Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27.724
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731949

RESUMO

To enrich the properties of polylactic acid (PLA)-based composite films and improve the base degradability, in this study, a certain amount of poly(propylene carbonate) (PPC) was added to PLA-based composite films, and PLA/PPC-based composite films were prepared by melt blending and hot-press molding. The effects of the introduction of PPC on the composite films were analyzed through in-depth studies on mechanical properties, water vapor and oxygen transmission rates, thermal analysis, compost degradability, and bacterial inhibition properties of the composite films. When the introduction ratio coefficient of PPC was 30%, the tensile strength of the composite film increased by 19.68%, the water vapor transmission coefficient decreased by 14.43%, and the oxygen transmission coefficient decreased by 18.31% compared to that of the composite film without PPC, the cold crystallization temperature of the composite film increased gradually from 96.9 °C to 104.8 °C, and PPC improved the crystallization ability of composite film. The degradation rate of the composite film with PPC increased significantly compared to the previous one, and the degradation rate increased with the increase in the PPC content. The degradation rate was 49.85% and 46.22% faster on average than that of the composite film without PPC when the degradation was carried out over 40 and 80 days; the composite film had certain inhibition, and the maximum diameter of the inhibition circle was 2.42 cm. This study provides a strategy for the development of PLA-based biodegradable laminates, which can promote the application of PLA-based laminates in food packaging.


Assuntos
Poliésteres , Propano/análogos & derivados , Resistência à Tração , Poliésteres/química , Polipropilenos/química , Embalagem de Alimentos/métodos , Vapor , Polímeros/química , Antibacterianos/química , Antibacterianos/farmacologia , Temperatura
2.
Am J Dent ; 37(2): 71-77, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38704849

RESUMO

PURPOSE: To investigate the effect of painless low-power Er:YAG laser irradiation of conventional and polymer-infiltrated ceramic network (PICN) type CAD-CAM resin-based composites (RBCs) on resin bonding. METHODS: An Er:YAG laser system, phosphoric acid etchant, universal adhesive, RBC, and two types of CAD-CAM RBC block were used. Microtensile bond strength, fracture mode, scanning electron microscopy (SEM) observations of bonding interfaces and CAD-CAM surfaces, and surface roughness of ground and pretreated surfaces were investigated. As pretreatment methods, low-power Er:YAG laser irradiation and air-abrasion with alumina particles were used. RESULTS: The effect of low-power Er:YAG laser irradiation of CAD-CAM RBCs on bonding to repair resin varied depending on the type of CAD-CAM RBCs. CLINICAL SIGNIFICANCE: The low-power Er:YAG laser irradiation of the conventional CAD-CAM RBCs was shown to be effective as a surface pretreatment for resin bonding, while the laser irradiation of PICN-type CAD-CAM RBCs was not effective.


Assuntos
Resinas Compostas , Desenho Assistido por Computador , Colagem Dentária , Lasers de Estado Sólido , Microscopia Eletrônica de Varredura , Propriedades de Superfície , Resinas Compostas/química , Resistência à Tração , Teste de Materiais , Humanos , Cerâmica/química , Condicionamento Ácido do Dente
3.
Eur J Med Res ; 29(1): 264, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38698476

RESUMO

BACKGROUND: The fundamental prerequisite for prognostically favorable postoperative results of peripheral nerve repair is stable neurorrhaphy without interruption and gap formation. METHODS: This study evaluates 60 neurorrhaphies on femoral chicken nerves in terms of the procedure and the biomechanical properties. Sutured neurorrhaphies (n = 15) served as control and three sutureless adhesive-based nerve repair techniques: Fibrin glue (n = 15), Histoacryl glue (n = 15), and the novel polyurethane adhesive VIVO (n = 15). Tensile and elongation tests of neurorrhaphies were performed on a tensile testing machine at a displacement rate of 20 mm/min until failure. The maximum tensile force and elongation were recorded. RESULTS: All adhesive-based neurorrhaphies were significant faster in preparation compared to sutured anastomoses (p < 0.001). Neurorrhaphies by sutured (102.8 [cN]; p < 0.001), Histoacryl (91.5 [cN]; p < 0.001) and VIVO (45.47 [cN]; p < 0.05) withstood significant higher longitudinal tensile forces compared to fibrin glue (10.55 [cN]). VIVO, with △L/L0 of 6.96 [%], showed significantly higher elongation (p < 0.001) compared to neurorrhaphy using fibrin glue. CONCLUSION: Within the limitations of an in vitro study the adhesive-based neurorrhaphy technique with VIVO and Histoacryl have the biomechanical potential to offer alternatives to sutured neuroanastomosis because of their stability, and faster handling. Further in vivo studies are required to evaluate functional outcomes and confirm safety.


Assuntos
Anastomose Cirúrgica , Galinhas , Resistência à Tração , Animais , Anastomose Cirúrgica/métodos , Fenômenos Biomecânicos , Adesivos Teciduais/farmacologia , Adesivo Tecidual de Fibrina/farmacologia , Nervos Periféricos/cirurgia , Nervos Periféricos/fisiologia , Adesivos , Procedimentos Neurocirúrgicos/métodos
4.
PLoS One ; 19(5): e0301216, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743641

RESUMO

Non-thermal atmospheric-pressure plasma (NTAPP) has been widely studied for clinical applications, e.g., disinfection, wound healing, cancer therapy, hemostasis, and bone regeneration. It is being revealed that the physical and chemical actions of plasma have enabled these clinical applications. Based on our previous report regarding plasma-stimulated bone regeneration, this study focused on Achilles tendon repair by NTAPP. This is the first study to reveal that exposure to NTAPP can accelerate Achilles tendon repair using a well-established Achilles tendon injury rat model. Histological evaluation using the Stoll's and histological scores showed a significant improvement at 2 and 4 weeks, with type I collagen content being substantial at the early time point of 2 weeks post-surgery. Notably, the replacement of type III collagen with type I collagen occurred more frequently in the plasma-treated groups at the early stage of repair. Tensile strength test results showed that the maximum breaking strength in the plasma-treated group at two weeks was significantly higher than that in the untreated group. Overall, our results indicate that a single event of NTAPP treatment during the surgery can contribute to an early recovery of an injured tendon.


Assuntos
Tendão do Calcâneo , Gases em Plasma , Traumatismos dos Tendões , Cicatrização , Animais , Tendão do Calcâneo/lesões , Ratos , Gases em Plasma/farmacologia , Gases em Plasma/uso terapêutico , Cicatrização/efeitos dos fármacos , Traumatismos dos Tendões/terapia , Masculino , Hélio/farmacologia , Ratos Sprague-Dawley , Colágeno Tipo I/metabolismo , Resistência à Tração , Pressão Atmosférica , Colágeno Tipo III/metabolismo
5.
PLoS One ; 19(5): e0302729, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743667

RESUMO

The constitutive model and modulus parameter equivalence of shape memory alloy composites (SMAC) serve as the foundation for the structural dynamic modeling of composite materials, which has a direct impact on the dynamic characteristics and modeling accuracy of SMAC. This article proposes a homogenization method for SMA composites considering interfacial phases, models the interface stress transfer of three-phase cylinders physically, and derives the axial and shear stresses of SMA fiber phase, interfacial phase, and matrix phase mathematically. The homogenization method and stress expression were then used to determine the macroscopic effective modulus of SMAC as well as the stress characteristics of the fiber phase and interface phase of SMA. The findings demonstrate the significance of volume fraction and tensile pre-strain in stress transfer between the fiber phase and interface phase at high temperatures. The maximum axial stress in the fiber phase is 705.05 MPa when the SMA is fully austenitic and the pre-strain increases to 5%. At 10% volume fraction of SMA, the fiber phase's maximum axial stress can reach 1000 MPa. Ultimately, an experimental verification of the theoretical calculation method's accuracy for the effective modulus of SMAC lays the groundwork for the dynamic modeling of SMAC structures.


Assuntos
Ligas , Estresse Mecânico , Resistência à Tração , Ligas/química , Teste de Materiais/métodos , Módulo de Elasticidade , Materiais Inteligentes/química , Modelos Teóricos
6.
PLoS One ; 19(5): e0302778, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38713687

RESUMO

INTRODUCTION: Magnetic resonance-guided focused ultrasound (MRgFUS) has been demonstrated to be able to thermally ablate tendons with the aim to non-invasively disrupt tendon contractures in the clinical setting. However, the biomechanical changes of tendons permitting this disrupting is poorly understood. We aim to obtain a dose-dependent biomechanical response of tendons following magnetic resonance-guided focused ultrasound (MRgFUS) thermal ablation. METHODS: Ex vivo porcine tendons (n = 72) were embedded in an agar phantom and randomly assigned to 12 groups based on MRgFUS treatment. The treatment time was 10, 20, or 30s, and the applied acoustic power was 25, 50, 75, or 100W. Following each MRgFUS treatment, tendons underwent biomechanical tensile testing on an Instron machine, which calculated stress-strain curves during tendon elongation. Rupture rate, maximum treatment temperature, Young's modulus and ultimate strength were analyzed for each treatment energy. RESULTS: The study revealed a dose-dependent response, with tendons rupturing in over 50% of cases when energy delivery exceeded 1000J and 100% disruption at energy levels beyond 2000J. The achieved temperatures during MRgFUS were directly proportional to energy delivery. The highest recorded temperature was 56.8°C ± 9.34 (3000J), while the lowest recorded temperate was 18.6°C ± 0.6 (control). The Young's modulus was highest in the control group (47.3 MPa ± 6.5) and lowest in the 3000J group (13.2 MPa ± 5.9). There was no statistically significant difference in ultimate strength between treatment groups. CONCLUSION: This study establishes crucial thresholds for reliable and repeatable disruption of tendons, laying the groundwork for future in vivo optimization. The findings prompt further exploration of MRgFUS as a non-invasive modality for tendon disruption, offering hope for improved outcomes in patients with musculotendinous contractures.


Assuntos
Ablação por Ultrassom Focalizado de Alta Intensidade , Tendões , Animais , Suínos , Tendões/cirurgia , Tendões/fisiologia , Tendões/diagnóstico por imagem , Fenômenos Biomecânicos , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Imageamento por Ressonância Magnética/métodos , Resistência à Tração , Módulo de Elasticidade
7.
Carbohydr Polym ; 337: 122112, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710545

RESUMO

The growing concerns on environmental pollution and sustainability have raised the interest on the development of functional biobased materials for different applications, including food packaging, as an alternative to the fossil resources-based counterparts, currently available in the market. In this work, functional wood inspired biopolymeric nanocomposite films were prepared by solvent casting of suspensions containing commercial beechwood xylans, cellulose nanofibers (CNF) and lignosulfonates (magnesium or sodium), in a proportion of 2:5:3 wt%, respectively. All films presented good homogeneity, translucency, and thermal stability up to 153 °C. The incorporation of CNF into the xylan/lignosulfonates matrix provided good mechanical properties to the films (Young's modulus between 1.08 and 3.79 GPa and tensile strength between 12.75 and 14.02 MPa). The presence of lignosulfonates imparted the films with antioxidant capacity (DPPH radical scavenging activity from 71.6 to 82.4 %) and UV barrier properties (transmittance ≤19.1 % (200-400 nm)). Moreover, the films obtained are able to successfully delay the browning of packaged fruit stored over 7 days at 4 °C. Overall, the obtained results show the potential of using low-cost and eco-friendly resources for the development of sustainable active food packaging materials.


Assuntos
Celulose , Embalagem de Alimentos , Lignina , Lignina/análogos & derivados , Nanocompostos , Nanofibras , Resistência à Tração , Madeira , Xilanos , Embalagem de Alimentos/métodos , Lignina/química , Nanocompostos/química , Celulose/química , Celulose/análogos & derivados , Madeira/química , Nanofibras/química , Xilanos/química , Antioxidantes/química , Frutas/química
8.
PLoS One ; 19(5): e0301142, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38718088

RESUMO

Steel cord materials were found to have internal porous microstructures and complex fluid flow properties. However, current studies have rarely reported the transport behavior of steel cord materials from a microscopic viewpoint. The computed tomography (CT) scanning technology and lattice Boltzmann method (LBM) were used in this study to reconstruct and compare the real three-dimensional (3D) pore structures and fluid flow in the original and tensile (by loading 800 N force) steel cord samples. The pore-scale LBM results showed that fluid velocities increased as displacement differential pressure increased in both the original and tensile steel cord samples, but with two different critical values of 3.3273 Pa and 2.6122 Pa, respectively. The original steel cord sample had higher maximal and average seepage velocities at the 1/2 sections of 3D construction images than the tensile steel cord sample. These phenomena should be attributed to the fact that when the original steel cord sample was stretched, its porosity decreased, pore radius increased, flow channel connectivity improved, and thus flow velocity increased. Moreover, when the internal porosity of tensile steel cord sample was increased by 1 time, lead the maximum velocity to increase by 1.52 times, and the average velocity was increased by 1.66 times. Furthermore, when the density range was determined to be 0-38, the pore phase showed the best consistency with the segmentation area. Depending on the Zou-He Boundary and Regularized Boundary, the relative error of simulated average velocities was only 0.2602 percent.


Assuntos
Aço , Aço/química , Porosidade , Resistência à Tração , Hidrodinâmica , Tomografia Computadorizada por Raios X
9.
Clin Oral Investig ; 28(6): 305, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722356

RESUMO

OBJECTIVE: To evaluate the ability of the water glass treatment to penetrate zirconia and improve the bond strength of resin cement. MATERIAL AND METHODS: Water glass was applied to zirconia specimens, which were then sintered. The specimens were divided into water-glass-treated and untreated zirconia (control) groups. The surface properties of the water-glass-treated specimens were evaluated using surface roughness and electron probe micro-analyser (EPMA) analysis. A resin cement was used to evaluate the tensile bond strength, with2 and without a silane-containing primer. After 24 h in water storage at 37 °C and thermal cycling, the bond strengths were statistically evaluated with t-test, and the fracture surfaces were observed using SEM. RESULTS: The water glass treatment slightly increased the surface roughness of the zirconia specimens, and the EPMA analysis detected the water glass penetration to be 50 µm below the zirconia surface. The application of primer improved the tensile bond strength in all groups. After 24 h, the water-glass-treated zirconia exhibited a tensile strength of 24.8 ± 5.5 MPa, which was significantly higher than that of the control zirconia (17.6 ± 3.5 MPa) (p < 0.05). After thermal cycling, the water-glass-treated zirconia showed significantly higher tensile strength than the control zirconia. The fracture surface morphology was mainly an adhesive pattern, whereas resin cement residue was occasionally detected on the water-glass-treated zirconia surfaces. CONCLUSION: The water glass treatment resulted in the formation of a stable silica phase on the zirconia surface. This process enabled silane coupling to the zirconia and improved the adhesion of the resin cement.


Assuntos
Colagem Dentária , Vidro , Teste de Materiais , Cimentos de Resina , Silanos , Propriedades de Superfície , Resistência à Tração , Água , Zircônio , Zircônio/química , Cimentos de Resina/química , Silanos/química , Água/química , Colagem Dentária/métodos , Vidro/química , Microscopia Eletrônica de Varredura , Análise do Estresse Dentário
10.
Jt Dis Relat Surg ; 35(2): 368-376, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38727117

RESUMO

OBJECTIVES: The study aimed to examine the histopathological and biomechanical effects of papaverine administered intraperitoneally and locally on Achilles tendon healing in a rat model. MATERIALS AND METHODS: Forty-eight adult male Sprague-Dawley rats (range, 300 to 400 g) were used in this study conducted between October and November 2022. The rats were divided into three groups, with each group further subdivided into two for sacrifice on either the 15th (early period) or 30th (late period) day after surgery. The first (control) group received no treatment following Achilles tendon repair, while papaverine was intraperitoneally administered every other day for 10 days in the second group and locally in the third group after surgery. On the 15th and 30th days, the rats were sacrificed, and their Achilles tendons were subjected to biomechanical testing and histopathological evaluation. RESULTS: Histopathologically, there were no significant differences among the groups on the 15th day. However, on the 30th day, the locally applied papaverine group exhibited superior histopathological outcomes compared to the control group (p<0.05). Concerning the highest tensile strength values before rupture, the biomechanical assessment showed that the group receiving local papaverine treatment in the early period and both the group with systemic papaverine treatment and the one with local papaverine treatment in the late period displayed a statistically significant advantage compared to the control group (p<0.05). CONCLUSION: Locally administered papaverine has positive biomechanical effects in the early period and exhibits a positive correlation both histopathologically and biomechanically in the late period. Novel therapeutic options may be provided for patients through these findings.


Assuntos
Tendão do Calcâneo , Papaverina , Ratos Sprague-Dawley , Traumatismos dos Tendões , Cicatrização , Animais , Tendão do Calcâneo/lesões , Tendão do Calcâneo/efeitos dos fármacos , Tendão do Calcâneo/patologia , Tendão do Calcâneo/cirurgia , Papaverina/farmacologia , Papaverina/administração & dosagem , Papaverina/uso terapêutico , Masculino , Aderências Teciduais/tratamento farmacológico , Aderências Teciduais/patologia , Cicatrização/efeitos dos fármacos , Traumatismos dos Tendões/tratamento farmacológico , Traumatismos dos Tendões/patologia , Traumatismos dos Tendões/cirurgia , Ratos , Resistência à Tração/efeitos dos fármacos , Injeções Intraperitoneais , Fenômenos Biomecânicos/efeitos dos fármacos , Modelos Animais de Doenças
11.
AAPS PharmSciTech ; 25(5): 101, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714629

RESUMO

BACKGROUND: Niacin, an established therapeutic for dyslipidemia, is hindered by its propensity to induce significant cutaneous flushing when administered orally in its unmodified state, thereby constraining its clinical utility. OBJECTIVE: This study aimed to fabricate, characterize, and assess the in-vitro and in-vivo effectiveness of niacin-loaded polymeric films (NLPFs) comprised of carboxymethyl tamarind seed polysaccharide. The primary objective was to mitigate the flushing-related side effects associated with oral niacin administration. METHODS: NLPFs were synthesized using the solvent casting method and subsequently subjected to characterization, including assessments of tensile strength, moisture uptake, thickness, and folding endurance. Surface characteristics were analyzed using a surface profiler and scanning electron microscopy (SEM). Potential interactions between niacin and the polysaccharide core were investigated through X-ray diffraction experiments (XRD) and Fourier transform infrared spectroscopy (FTIR). The viscoelastic properties of the films were explored using a Rheometer. In-vitro assessments included drug release studies, swelling behavior assays, and antioxidant assays. In-vivo efficacy was evaluated through skin permeation assays, skin irritation assays, and histopathological analyses. RESULTS: NLPFs exhibited a smooth texture with favorable tensile strength and moisture absorption capabilities. Niacin demonstrated interaction with the polysaccharide core, rendering the films amorphous. The films displayed slow and sustained drug release, exceptional antioxidant properties, optimal swelling behavior, and viscoelastic characteristics. Furthermore, the films exhibited biocompatibility and non-toxicity towards skin cells. CONCLUSION: NLPFs emerged as promising carrier systems for the therapeutic transdermal delivery of niacin, effectively mitigating its flushing-associated adverse effects.


Assuntos
Administração Cutânea , Liberação Controlada de Fármacos , Niacina , Polissacarídeos , Ratos Wistar , Absorção Cutânea , Pele , Animais , Ratos , Niacina/administração & dosagem , Niacina/química , Niacina/farmacologia , Polissacarídeos/química , Polissacarídeos/administração & dosagem , Polissacarídeos/farmacologia , Pele/metabolismo , Pele/efeitos dos fármacos , Absorção Cutânea/efeitos dos fármacos , Rubor/induzido quimicamente , Resistência à Tração , Masculino , Sistemas de Liberação de Medicamentos/métodos , Tamarindus/química , Polímeros/química
12.
J Appl Biomater Funct Mater ; 22: 22808000231214359, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38702952

RESUMO

Exploring high strength materials with a higher concentration of reinforcements in the alloy proves to be a challenging task. This research has explored magnesium-based composites (AZ31B alloy) with tungsten carbide reinforcements, enhancing strength for medical joint replacements via league championship optimisation. The primary objective is to enhance medical joint replacement biomaterials employing magnesium-based composites, emphasising the AZ31B alloy with tungsten carbide reinforcements. The stir casting method is utilised in the manufacture of magnesium matrix composites (MMCs), including varied percentages of tungsten carbide (WC). The mechanical characteristics, such as micro-hardness, tensile strength, and yield strength, have been assessed and compared with computational simulations. The wear studies have been carried out to analyse the tribological behaviour of the composites. Additionally, this study investigates the prediction of stress and the distribution of forces inside bone and joint structures, therefore offering significant contributions to the field of biomedical research. This research contemplates the use of magnesium-based MMCs for the discovery of biomaterials suitable for medical joint replacement. The study focuses on the magnesium alloy AZ31B, with particles ranging in size from 40 to 60 microns used as the matrix material. Moreover, the outcomes have revealed that when combined with MMCs based on AZ31B-magnesium matrix, the WC particle emerges as highly effective reinforcements for the fabrication of lightweight, high-strength biomedical composites. This study uses the league championship optimisation (LCO) approach to identify critical variables impacting the synthesis of Mg MMCs from an AZ31B-based magnesium alloy. The scanning electron microscopy (SEM) images are meticulously analysed to depict the dispersion of WC particulates and the interface among the magnesium (Mg) matrix and WC reinforcement. The SEM analysis has explored the mechanisms underlying particle pull-out, the characteristics of inter-particle zones, and the influence of the AZ31B matrix on the enhancement of the mechanical characteristics of the composites. The application of finite element analysis (FEA) is being used in order to make predictions regarding the distribution of stress and the interactions of forces within the model of the hip joint. This study has compared the physico-mechanical and tribological characteristics of WC to distinct combinations of 0%, 5%, 10% and 15%, and its impact on the performance improvements. SEM analysis has confirmed the findings' improved strength and hardness, particularly when 10%-15% of WC was incorporated. Following the incorporation of 10% of WC particles within Mg-alloy matrix, the outcomes of the study has exhibited enhanced strength and hardness, which furthermore has been evident by utilising SEM analysis. Using ANSYS, structural deformation and stress levels are predicted, along with strength characteristics such as additional hardness of 71 HRC, tensile strength of 140-150 MPa, and yield strength closer to 100-110 MPa. The simulations yield significant insights into the behaviour of the joint under various loading conditions, thus enhancing the study's significance in biomedical environments.


Assuntos
Ligas , Magnésio , Teste de Materiais , Ligas/química , Magnésio/química , Compostos de Tungstênio/química , Materiais Biocompatíveis/química , Humanos , Resistência à Tração , Articulação do Quadril
13.
Med Eng Phys ; 127: 104158, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38692761

RESUMO

BACKGROUND: The intervertebral disc exhibits not only strain rate dependence (viscoelasticity), but also significant asymmetry under tensile and compressive loads, which is of great significance for understanding the mechanism of lumbar disc injury under physiological loads. OBJECTIVE: In this study, the strain rate sensitive and tension-compression asymmetry of the intervertebral disc were analyzed by experiments and constitutive equation. METHOD: The Sheep intervertebral disc samples were divided into three groups, in order to test the strain rate sensitive mechanical behavior, and the internal displacement as well as pressure distribution. RESULTS: The tensile stiffness is one order of magnitude smaller than the compression stiffness, and the logarithm of the elastic modulus is approximately linear with the logarithm of the strain rate, showing obvious tension-compression asymmetry and rate-related characteristics. In addition, the sensitivity to the strain rate is the same under these two loading conditions. The stress-strain curves of unloading and loading usually do not coincide, and form a Mullins effect hysteresis loop. The radial displacement distribution is opposite between the anterior and posterior region, which is consistent with the stress distribution. By introducing the damage factor into ZWT constitutive equation, the rate-dependent viscoelastic and weakening behavior of the intervertebral disc can be well described.


Assuntos
Força Compressiva , Disco Intervertebral , Estresse Mecânico , Animais , Disco Intervertebral/fisiologia , Ovinos , Fenômenos Biomecânicos , Resistência à Tração , Suporte de Carga , Elasticidade
14.
Sci Rep ; 14(1): 10825, 2024 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734808

RESUMO

This study developed a kind of PEG-crosslinked O-carboxymethyl chitosan (O-CMC-PEG) with various PEG content for food packaging. The crosslinking agent of isocyanate-terminated PEG was firstly synthesized by a simple condensation reaction between PEG and excess diisocyanate, then the crosslink between O-carboxymethyl chitosan (O-CMC) and crosslinking agent occurred under mild conditions to produce O-CMC-PEG with a crosslinked structure linked by urea bonds. FT-IR and 1H NMR techniques were utilized to confirm the chemical structures of the crosslinking agent and O-CMC-PEGs. Extensive research was conducted to investigate the impact of the PEG content (or crosslinking degree) on the physicochemical characteristics of the casted O-CMC-PEG films. The results illuminated that crosslinking and components compatibility could improve their tensile features and water vapor barrier performance, while high PEG content played the inverse effects due to the microphase separation between PEG and O-CMC segments. The in vitro degradation rate and water sensitivity primarily depended on the crosslinking degree in comparison with the PEG content. Furthermore, caused by the remaining -NH2 groups of O-CMC, the films demonstrated antibacterial activity against Escherichia coli and Staphylococcus aureus. When the PEG content was 6% (medium crosslinking degree), the prepared O-CMC-PEG-6% film possessed optimal tensile features, high water resistance, appropriate degradation rate, low water vapor transmission rate and fine broad-spectrum antibacterial capacity, manifesting a great potential for application in food packaging to extend the shelf life.


Assuntos
Antibacterianos , Quitosana , Escherichia coli , Embalagem de Alimentos , Polietilenoglicóis , Quitosana/química , Quitosana/análogos & derivados , Quitosana/farmacologia , Embalagem de Alimentos/métodos , Antibacterianos/química , Antibacterianos/farmacologia , Polietilenoglicóis/química , Escherichia coli/efeitos dos fármacos , Reagentes de Ligações Cruzadas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Resistência à Tração
15.
Molecules ; 29(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38731542

RESUMO

Bilayer electrospun fibers aimed to be used for skin tissue engineering applications were fabricated for enhanced cell attachment and proliferation. Different ratios of PHBV-PLLA (70:30, 80:20, and 90:10 w/w) blends were electrospun on previously formed electrospun PHBV membranes to produce their bilayers. The fabricated electrospun membranes were characterized with FTIR, which conformed to the characteristic peaks assigned for both PHBV and PLLA. The surface morphology was evaluated using SEM analysis that showed random fibers with porous morphology. The fiber diameter and pore size were measured in the range of 0.7 ± 0.1 µm and 1.9 ± 0.2 µm, respectively. The tensile properties of the bilayers were determined using an electrodynamic testing system. Bilayers had higher elongation at break (44.45%) compared to the monolayers (28.41%) and improved ultimate tensile strength (7.940 MPa) compared to the PHBV monolayer (2.450 MPa). In vitro cytotoxicity of each of the scaffolds was determined via culturing MC3T3 (pre-osteoblastic cell line) on the membranes. Proliferation was evaluated using the Alamar Blue assay on days 3, 7, and 14, respectively. SEM images of cells cultured on membranes were taken in addition to bright field imaging to visually show cell attachment. Fluorescent nuclear staining performed with DAPI was imaged with an inverted fluorescent microscope. The fabricated bilayer shows high mechanical strength as well as biocompatibility with good cell proliferation and cell attachment, showing potential for skin substitute applications.


Assuntos
Materiais Biocompatíveis , Proliferação de Células , Poliésteres , Pele , Engenharia Tecidual , Alicerces Teciduais , Engenharia Tecidual/métodos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Poliésteres/química , Animais , Camundongos , Proliferação de Células/efeitos dos fármacos , Alicerces Teciduais/química , Resistência à Tração , Membranas Artificiais , Linhagem Celular , Teste de Materiais , Polímeros/química , Adesão Celular/efeitos dos fármacos
16.
ACS Biomater Sci Eng ; 10(5): 2925-2934, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38587986

RESUMO

Spider dragline (major ampullate) silk is one of the toughest known fibers in nature and exhibits an excellent combination of high tensile strength and elasticity. Increasing evidence has indicated that preassembly plays a crucial role in facilitating the proper assembly of silk fibers by bridging the mesoscale gap between spidroin molecules and the final strong fibers. However, it remains challenging to control the preassembly of spidroins and investigate its influence on fiber structural and mechanical properties. In this study, we explored to bridge this gap by modulating the polyalanine (polyA) motifs in repetitive region of spidroins to tune their preassemblies in aqueous dope solutions. Three biomimetic silk proteins with varying numbers of alanine residues in polyA motif and comparable molecular weights were designed and biosynthesized, termed as N16C-5A, N15C-8A, and N13C-12A, respectively. It was found that all three proteins could form nanofibril assemblies in the concentrated aqueous dopes, but the size and structural stability of the fibrils were distinct from each other. The silk protein N15C-8A with 8 alanine residues in polyA motif allowed for the formation of stable nanofibril assemblies with a length of approximately 200 nm, which were not prone to disassemble or aggregate as that of N16C-5A and N13C-12A. More interestingly, the stable fibril assembly of N15C-8A enabled spinning of simultaneously strong (623.3 MPa) and tough (107.1 MJ m-3) synthetic fibers with fine molecular orientation and close interface packing of fibril bundles. This work highlights that modulation of polyA motifs is a feasible way to tune the morphology and stability of the spidroin preassemblies in dope solutions, thus controlling the structural and mechanical properties of the resulting fibers.


Assuntos
Fibroínas , Peptídeos , Resistência à Tração , Fibroínas/química , Fibroínas/genética , Peptídeos/química , Seda/química , Animais , Motivos de Aminoácidos , Nanofibras/química , Aranhas/química
17.
Int J Biol Macromol ; 267(Pt 1): 131292, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580015

RESUMO

To enhance the water-resistance and antibacterial properties of KGM films, mandarin oil (MO), was directly emulsified by pectin and then dispersed to the KGM matrix. The effect of MO concentration (0, 0.5, 1.0, 1.5, and 2 wt%) on the performance of the film-forming emulsions as well as the emulsion films was investigated. The results revealed that pectin could encapsulate and protect MO, and KGM as film matrix could further contributed to the high stability of the film-forming emulsions. The FT-IR, XRD, and SEM suggested that MO stabilized by pectin was uniformly distributed in the KGM matrix. The compatibility and good interaction between KGM and pectin contributed to highly dense and compact structure. Furthermore, increasing the concentration of MO effectively improved water-resistance, oxygen barrier, and antimicrobial activity of the KGM based films. The 1.5 wt% MO loaded KGM film had the highest tensile strength (72.22 MPa) and water contact angle (θ = 95.73°), reduced the WVP and oxygen permeability by about 25.8 % and 32.8 times, respectively, prolonged the shelf life of strawberries for 8 days. As demonstrated, the 1.5 wt% MO-loaded KGM film has considerable potential for high-performance natural biodegradable active films to ensure food safety and reduce environmental impacts.


Assuntos
Emulsões , Frutas , Mananas , Pectinas , Pectinas/química , Emulsões/química , Frutas/química , Mananas/química , Permeabilidade , Embalagem de Alimentos/métodos , Conservação de Alimentos/métodos , Resistência à Tração , Antibacterianos/química , Antibacterianos/farmacologia , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Água/química
18.
Int J Biol Macromol ; 267(Pt 1): 131402, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582462

RESUMO

This study investigates how wheat gluten (WG) films in the presence of salicylic acid are influenced by thermal pretreatment. Unlike previous methods conducted at low moisture content, our procedure involves pretreating WG at different temperatures (65 °C, 75 °C, and 85 °C), in a solution with salicylic acid. This pretreatment aims to enhance protein unfolding, thus providing more opportunities for protein-protein interactions during the subsequent solvent casting into films. A significant increase in ß-sheet structures was observed in FTIR spectra of samples pretreated at 75 °C and 85 °C, showing a prominent peak in the range of 1630-1640 cm-1. The pretreatment at 85 °C was found to be effective in improving the water resistivity of the films by up to 247 %. Moreover, it led to a significant enhancement of 151 % in tensile strength and a 45 % increase in the elastic modulus. The reduced solubility observed in films derived from pretreated WG suggests the development of an intricate protein network arising from protein-protein interactions during the pretreatment and film formation. Thermal pretreatment at 85 °C significantly enhances the structural and mechanical properties of WG films, including improved water resistivity, tensile strength, and intricate protein network formation.


Assuntos
Glutens , Temperatura Alta , Ácido Salicílico , Resistência à Tração , Ácido Salicílico/química , Glutens/química , Solubilidade , Água/química , Triticum/química , Espectroscopia de Infravermelho com Transformada de Fourier
19.
Int J Biol Macromol ; 267(Pt 1): 131406, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582472

RESUMO

Starch and plant fibers are abundant natural polymers that offer biodegradability, making them potential substitutes for plastics in certain applications, but are usually limited by its high hydrophilicity, and low mechanical performance. To address this issue, polylactic acid (PLA) is blended with cellulose and chitosan to create a waterproof film that can be applied to starch-fiber foaming biodegradable composites to enhance their water resistance properties. Here, plant fibers as a reinforcement is incorporated to the modified starch by foaming mold at 260 °C, and PLA based hydrophobic film is coated onto the surface to prepare the novel hydrophobic bio-composites. The developed bio-composite exhibits comprehensive water barrier properties, which is significantly better than that of traditional starch and cellulose based materials. Introducing PLA films decreases water vapor permeability from 766.83 g/m2·24h to 664.89 g/m2·24h, and reduce hysteresis angles from 15.57° to 8.59° within the first five minutes after exposure to moisture. The water absorption rate of PLA films also decreases significantly from 12.3 % to 7.9 %. Additionally, incorporating hydrophobic films not only enhances overall waterproof performance but also improves mechanical properties of the bio-composites. The fabricated bio-composite demonstrates improved tensile strength from 2.09 MPa to 3.53 MPa.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Poliésteres , Amido , Resistência à Tração , Água , Poliésteres/química , Amido/química , Água/química , Permeabilidade , Quitosana/química , Celulose/química , Vapor , Propriedades de Superfície
20.
Int J Biol Macromol ; 267(Pt 1): 131374, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582474

RESUMO

Frequent change of wound dressings introduces wound inflammation and infections. In this study, we electrospun phenytoin (PHT) loaded ethyl cellulose (EC) microfibers and solvent cast tetracycline hydrochloride (TCH) loaded carboxymethyl cellulose (CMC) films with the aim to demonstrate tailorable in vitro drug release behaviors suitable for long-term use of wound dressings. Results from tensile testing showed a significant decrease in average elastic moduli from 8.8 ± 0.6 to 3.3 ± 0.3 MPa after incorporating PHT into EC fibers. PHT-loaded EC fibers displayed a slow and zero-ordered release up to 80 % of the total drug at 48 h, while TCH-loaded CMC films demonstrated a rapid and complete release within 30 min. Furthermore, drug-loaded EC/CMC composites were fabricated into fiber-in-film and fiber-on-film composites. Fiber-in-film composites showed stage release of TCH and PHT at 8 h, while fiber-on-film composites demonstrated simultaneous release of PHT and TCH with a prolonged release of TCH from CMC films. In general, electrospun PHT-loaded EC microfibers, solvent cast TCH-loaded CMC films, and their composites were studied to provide a fundamental scientific understanding on the novelty of the ability to modulate drug release characteristics based on the composite designs.


Assuntos
Carboximetilcelulose Sódica , Celulose , Celulose/análogos & derivados , Liberação Controlada de Fármacos , Celulose/química , Carboximetilcelulose Sódica/química , Solventes/química , Fenitoína/química , Tetraciclina/química , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA