Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Elife ; 122024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38913408

RESUMO

Allosteric cooperativity between ATP and substrates is a prominent characteristic of the cAMP-dependent catalytic subunit of protein kinase A (PKA-C). This long-range synergistic action is involved in substrate recognition and fidelity, and it may also regulate PKA's association with regulatory subunits and other binding partners. To date, a complete understanding of this intramolecular mechanism is still lacking. Here, we integrated NMR(Nuclear Magnetic Resonance)-restrained molecular dynamics simulations and a Markov State Model to characterize the free energy landscape and conformational transitions of PKA-C. We found that the apoenzyme populates a broad free energy basin featuring a conformational ensemble of the active state of PKA-C (ground state) and other basins with lower populations (excited states). The first excited state corresponds to a previously characterized inactive state of PKA-C with the αC helix swinging outward. The second excited state displays a disrupted hydrophobic packing around the regulatory (R) spine, with a flipped configuration of the F100 and F102 residues at the αC-ß4 loop. We validated the second excited state by analyzing the F100A mutant of PKA-C, assessing its structural response to ATP and substrate binding. While PKA-CF100A preserves its catalytic efficiency with Kemptide, this mutation rearranges the αC-ß4 loop conformation, interrupting the coupling of the two lobes and abolishing the allosteric binding cooperativity. The highly conserved αC-ß4 loop emerges as a pivotal element to control the synergistic binding of nucleotide and substrate, explaining how mutations or insertions near or within this motif affect the function and drug sensitivity in homologous kinases.


Assuntos
Simulação de Dinâmica Molecular , Regulação Alostérica , Trifosfato de Adenosina/metabolismo , Domínio Catalítico , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/química , Proteínas Quinases Dependentes de AMP Cíclico/genética , Conformação Proteica , Ligação Proteica , Nucleotídeos/metabolismo , Especificidade por Substrato , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/química , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética
2.
Biochem J ; 478(11): 2101-2119, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-34115095

RESUMO

3',5'-cyclic adenosine monophosphate (cAMP) dependent protein kinase or protein kinase A (PKA) has served as a prototype for the large family of protein kinases that are crucially important for signal transduction in eukaryotic cells. The PKA catalytic subunits are encoded by the two major genes PRKACA and PRKACB, respectively. The PRKACA gene encodes two known splice variants, the ubiquitously expressed Cα1 and the sperm-specifically expressed Cα2. In contrast, the PRKACB gene encodes several splice variants expressed in a highly cell and tissue-specific manner. The Cß proteins are called Cß1, Cß2, Cß3, Cß4 and so-called abc variants of Cß3 and Cß4. Whereas Cß1 is ubiquitously expressed, Cß2 is enriched in immune cells and the Cß3, Cß4 and their abc variants are solely expressed in neuronal cells. All Cα and Cß splice variants share a kinase-conserved catalytic core and a C-terminal tail encoded by exons 2 through 10 in the PRKACA and PRKACB genes, respectively. All Cα and Cß splice variants with the exception of Cα1 and Cß1 are hyper-variable at the N-terminus. Here, we will discuss how the PRKACA and PRKACB genes have developed as paralogs that encode distinct and functionally non-redundant proteins. The fact that Cα and Cß splice variant mutations are associated with numerous diseases further opens new windows for PKA-induced disease pathologies.


Assuntos
Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/química , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Mutação , Neoplasias/patologia , Sequência de Aminoácidos , Animais , Domínio Catalítico , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Éxons , Humanos , Neoplasias/enzimologia , Neoplasias/genética , Homologia de Sequência , Transdução de Sinais
3.
PLoS Biol ; 19(4): e3001191, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33886552

RESUMO

The Hedgehog (Hh) pathway is essential for organ development, homeostasis, and regeneration. Dysfunction of this cascade drives several cancers. To control expression of pathway target genes, the G protein-coupled receptor (GPCR) Smoothened (SMO) activates glioma-associated (GLI) transcription factors via an unknown mechanism. Here, we show that, rather than conforming to traditional GPCR signaling paradigms, SMO activates GLI by binding and sequestering protein kinase A (PKA) catalytic subunits at the membrane. This sequestration, triggered by GPCR kinase (GRK)-mediated phosphorylation of SMO intracellular domains, prevents PKA from phosphorylating soluble substrates, releasing GLI from PKA-mediated inhibition. Our work provides a mechanism directly linking Hh signal transduction at the membrane to GLI transcription in the nucleus. This process is more fundamentally similar between species than prevailing hypotheses suggest. The mechanism described here may apply broadly to other GPCR- and PKA-containing cascades in diverse areas of biology.


Assuntos
Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/antagonistas & inibidores , Proteínas Hedgehog/metabolismo , Receptor Smoothened/fisiologia , Animais , Animais Geneticamente Modificados , Domínio Catalítico/genética , Células Cultivadas , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/química , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Embrião não Mamífero , Células HEK293 , Proteínas Hedgehog/genética , Humanos , Camundongos , Domínios e Motivos de Interação entre Proteínas/genética , Transdução de Sinais/genética , Receptor Smoothened/metabolismo , Peixe-Zebra
4.
Am J Hum Genet ; 107(5): 977-988, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33058759

RESUMO

PRKACA and PRKACB code for two catalytic subunits (Cα and Cß) of cAMP-dependent protein kinase (PKA), a pleiotropic holoenzyme that regulates numerous fundamental biological processes such as metabolism, development, memory, and immune response. We report seven unrelated individuals presenting with a multiple congenital malformation syndrome in whom we identified heterozygous germline or mosaic missense variants in PRKACA or PRKACB. Three affected individuals were found with the same PRKACA variant, and the other four had different PRKACB mutations. In most cases, the mutations arose de novo, and two individuals had offspring with the same condition. Nearly all affected individuals and their affected offspring shared an atrioventricular septal defect or a common atrium along with postaxial polydactyly. Additional features included skeletal abnormalities and ectodermal defects of variable severity in five individuals, cognitive deficit in two individuals, and various unusual tumors in one individual. We investigated the structural and functional consequences of the variants identified in PRKACA and PRKACB through the use of several computational and experimental approaches, and we found that they lead to PKA holoenzymes which are more sensitive to activation by cAMP than are the wild-type proteins. Furthermore, expression of PRKACA or PRKACB variants detected in the affected individuals inhibited hedgehog signaling in NIH 3T3 fibroblasts, thereby providing an underlying mechanism for the developmental defects observed in these cases. Our findings highlight the importance of both Cα and Cß subunits of PKA during human development.


Assuntos
Anormalidades Múltiplas/genética , Disfunção Cognitiva/genética , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Dedos/anormalidades , Mutação em Linhagem Germinativa , Defeitos dos Septos Cardíacos/genética , Polidactilia/genética , Dedos do Pé/anormalidades , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/patologia , Adolescente , Adulto , Animais , Sequência de Bases , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/patologia , AMP Cíclico/metabolismo , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/química , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/deficiência , Feminino , Dedos/patologia , Regulação da Expressão Gênica no Desenvolvimento , Defeitos dos Septos Cardíacos/diagnóstico , Defeitos dos Septos Cardíacos/patologia , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Holoenzimas/química , Holoenzimas/deficiência , Holoenzimas/genética , Humanos , Recém-Nascido , Masculino , Camundongos , Modelos Moleculares , Mosaicismo , Células NIH 3T3 , Linhagem , Polidactilia/diagnóstico , Polidactilia/patologia , Estrutura Secundária de Proteína , Dedos do Pé/patologia
5.
Biosci Biotechnol Biochem ; 84(9): 1839-1845, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32507034

RESUMO

Recently, a mutation was discovered in the gene PRKACB encoding the catalytic subunit ß of PKA (PKAcß) from a patient with severe Cushing's syndrome. This mutation, S54L, leads to a structural change in the glycine-rich loop of the protein. In the present study, an inhibitor with six-fold selectivity toward S54L-PKAcß mutant over the wild-type enzyme was constructed. Moreover, we developed a fluorescent assay allowing to determine side by side the affinity of commercially available PKA inhibitors, newly synthesized compounds, and fluorescent probes toward PKAcß and S54L-PKAcß.


Assuntos
Adenoma/genética , Adenoma/metabolismo , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/antagonistas & inibidores , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/química , Inibidores Enzimáticos/farmacologia , Corantes Fluorescentes/química , Hidrocortisona/biossíntese , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Humanos , Mutação
6.
Biochim Biophys Acta Proteins Proteom ; 1868(8): 140427, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32283249

RESUMO

We show that the antibody, clone mAb(D38C6), of the α isoform of the catalytic subunit of PKA (PKAcα) inhibits the kinase-catalyzed phosphorylation with low-nanomolar inhibitory potency (Ki = 2.4 nM). This property of the antibody was established by its capacity to displace a synthetic small-molecule active site-binding (orthosteric) photoluminescent ARC-Lum(Fluo) probe from the complex with PKAcα. Likely, the competitiveness of association of the two binders with the protein is coming from two excluding conformations of PKAcα to which the binders bind. mAb(D38C6) possesses a linear peptide epitope and it binds to the disordered C-tail of unliganded inactive conformer of PKAcα. ARC-Lum(Fluo) probes bind to the ordered and active conformation of PKAcα with Phe327 residue from the C-tail taking part in the formation of the active core. Consecutive application of these competitive PKAcα binders was used to develop an immunoassay allowing the determination of PKAcα concentration in complex biological solutions. At first, PKAcα was captured from the solution by the isoform-specific antibody and thereafter a high-affinity ARC-Lum(Fluo) probe was used to displace PKAcα from the binary complex. The developed immunoassay could be used for quantification of small amounts (starting from 93 pg, 2.3 fmol) of PKAcα in cell lysates.


Assuntos
Anticorpos Monoclonais/química , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/análise , Imunoensaio , Sondas Moleculares/química , Peptídeos/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Especificidade de Anticorpos , Sítios de Ligação , Ligação Competitiva , Linhagem Celular Tumoral , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/química , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Células HeLa , Humanos , Cinética , Medições Luminescentes , Modelos Moleculares , Peptídeos/metabolismo , Fosforilação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína
7.
J Cell Biochem ; 120(8): 13783-13791, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30938854

RESUMO

The chimeric DnaJ-PKAc enzymeresulting from an approximately 400-kb deletion of chromosome 19 is a primary contributor to the oncogenic transformation that occurs in fibrolamellar hepatocellular carcinoma, also called fibrolamellar carcinoma (FLC). This oncogenic deletion juxtaposes exon 1 of the DNAJB1 heat shock protein gene with exon 2 of the PRKACA gene encoding the protein kinase A catalytic subunit, resulting in DnaJ-PKAc fusion under the transcriptional control of the DNAJB1 promoter. The expression of DnaJ-PKAc is approximately 10 times that of wild-type (wt) PKAc catalytic subunits, causing elevated and dysregulated kinase activity that contributes to oncogenic transformation. In normal cells, PKAc activity is regulated by a group of endogenous proteins, termed protein kinase inhibitors (PKI) that competitively inhibit PKAc and assist with the nuclear export of the enzyme. Currently, it is scarcely known whether interactions with PKI are perturbed in DnaJ-PKAc. In this report, we survey existing data sets to assess the expression levels of the various PKI isoforms that exist in humans to identify those that are candidates to encounter DnaJ-PKAc in both normal liver and FLC tumors. We then compare inhibition profiles of wtPKAc and DnaJ-PKAc against PKI and demonstrate that extensive structural homology in the active site clefts of the two enzymes confers similar kinase activities and inhibition by full-length PKI and PKI-derived peptides.


Assuntos
Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico , Proteínas de Choque Térmico HSP40 , Proteínas de Fusão Oncogênica , Peptídeos/química , Inibidores de Proteínas Quinases/química , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/antagonistas & inibidores , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/química , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Proteínas de Choque Térmico HSP40/antagonistas & inibidores , Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP40/genética , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Proteínas de Fusão Oncogênica/antagonistas & inibidores , Proteínas de Fusão Oncogênica/química , Proteínas de Fusão Oncogênica/genética
8.
Protein J ; 38(2): 181-189, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30719619

RESUMO

The purification of phosphorylated proteins in a folded state and in large enough quantity for biochemical or biophysical analysis remains a challenging task. Here, we develop a new implementation of the method of gallium immobilized metal chromatography (Ga3+-IMAC) as to permit the selective enrichment of phosphoproteins in the milligram scale and under native conditions using automated FPLC instrumentation. We apply this method to the purification of the UN2A and M1M2 components of the muscle protein titin upon being monophosphorylated in vitro by cAMP-dependent protein kinase (PKA). We found that UN2A is phosphorylated by PKA at its C-terminus in residue S9578 and M1M2 is phosphorylated in its interdomain linker sequence at position T32607. We demonstrate that the Ga3+-IMAC method is efficient, economical and suitable for implementation in automated purification pipelines for recombinant proteins. The procedure can be applied both to the selective enrichment and to the removal of phosphoproteins from biochemical samples.


Assuntos
Cromatografia de Afinidade/métodos , Conectina/biossíntese , Conectina/isolamento & purificação , Fosfoproteínas/biossíntese , Fosfoproteínas/isolamento & purificação , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/química , Escherichia coli/genética , Gálio/química , Fosforilação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação
9.
Proc Natl Acad Sci U S A ; 115(15): 3852-3857, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29581285

RESUMO

Substrate binding cooperativity in protein kinase A (PKA) seems to involve allosteric coupling between the two binding sites. It received significant attention, but its molecular basis still remains not entirely clear. Based on long molecular dynamics of PKA and its complexes, we characterized an allosteric pathway that links ATP binding to the redistribution of states adopted by a protein substrate positioning segment in favor of those that warrant correct binding. We demonstrate that the cooperativity mechanism critically depends on the presence of water in two distinct, buried hydration sites. One holds just a single water molecule, which acts as a switchable hydrogen bond bridge along the allosteric pathway. The second, filled with partially disordered solvent, is essential for providing a smooth free energy landscape underlying conformational transitions of the peptide binding region. Our findings remain in agreement with experimental data, also concerning the cooperativity abolishing effect of the Y204A mutation, and indicate a plausible molecular mechanism contributing to experimentally observed binding cooperativity of the two substrates.


Assuntos
Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/química , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Água/metabolismo , Regulação Alostérica , Motivos de Aminoácidos , Animais , Sítios de Ligação , Biocatálise , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Ligação de Hidrogênio , Camundongos , Simulação de Dinâmica Molecular , Mutação , Água/química
10.
Sci Rep ; 8(1): 720, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29335433

RESUMO

In fibrolamellar hepatocellular carcinoma a single genetic deletion results in the fusion of the first exon of the heat shock protein 40, DNAJB1, which encodes the J domain, with exons 2-10 of the catalytic subunit of protein kinase A, PRKACA. This produces an enzymatically active chimeric protein J-PKAcα. We used molecular dynamics simulations and NMR to analyze the conformational landscape of native and chimeric kinase, and found an ensemble of conformations. These ranged from having the J-domain tucked under the large lobe of the kinase, similar to what was reported in the crystal structure, to others where the J-domain was dislodged from the core of the kinase and swinging free in solution. These simulated dislodged states were experimentally captured by NMR. Modeling of the different conformations revealed no obvious steric interactions of the J-domain with the rest of the RIIß holoenzyme.


Assuntos
Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/química , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Carcinoma Hepatocelular/patologia , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Humanos , Neoplasias Hepáticas/patologia , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Conformação Proteica
11.
Curr Opin Struct Biol ; 47: 123-130, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28865247

RESUMO

Modern interpretations of allostery typically rely on conformational ensembles to describe enzyme function. Conformational motions controlling these ensembles are often stimulated or quenched by allosteric effectors, and are critical to optimizing ligand binding pockets and enzyme architectures. Thus, enzymes rely on dynamic allosteric pathways that transmit long-range binding information to control catalysis. In this review, we provide a brief discussion of the ever-expanding principles of allosteric regulation in enzyme catalysis and highlight in-depth studies of three enzymes that have contributed to the paradigms of dynamic allostery.


Assuntos
Regulação Alostérica , Enzimas/química , Enzimas/metabolismo , Conformação Proteica , Sítio Alostérico , Aminoidrolases/química , Aminoidrolases/metabolismo , Catálise , Domínio Catalítico , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/química , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteína Tirosina Fosfatase não Receptora Tipo 1/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Relação Estrutura-Atividade
12.
Proc Natl Acad Sci U S A ; 114(38): E7959-E7968, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28855336

RESUMO

The catalytic subunit of PKA (PKAc) exhibits three major conformational states (open, intermediate, and closed) during the biocatalysis process. Both ATP and substrate/inhibitor can effectively induce the conformational changes of PKAc from open to closed states. Aiming to explore the mechanism of this allosteric regulation, we developed a coarse-grained model and analyzed the dynamics of conformational changes of PKAc during binding by performing molecular dynamics simulations for apo PKAc, binary PKAc (PKAc with ATP, PKAc with PKI), and ternary PKAc (PKAc with ATP and PKI). Our results suggest a mixed binding mechanism of induced fit and conformational selection, with the induced fit dominant. The ligands can drive the movements of Gly-rich loop as well as some regions distal to the active site in PKAc and stabilize them at complex state. In addition, there are two parallel pathways (pathway with PKAc-ATP as an intermediate and pathway PKAc-PKI as an intermediate) during the transition from open to closed states. By molecular dynamics simulations and rate constant analyses, we find that the pathway through PKAc-ATP intermediate is the main binding route from open to closed state because of the fact that the bound PKI will hamper ATP from successful binding and significantly increase the barrier for the second binding subprocess. These findings will provide fundamental insights of the mechanisms of PKAc conformational change upon binding.


Assuntos
Trifosfato de Adenosina/química , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/química , Simulação de Dinâmica Molecular , Trifosfato de Adenosina/metabolismo , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Humanos , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína
13.
Biochemistry ; 56(30): 3885-3888, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28661131

RESUMO

We identify a previously unresolved, unrecognized, and highly stable conformation of the protein kinase A (PKA) regulatory subunit RIα. This conformation, which we term the "Flipback" structure, bridges conflicting characteristics in crystallographic structures and solution experiments of the PKA RIα heterotetramer. Our simulations reveal a hinge residue, G235, in the B/C helix that is conserved through all isoforms of RI. Brownian dynamics simulations suggest that the Flipback conformation plays a role in cAMP association to the A domain of the R subunit.


Assuntos
Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/química , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/química , AMP Cíclico/química , Modelos Moleculares , Motivos de Aminoácidos , Substituição de Aminoácidos , Animais , Bovinos , Sequência Conservada , AMP Cíclico/metabolismo , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Bases de Dados de Proteínas , Ativação Enzimática , Estabilidade Enzimática , Glicina/química , Holoenzimas , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação Puntual , Conformação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
14.
Sci Adv ; 3(4): e1600663, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28435869

RESUMO

Eukaryotic protein kinases (EPKs) constitute a class of allosteric switches that mediate a myriad of signaling events. It has been postulated that EPKs' active and inactive states depend on the structural architecture of their hydrophobic cores, organized around two highly conserved spines: C-spine and R-spine. How the spines orchestrate the transition of the enzyme between catalytically uncommitted and committed states remains elusive. Using relaxation dispersion nuclear magnetic resonance spectroscopy, we found that the hydrophobic core of the catalytic subunit of protein kinase A, a prototypical and ubiquitous EPK, moves synchronously to poise the C subunit for catalysis in response to binding adenosine 5'-triphosphate. In addition to completing the C-spine, the adenine ring fuses the ß structures of the N-lobe and the C-lobe. Additional residues that bridge the two spines (I150 and V104) are revealed as part of the correlated hydrophobic network; their importance was validated by mutagenesis, which led to inactivation. Because the hydrophobic architecture of the catalytic core is conserved throughout the EPK superfamily, the present study suggests a universal mechanism for dynamically driven allosteric activation of kinases mediated by coordinated signal transmission through ordered motifs in their hydrophobic cores.


Assuntos
Trifosfato de Adenosina/química , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/química , Modelos Moleculares , Regulação Alostérica , Domínio Catalítico , Humanos , Interações Hidrofóbicas e Hidrofílicas , Ressonância Magnética Nuclear Biomolecular
15.
Biosci Biotechnol Biochem ; 80(9): 1759-67, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26979984

RESUMO

We studied the role of genes encoding the cAMP-dependent protein kinase A catalytic subunit (PKAc) in the ligninolytic system in Pleurotus ostreatus. The wild-type P. ostreatus strain PC9 has two PKAc-encoding genes: PKAc1 and PKAc2 (protein ID 114122 and 85056). In the current study, PKAc1 and PKAc2 were fused with a ß-tubulin promoter and introduced into strain PC9 to produce the overexpression strains PKAc1-97 and PKAc2-69. These strains showed significantly higher transcription levels of isozyme genes encoding lignin-modifying enzymes than strain PC9, but the specific gene expression patterns differed between the two recombinant strains. Both recombinants showed 2.05-2.10-fold faster degradation of beechwood lignin than strain PC9. These results indicate that PKAc plays an important role in inducing the wood degradation system in P. ostreatus.


Assuntos
Biodegradação Ambiental , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/biossíntese , Lignina/química , Pleurotus/enzimologia , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/química , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Isoenzimas/biossíntese , Isoenzimas/química , Isoenzimas/metabolismo , Pleurotus/genética
16.
Structure ; 24(3): 353-63, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26833386

RESUMO

The canonical function of kinases is to transfer a phosphoryl group to substrates, initiating a signaling cascade; while their non-canonical role is to bind other kinases or substrates, acting as scaffolds, competitors, and signal integrators. Here, we show how to uncouple kinases' dual function by tuning the binding cooperativity between nucleotide (or inhibitors) and substrate allosterically. We demonstrate this new concept for the C subunit of protein kinase A (PKA-C). Using thermocalorimetry and nuclear magnetic resonance, we found a linear correlation between the degree of cooperativity and the population of the closed state of PKA-C. The non-hydrolyzable ATP analog (ATPγC) does not follow this correlation, suggesting that changing the chemical groups around the phosphoester bond can uncouple kinases' dual function. Remarkably, this uncoupling was also found for two ATP-competitive inhibitors, H89 and balanol. Since the mechanism for allosteric cooperativity is not conserved in different kinases, these results may suggest new approaches for designing selective kinase inhibitors.


Assuntos
Trifosfato de Adenosina/metabolismo , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/química , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Nucleotídeos/metabolismo , Animais , Azepinas/farmacologia , Calorimetria , Domínio Catalítico , Humanos , Hidroxibenzoatos/farmacologia , Isoquinolinas/farmacologia , Imageamento por Ressonância Magnética , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Sulfonamidas/farmacologia
17.
J Biol Chem ; 291(12): 6182-99, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26797121

RESUMO

Morphology of migrating cells is regulated by Rho GTPases and fine-tuned by protein interactions and phosphorylation. PKA affects cell migration potentially through spatiotemporal interactions with regulators of Rho GTPases. Here we show that the endogenous regulatory (R) subunit of type I PKA interacts with P-Rex1, a Rac guanine nucleotide exchange factor that integrates chemotactic signals. Type I PKA holoenzyme interacts with P-Rex1 PDZ domains via the CNB B domain of RIα, which when expressed by itself facilitates endothelial cell migration. P-Rex1 activation localizes PKA to the cell periphery, whereas stimulation of PKA phosphorylates P-Rex1 and prevents its activation in cells responding to SDF-1 (stromal cell-derived factor 1). The P-Rex1 DEP1 domain is phosphorylated at Ser-436, which inhibits the DH-PH catalytic cassette by direct interaction. In addition, the P-Rex1 C terminus is indirectly targeted by PKA, promoting inhibitory interactions independently of the DEP1-PDZ2 region. A P-Rex1 S436A mutant construct shows increased RacGEF activity and prevents the inhibitory effect of forskolin on sphingosine 1-phosphate-dependent endothelial cell migration. Altogether, these results support the idea that P-Rex1 contributes to the spatiotemporal localization of type I PKA, which tightly regulates this guanine exchange factor by a multistep mechanism, initiated by interaction with the PDZ domains of P-Rex1 followed by direct phosphorylation at the first DEP domain and putatively indirect regulation of the C terminus, thus promoting inhibitory intramolecular interactions. This reciprocal regulation between PKA and P-Rex1 might represent a key node of integration by which chemotactic signaling is fine-tuned by PKA.


Assuntos
Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Membrana Celular/enzimologia , Movimento Celular , Quimiocina CXCL12/fisiologia , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/química , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/química , Células Endoteliais/fisiologia , Fatores de Troca do Nucleotídeo Guanina/química , Células HEK293 , Humanos , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Transporte Proteico , Transdução de Sinais , Técnicas do Sistema de Duplo-Híbrido
18.
PLoS Biol ; 13(11): e1002305, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26618408

RESUMO

Protein Kinase A (PKA) is the major receptor for the cyclic adenosine monophosphate (cAMP) secondary messenger in eukaryotes. cAMP binds to two tandem cAMP-binding domains (CBD-A and -B) within the regulatory subunit of PKA (R), unleashing the activity of the catalytic subunit (C). While CBD-A in RIα is required for PKA inhibition and activation, CBD-B functions as a "gatekeeper" domain that modulates the control exerted by CBD-A. Preliminary evidence suggests that CBD-B dynamics are critical for its gatekeeper function. To test this hypothesis, here we investigate by Nuclear Magnetic Resonance (NMR) the two-domain construct RIα (91-379) in its apo, cAMP2, and C-bound forms. Our comparative NMR analyses lead to a double conformational selection model in which each apo CBD dynamically samples both active and inactive states independently of the adjacent CBD within a nearly degenerate free energy landscape. Such degeneracy is critical to explain the sensitivity of CBD-B to weak interactions with C and its high affinity for cAMP. Binding of cAMP eliminates this degeneracy, as it selectively stabilizes the active conformation within each CBD and inter-CBD contacts, which require both cAMP and W260. The latter is contributed by CBD-B and mediates capping of the cAMP bound to CBD-A. The inter-CBD interface is dispensable for intra-CBD conformational selection, but is indispensable for full activation of PKA as it occludes C-subunit recognition sites within CBD-A. In addition, the two structurally homologous cAMP-bound CBDs exhibit marked differences in their residual dynamics profiles, supporting the notion that conservation of structure does not necessarily imply conservation of dynamics.


Assuntos
Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/química , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/química , AMP Cíclico/química , Modelos Moleculares , Substituição de Aminoácidos , Animais , Sítios de Ligação , Bovinos , AMP Cíclico/metabolismo , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/química , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Transferência de Energia , Ativação Enzimática , Deleção de Genes , Camundongos , Mutação , Fragmentos de Peptídeos , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Sequências de Repetição em Tandem
19.
PLoS Biol ; 13(11): e1002306, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26618518

RESUMO

Allosteric effects of mutations, ligand binding, or post-translational modifications on protein function occur through changes to the protein's shape, or conformation. In a cell, there are many copies of the same protein, all experiencing these perturbations in a dynamic fashion and fluctuating through different conformations and activity states. According to the "conformational selection and population shift" theory, ligand binding selects a particular conformation. This perturbs the ensemble and induces a population shift. In a new PLOS Biology paper, Melacini and colleagues describe a novel model of protein regulation, the "Double-Conformational Selection Model", which demonstrates how two tandem ligand-binding domains interact to regulate protein function. Here we explain how tandem domains with tuned interactions-but not single domains-can provide a blueprint for sensitive activation sensors within a narrow window of ligand concentration, thereby promoting signaling control.


Assuntos
Enzimas/química , Evolução Molecular , Modelos Moleculares , Animais , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/química , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/química , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Ativação Enzimática , Enzimas/genética , Enzimas/metabolismo , Humanos , Ligantes , Mutação , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Sequências de Repetição em Tandem
20.
J Biol Chem ; 290(25): 15538-15548, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-25925954

RESUMO

To study the catalytic mechanism of phosphorylation catalyzed by cAMP-dependent protein kinase (PKA) a structure of the enzyme-substrate complex representing the Michaelis complex is of specific interest as it can shed light on the structure of the transition state. However, all previous crystal structures of the Michaelis complex mimics of the PKA catalytic subunit (PKAc) were obtained with either peptide inhibitors or ATP analogs. Here we utilized Ca(2+) ions and sulfur in place of the nucleophilic oxygen in a 20-residue pseudo-substrate peptide (CP20) and ATP to produce a close mimic of the Michaelis complex. In the ternary reactant complex, the thiol group of Cys-21 of the peptide is facing Asp-166 and the sulfur atom is positioned for an in-line phosphoryl transfer. Replacement of Ca(2+) cations with Mg(2+) ions resulted in a complex with trapped products of ATP hydrolysis: phosphate ion and ADP. The present structural results in combination with the previously reported structures of the transition state mimic and phosphorylated product complexes complete the snapshots of the phosphoryl transfer reaction by PKAc, providing us with the most thorough picture of the catalytic mechanism to date.


Assuntos
Trifosfato de Adenosina/química , Cálcio/química , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/química , Magnésio/química , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Catálise , Cristalografia por Raios X , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Camundongos , Fosfatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA