitos dos fármacos , Aprendizagem Espacial/efeitos dos fármacos , Memória Espacial/efeitos dos fármacos
16.
Oxid Med Cell Longev ; 2021: 6521146, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34650664

RESUMO

Oxidative stress and neuroinflammation have been demonstrated to be linked with Alzheimer's disease (AD). In this study, we examined the protective effects of DL0410 in aging rats and explored the underlying mechanism against oxidative damage and neuroinflammation, which was then validated in LPS-stimulated BV2 microglia. We firstly investigated the improvement effects of DL0410 on learning and memory abilities and explored the potential mechanisms in D-gal-induced aging rats. An 8-week treatment with DL0410 significantly improved the learning and cognitive function of D-gal-stimulated Alzheimer's-like rats in the Morris water maze test, step-down test, and novel object recognition test, and the therapeutic effect of DL0410 at 10 mg/kg was even better than that of donepezil. What is more, the results showed that DL0410 alleviated neuron injury, increased the number of synapses, and improved the level of postsynaptic density protein 95 (PSD95) in the hippocampus and cortex. Next, we examined the protective effects of DL0410 against oxidative damage and neuroinflammation. Our observations indicated that DL0410 reduced the production of harmful oxidation products and promoted the antioxidative system, decreased the levels of proinflammatory cytokines, including tumor necrosis factor α (TNF-α), interleukin 1ß (IL-1ß), and interleukin 6 (IL-6), and increased anti-inflammatory cytokines IL-10. Moreover, DL0410 inhibited the activation of astrocytes and microglia and suppressed the activation of the TLR4/MyD88/NF-κB signaling pathway. The anti-inflammation effect of DL0410 was further confirmed in LPS-stimulated BV2 cells, and the results showed that DL0410 reduced the level of inflammatory factors and inhibited the activation of the TLR4/MyD88/TRAF6/NF-κB signaling pathway in BV2 microglia. Molecular docking results indicated that DL0410 occupied the LPS recognition site in the TLR4/MD2 complex. Furthermore, the enhanced expression of claudin-1, claudin-5, occludin, CX43, and ZO-1 indicated that DL0410 protected the blood-brain barrier (BBB) integrity. Together, these results suggest that DL0410 exerts neuroprotective effects against hippocampus and cortex injury induced by D-galactose, and the possible mechanisms include antioxidative stress, antineuroinflammation, improving synaptic plasticity, and maintaining BBB integrity, which is mediated by the TLR4/MyD88/NF-κB signaling pathway inhibition. We suggest that DL0410 is a promising candidate for AD treatment.


Assuntos
Compostos de Bifenilo/farmacologia , Galactose/farmacologia , Transtornos da Memória/tratamento farmacológico , Fator 88 de Diferenciação Mieloide/efeitos dos fármacos , Doenças Neuroinflamatórias/tratamento farmacológico , Piperidinas/farmacologia , Animais , Galactose/metabolismo , Transtornos da Memória/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , NF-kappa B/farmacologia , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
17.
Sci Rep ; 11(1): 20608, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663855

RESUMO

Heat stress can significantly affect the immune function of the animal body. Heat stress stimulates oxidative stress in intestinal tissue and suppresses the immune responses of mice. The protecting effects of chitosan on heat stress induced colitis have not been reported. Therefore, the aim of this study was to investigate the protective effects of chitosan on immune function in heat stressed mice. Mice were exposed to heat stress (40 °C per day for 4 h) for 14 consecutive days. The mice (C57BL/6J), were randomly divided into three groups including: control group, heat stress, Chitosan group (LD: group 300 mg/kg/day, MD: 600 mg/kg/day, HD: 1000 mg/kg/day). The results showed that tissue histology was improved in chitosan groups than heat stress group. The current study showed that the mice with oral administration of chitosan groups had improved body performance as compared with the heat stress group. The results also showed that in chitosan treated groups the production of HSP70, TLR4, p65, TNF-α, and IL-10 was suppressed on day 1, 7, and 14 as compared to the heat stress group. In addition Claudin-2, and Occludin mRNA levels were upregulated in mice receiving chitosan on day 1, 7, and 14 of heat stress. Furthermore, the IL-6, IL-10, and TNF-α plasma levels were down-regulated on day 1, 7, and 14 of heat stress in mice receiving the oral administration of chitosan. In conclusion, the results showed that chitosan has an anti-inflammatory ability to tolerate hot environmental conditions.


Assuntos
Quitosana/farmacologia , Resposta ao Choque Térmico/imunologia , Resposta ao Choque Térmico/fisiologia , Animais , Quitosana/metabolismo , Colite/tratamento farmacológico , Colite/imunologia , Colite/metabolismo , Citocinas/análise , Citocinas/sangue , Resposta ao Choque Térmico/efeitos dos fármacos , Inflamação , Intestinos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
18.
Neurochem Int ; 151: 105211, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34688804

RESUMO

Multiple Sclerosis (MS) is a chronic inflammatory demyelinating disorder of the central nervous system (CNS) that remains incurable. Withametelin (WMT), a phytosterol, showed diverse biological activities isolated from the leaves of Datura innoxa. In the present study, we used an in vitro model of HT22 and BV-2 cell lines and an in vivo murine model of MS, experimental autoimmune encephalomyelitis (EAE), to explore the antioxidant and anti neuroinflammatory potential of WMT. The results showed that pretreatment with WMT markedly inhibited H2O2-induced cytotoxicity and oxidative stress in a dose-dependent manner. Correspondingly, WMT post-immunization treatment significantly attenuated EAE-induced clinical score, weight loss, neuropathic pain behaviors, and motor dysfunction. It markedly lowers EAE-induced elevated circulating leucocytes, spinal deformity, and splenomegaly. It strikingly inhibited the Evans blue and FITC extravasation in the brain. It remarkably reversed the EAE-induced histopathological alteration of the brain, spinal cord, eye, and optic nerve. It significantly intensified the antioxidant defense mechanism by improving the expression level of nuclear factor-erythroid-related factor-2 (Nrf2), heme-oxygenase-1 (HO-1) but reducing the expression level of the Kelch-like-ECH-associated-protein-1 (keap-1), inducible-nitric-oxide-synthase (iNOS) in the CNS. Likewise, it markedly suppressed neuroinflammation by reducing the expression level of toll-like-receptor 4 (TLR4), nuclear-factor-kappa-B (NF-κB), activator-protein-1 (AP-1) but increased the expression level IkB-α in the CNS. Furthermore, molecular dynamics simulations and MMPBSA binding free energies were determined to validate the dynamic stability of complexes and shed light on the atomic level intermolecular interaction energies. Taken together, this study showed that WMT has significant neuroprotective potential in EAE via modulation of Nrf2 mediated-oxidative stress and NF-κB mediated inflammation.


Assuntos
Dissacarídeos/farmacologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Indóis/farmacologia , NF-kappa B/efeitos dos fármacos , Receptor 4 Toll-Like/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Heme Oxigenase-1/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Fitosteróis/farmacologia , Receptor 4 Toll-Like/metabolismo
19.
Neurochem Int ; 151: 105215, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34710535

RESUMO

Parkinson's disease (PD) is a neurodegenerative disease characterized by progressive loss of the nigrostriatal dopaminergic neurons that are associated with motor alterations and non-motor manifestations (such as depression). Neuroinflammation is a process with a critical role in the pathogenesis of PD. In this regard, toll-like receptor 4 (TLR4) is a central mediator of immune response in PD. Moreover, there are gender-related differences in the incidence, prevalence, and clinical features of PD. Therefore, we aimed to elucidate the role of TLR4 in the sex-dependent response to dopaminergic denervation induced by 6-hydroxydopamine (6-OHDA) in mice. Female and male adult wildtype (WT) and TLR4 knockout (TLR4-/-) mice were administered with unilateral injection of 6-OHDA in the dorsal striatum, and non-motor and motor impairments were evaluated for 30 days, followed by biochemistry analysis in the substantia nigra pars compacta (SNc), dorsal striatum, and dorsoventral cortex. Early non-motor impairments (i.e., depressive-like behavior and spatial learning deficits) induced by 6-OHDA were observed in the male WT mice but not in male TLR4-/- or female mice. Motor alterations were observed after administration of 6-OHDA in both strains, and the lack of TLR4 was also related to motor commitment. Moreover, ablation of TLR4 prevented 6-OHDA-induced dopaminergic denervation and microgliosis in the SNc, selectively in female mice. These results reinforced the existence of sex-biased alterations in PD and indicated TLR4 as a promising therapeutic target for the motor and non-motor symptoms of PD, which will help counteract the neuroinflammatory and neurodegenerative processes.


Assuntos
Encéfalo/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Fatores Sexuais , Receptor 4 Toll-Like/metabolismo , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Hidroxidopaminas/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Degeneração Neural/induzido quimicamente , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/patologia , Doença de Parkinson/genética , Receptor 4 Toll-Like/efeitos dos fármacos , Receptor 4 Toll-Like/genética
20.
Int Heart J ; 62(5): 1112-1123, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34544967

RESUMO

Doxorubicin (DOX) is a widely used anticancer drug, but its cardiotoxicity largely limits its clinical utilization. Circular RNA spindle and kinetochore-associated protein 3 (circ-SKA3) were found to be differentially expressed in heart failure patients. In this study, we investigated the role and mechanism of circ-SKA3 in DOX-induced cardiotoxicity.The quantitative real-time polymerase chain reaction and western blot assays were applied to measure the expression of circ-SKA3, microRNA (miR) -1303, and toll-like receptor 4 (TLR4). The viability and apoptosis of AC16 cells were analyzed using cell counting kit-8, flow cytometry, and western blot assays. The interaction between miR-1303 and circ-SKA3 or TLR4 was verified using dual-luciferase reporter and RNA immunoprecipitation assays. Exosomes were collected from culture media by the use of commercial kits and then qualified by transmission electron microscopy.The expression of circ-SKA3 and TLR4 was increased, whereas miR-1303 expression was decreased in DOX-treated AC16 cells. DOX treatment promoted cell apoptosis and inhibited cell viability in AC16 cells in vitro, which was partially reversed by circ-SKA3 knockdown, TLR4 silencing, or miR-1303 overexpression. Mechanistically, circ-SKA3 served as a sponge for miR-1303 to upregulate TLR4, which was confirmed to be a target of miR-1303. Additionally, circ-SKA3 contributed to DOX-induced cardiotoxicity through the miR-1303/TLR4 axis. Further studies suggested that circ-SKA3 was overexpressed in exosomes extracted from DOX-mediated AC16 cells, which could be internalized by surrounding untreated AC16 cells.Circ-SKA3 enhanced DOX-induced toxicity in AC16 cells through the miR-1303/TLR4 axis. Extracellular circ-SKA3 was packaged into exosomes, and exosomal circ-SKA3 could function as a mediator in intercellular communication between AC16 cells.


Assuntos
Proteínas de Ciclo Celular/genética , Doxorrubicina/toxicidade , Proteínas Associadas aos Microtúbulos/genética , Miócitos Cardíacos/efeitos dos fármacos , Inibidores da Topoisomerase II/toxicidade , Apoptose/efeitos dos fármacos , Cardiotoxicidade/genética , Proteínas de Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Exossomos/genética , Insuficiência Cardíaca/genética , Humanos , MicroRNAs/genética , Microscopia Eletrônica de Transmissão/métodos , Proteínas Associadas aos Microtúbulos/efeitos dos fármacos , Miócitos Cardíacos/patologia , RNA Circular/genética , Receptor 4 Toll-Like/efeitos dos fármacos , Receptor 4 Toll-Like/genética , Transfecção/métodos , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA