RESUMO
Promiscuous enzymes often serve as the starting point for the evolution of novel functions. Yet, the extent to which the promiscuity of an individual enzyme can be harnessed several times independently for different purposes during evolution is poorly reported. Here, we present a case study illustrating how NAD(P)+-dependent succinate semialdehyde dehydrogenase of Escherichia coli (Sad) is independently recruited through various evolutionary mechanisms for distinct metabolic demands, in particular vitamin biosynthesis and central carbon metabolism. Using adaptive laboratory evolution (ALE), we show that Sad can substitute for the roles of erythrose 4-phosphate dehydrogenase in pyridoxal 5'-phosphate (PLP) biosynthesis and glyceraldehyde 3-phosphate dehydrogenase in glycolysis. To recruit Sad for PLP biosynthesis and glycolysis, ALE employs various mechanisms, including active site mutation, copy number amplification, and (de)regulation of gene expression. Our study traces down these different evolutionary trajectories, reports on the surprising active site plasticity of Sad, identifies regulatory links in amino acid metabolism, and highlights the potential of an ordinary enzyme as innovation reservoir for evolution.
Assuntos
Escherichia coli , Succinato-Semialdeído Desidrogenase , Succinato-Semialdeído Desidrogenase/metabolismo , Succinato-Semialdeído Desidrogenase/genética , Succinato-Semialdeído Desidrogenase/deficiência , Escherichia coli/genética , Escherichia coli/metabolismo , Fosfato de Piridoxal/metabolismo , Evolução Molecular Direcionada , Domínio Catalítico , Glicólise/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Mutação , Evolução MolecularAssuntos
Transtorno do Espectro Autista , Succinato-Semialdeído Desidrogenase , Ácido gama-Aminobutírico , Humanos , Succinato-Semialdeído Desidrogenase/deficiência , Succinato-Semialdeído Desidrogenase/genética , Criança , Ácido gama-Aminobutírico/metabolismo , Masculino , Feminino , Pré-Escolar , Erros Inatos do Metabolismo dos Aminoácidos , Deficiências do DesenvolvimentoRESUMO
BACKGROUND AND AIMS: To investigate the clinical features, ALDH5A1 gene variations, treatment, and prognosis of patients with succinic semialdehyde dehydrogenase (SSADH) deficiency. MATERIALS AND METHODS: This retrospective study evaluated the findings in 13 Chinese patients with SSADH deficiency admitted to the Pediatric Department of Peking University First Hospital from September 2013 to September 2023. RESULTS: Thirteen patients (seven male and six female patients; two sibling sisters) had the symptoms aged from 1 month to 1 year. Their urine 4-hydroxybutyrate acid levels were elevated and were accompanied by mildly increased serum lactate levels. Brain magnetic resonance imaging (MRI) showed symmetric abnormal signals in both sides of the globus pallidus and other areas. All 13 patients had psychomotor retardation, with seven showing epileptic seizures. Among the 18 variants of the ALDH5A1 gene identified in these 13 patients, six were previously reported, while 12 were novel variants. Among the 12 novel variants, three (c.85_116del, c.206_222dup, c.762C > G) were pathogenic variants; five (c.427delA, c.515G > A, c.637C > T, c.755G > T, c.1274T > C) were likely pathogenic; and the remaining four (c.454G > C, c.479C > T, c.1480G > A, c.1501G > C) were variants of uncertain significance. The patients received drugs such as L-carnitine, vigabatrin, and taurine, along with symptomatic treatment. Their urine 4-hydroxybutyric acid levels showed variable degrees of reduction. CONCLUSIONS: A cohort of 13 cases with early-onset SSADH deficiency was analyzed. Onset of symptoms occurred from 1 month to 1 year of age. Twelve novel variants of the ALDH5A1 gene were identified.
Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Succinato-Semialdeído Desidrogenase , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Erros Inatos do Metabolismo dos Aminoácidos/genética , China , Deficiências do Desenvolvimento/genética , População do Leste Asiático , Imageamento por Ressonância Magnética , Mutação , Estudos Retrospectivos , Succinato-Semialdeído Desidrogenase/deficiência , Succinato-Semialdeído Desidrogenase/genéticaRESUMO
The neurometabolic disorder succinic semialdehyde dehydrogenase (SSADH) deficiency leads to great neurochemical imbalances and severe neurological manifestations. The cause of the disease is loss of function of the enzyme SSADH, leading to impaired metabolism of the principal inhibitory neurotransmitter GABA. Despite the known identity of the enzymatic deficit, the underlying pathology of SSADH deficiency remains unclear. To uncover new mechanisms of the disease, we performed an untargeted integrative analysis of cerebral protein expression, functional metabolism, and lipid composition in a genetic mouse model of SSADH deficiency (ALDH5A1 knockout mice). Our proteomic analysis revealed a clear regional vulnerability, as protein alterations primarily manifested in the hippocampus and cerebral cortex of the ALDH5A1 knockout mice. These regions displayed aberrant expression of proteins linked to amino acid homeostasis, mitochondria, glial function, and myelination. Stable isotope tracing in acutely isolated brain slices demonstrated an overall maintained oxidative metabolism of glucose, but a selective decrease in astrocyte metabolic activity in the cerebral cortex of ALDH5A1 knockout mice. In contrast, an elevated capacity of oxidative glutamine metabolism was observed in the ALDH5A1 knockout brain, which may serve as a neuronal compensation of impaired astrocyte glutamine provision. In addition to reduced expression of critical oligodendrocyte proteins, a severe depletion of myelin-enriched sphingolipids was found in the brains of ALDH5A1 knockout mice, suggesting degeneration of myelin. Altogether, our study highlights that impaired astrocyte and oligodendrocyte function is intimately linked to SSADH deficiency pathology, suggesting that selective targeting of glial cells may hold therapeutic potential in this disease.
Assuntos
Astrócitos , Encéfalo , Camundongos Knockout , Oligodendroglia , Succinato-Semialdeído Desidrogenase , Ácido gama-Aminobutírico , Animais , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Astrócitos/metabolismo , Astrócitos/patologia , Succinato-Semialdeído Desidrogenase/deficiência , Succinato-Semialdeído Desidrogenase/metabolismo , Succinato-Semialdeído Desidrogenase/genética , Camundongos , Ácido gama-Aminobutírico/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Camundongos Endogâmicos C57BL , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Erros Inatos do Metabolismo dos Aminoácidos/genética , Deficiências do DesenvolvimentoRESUMO
Succinic semialdehyde dehydrogenase (SSADH) is a mitochondrial enzyme involved in the catabolism of the neurotransmitter γ-amino butyric acid. Pathogenic variants in the gene encoding this enzyme cause SSADH deficiency, a developmental disease that manifests as hypotonia, autism, and epilepsy. SSADH deficiency patients usually have family-specific gene variants. Here, we describe a family exhibiting four different SSADH variants: Val90Ala, Cys93Phe, and His180Tyr/Asn255Asp (a double variant). We provide a structural and functional characterization of these variants and show that Cys93Phe and Asn255Asp are pathogenic variants that affect the stability of the SSADH protein. Due to the impairment of the cofactor NAD+ binding, these variants show a highly reduced enzyme activity. However, Val90Ala and His180Tyr exhibit normal activity and expression. The His180Tyr/Asn255Asp variant exhibits a highly reduced activity as a recombinant species, is inactive, and shows a very low expression in eukaryotic cells. A treatment with substances that support protein folding by either increasing chaperone protein expression or by chemical means did not increase the expression of the pathogenic variants of the SSADH deficiency patient. However, stabilization of the folding of pathogenic SSADH variants by other substances may provide a treatment option for this disease.
Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Deficiências do Desenvolvimento , Succinato-Semialdeído Desidrogenase , Feminino , Humanos , Masculino , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/metabolismo , Deficiências do Desenvolvimento/patologia , Variação Genética , Mutação , Linhagem , Dobramento de Proteína , Succinato-Semialdeído Desidrogenase/deficiência , Succinato-Semialdeído Desidrogenase/genética , Succinato-Semialdeído Desidrogenase/química , Succinato-Semialdeído Desidrogenase/metabolismoRESUMO
Neurodevelopment is a highly organized and complex process involving lasting and often irreversible changes in the central nervous system. Inherited disorders of neurotransmission (IDNT) are a group of genetic disorders where neurotransmission is primarily affected, resulting in abnormal brain development from early life, manifest as neurodevelopmental disorders and other chronic conditions. In principle, IDNT (particularly those of monogenic causes) are amenable to gene replacement therapy via precise genetic correction. However, practical challenges for gene replacement therapy remain major hurdles for its translation from bench to bedside. We discuss key considerations for the development of gene replacement therapies for IDNT. As an example, we describe our ongoing work on gene replacement therapy for succinic semialdehyde dehydrogenase deficiency, a GABA catabolic disorder.
Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Terapia Genética , Succinato-Semialdeído Desidrogenase , Transmissão Sináptica , Humanos , Succinato-Semialdeído Desidrogenase/deficiência , Succinato-Semialdeído Desidrogenase/genética , Terapia Genética/métodos , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Erros Inatos do Metabolismo dos Aminoácidos/genética , Transmissão Sináptica/genética , AnimaisRESUMO
BACKGROUND: Succinic semialdehyde dehydrogenase deficiency (SSADHD) represents a model neurometabolic disease at the fulcrum of translational research within the Boston Children's Hospital Intellectual and Developmental Disabilities Research Centers (IDDRC), including the NIH-sponsored natural history study of clinical, neurophysiological, neuroimaging, and molecular markers, patient-derived induced pluripotent stem cells (iPSC) characterization, and development of a murine model for tightly regulated, cell-specific gene therapy. METHODS: SSADHD subjects underwent clinical evaluations, neuropsychological assessments, biochemical quantification of γ-aminobutyrate (GABA) and related metabolites, electroencephalography (standard and high density), magnetoencephalography, transcranial magnetic stimulation, magnetic resonance imaging and spectroscopy, and genetic tests. This was parallel to laboratory molecular investigations of in vitro GABAergic neurons derived from induced human pluripotent stem cells (hiPSCs) of SSADHD subjects and biochemical analyses performed on a versatile murine model that uses an inducible and reversible rescue strategy allowing on-demand and cell-specific gene therapy. RESULTS: The 62 SSADHD subjects [53% females, median (IQR) age of 9.6 (5.4-14.5) years] included in the study had a reported symptom onset at ⼠6 months and were diagnosed at a median age of 4 years. Language developmental delays were more prominent than motor. Autism, epilepsy, movement disorders, sleep disturbances, and various psychiatric behaviors constituted the core of the disorder's clinical phenotype. Lower clinical severity scores, indicating worst severity, coincided with older age (R= -0.302, p = 0.03), as well as age-adjusted lower values of plasma γ-aminobutyrate (GABA) (R = 0.337, p = 0.02) and γ-hydroxybutyrate (GHB) (R = 0.360, p = 0.05). While epilepsy and psychiatric behaviors increase in severity with age, communication abilities and motor function tend to improve. iPSCs, which were differentiated into GABAergic neurons, represent the first in vitro neuronal model of SSADHD and express the neuronal marker microtubule-associated protein 2 (MAP2), as well as GABA. GABA-metabolism in induced GABAergic neurons could be reversed using CRISPR correction of the pathogenic variants or mRNA transfection and SSADHD iPSCs were associated with excessive glutamatergic activity and related synaptic excitation. CONCLUSIONS: Findings from the SSADHD Natural History Study converge with iPSC and animal model work focused on a common disorder within our IDDRC, deepening our knowledge of the pathophysiology and longitudinal clinical course of a complex neurodevelopmental disorder. This further enables the identification of biomarkers and changes throughout development that will be essential for upcoming targeted trials of enzyme replacement and gene therapy.
Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Deficiências do Desenvolvimento , Células-Tronco Pluripotentes Induzidas , Succinato-Semialdeído Desidrogenase , Adolescente , Animais , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Camundongos , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Erros Inatos do Metabolismo dos Aminoácidos/fisiopatologia , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/complicações , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Neurônios GABAérgicos/metabolismo , Ácido gama-Aminobutírico/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos do Neurodesenvolvimento/etiologia , Transtornos do Neurodesenvolvimento/genética , Succinato-Semialdeído Desidrogenase/deficiência , Succinato-Semialdeído Desidrogenase/metabolismo , Succinato-Semialdeído Desidrogenase/genéticaRESUMO
Succinic Semialdehyde Dehydrogenase Deficiency (SSADHD) is an ultra-rare autosomal recessive neurometabolic disorder caused by ALDH5A1 mutations presenting with autism and epilepsy. Here, we report the generation and characterization of human induced pluripotent stem cells (hiPSCs) derived from fibroblasts of three unrelated SSADHD patients - one female and two males with the CRISPR-corrected isogenic controls. These individuals are clinically diagnosed and are being followed in a longitudinal clinical study.
Assuntos
Células-Tronco Pluripotentes Induzidas , Succinato-Semialdeído Desidrogenase , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Feminino , Succinato-Semialdeído Desidrogenase/deficiência , Succinato-Semialdeído Desidrogenase/genética , Succinato-Semialdeído Desidrogenase/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Linhagem Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Sistemas CRISPR-Cas , Deficiências do DesenvolvimentoRESUMO
OBJECTIVE: Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a genetic disorder resulting in abnormal regulation of γ-aminobutyric acid, lipid metabolism, and myelin biogenesis, leading to ataxia, seizures, and cognitive impairment. Since the myelin sheath is thinner in a murine model of SSADHD compared to a wild type, we hypothesized that this also holds for human brain. We tested whether the conduction velocity in the somatosensory pathway is accordingly delayed. METHODS: Somatosensory evoked magnetic fields (SEF) produced by transcutaneous electrical stimulation of the median nerve were measured in 13 SSADHD patients, 11 healthy and 14 disease controls with focal epilepsy. The peak latencies of the initial four components (M1, M2, M3 and M4) were measured. RESULTS: The SEF waveforms and scalp topographies were comparable across the groups. The latencies were statistically significantly longer in the SSADHD group compared to the two controls. We found these latencies for the SSADHD, healthy and disease controls respectively to be: M1: (21.9 ± 0.8 ms [mean ± standard error of the mean], 20.4 ± 0.6 ms, and 21.0 ± 0.4 ms) (p < 0.05); M2: (36.1 ± 1.0 ms, 33.1 ± 0.6 ms, and 32.1 ± 1.1 ms) (p < 0.005); M3: (62.5 ± 2.4 ms, 54.7 ± 2.0 ms, and 49.9 ± 1.8 ms) (p < 0.005); M4: (86.2 ± 2.3 ms, 78.8 ± 2.8 ms, and 73.5 ± 2.9 ms) (p < 0.005). CONCLUSIONS: The SEF latencies are delayed in patients with SSADHD compared with healthy controls and disease controls. SIGNIFICANCE: This is the first study that compares conduction velocities in the somatosensory pathway in SSADHD, an inherited disorder of GABA metabolism. The longer peak latency implying slower conduction velocity supports the hypothesis that myelin sheath thickness is decreased in SSADHD.
Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Deficiências do Desenvolvimento , Potenciais Somatossensoriais Evocados , Nervo Mediano , Succinato-Semialdeído Desidrogenase/deficiência , Humanos , Masculino , Feminino , Nervo Mediano/fisiopatologia , Erros Inatos do Metabolismo dos Aminoácidos/fisiopatologia , Adulto , Potenciais Somatossensoriais Evocados/fisiologia , Adulto Jovem , Tempo de Reação/fisiologia , Adolescente , Pessoa de Meia-Idade , Condução Nervosa/fisiologia , Magnetoencefalografia/métodosRESUMO
Succinic semialdehyde dehydrogenase deficiency (SSADHD) (OMIM #271980) is a rare autosomal recessive metabolic disorder caused by pathogenic variants of ALDH5A1. Deficiency of SSADH results in accumulation of γ-aminobutyric acid (GABA) and other GABA-related metabolites. The clinical phenotype of SSADHD includes a broad spectrum of non-pathognomonic symptoms such as cognitive disabilities, communication and language deficits, movement disorders, epilepsy, sleep disturbances, attention problems, anxiety, and obsessive-compulsive traits. Current treatment options for SSADHD remain supportive, but there are ongoing attempts to develop targeted genetic therapies. This study aimed to create consensus guidelines for the diagnosis and management of SSADHD. Thirty relevant statements were initially addressed by a systematic literature review, resulting in different evidence levels of strength according to the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) criteria. The highest level of evidence (level A), based on randomized controlled trials, was unavailable for any of the statements. Based on cohort studies, Level B evidence was available for 12 (40%) of the statements. Thereupon, through a process following the Delphi Method and directed by the Appraisal of Guidelines for Research and Evaluation (AGREE II) criteria, expert opinion was sought, and members of an SSADHD Consensus Group evaluated all the statements. The group consisted of neurologists, epileptologists, neuropsychologists, neurophysiologists, metabolic disease specialists, clinical and biochemical geneticists, and laboratory scientists affiliated with 19 institutions from 11 countries who have clinical experience with SSADHD patients and have studied the disorder. Representatives from parent groups were also included in the Consensus Group. An analysis of the survey's results yielded 25 (83%) strong and 5 (17%) weak agreement strengths. These first-of-their-kind consensus guidelines intend to consolidate and unify the optimal care that can be provided to individuals with SSADHD.
Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Deficiências do Desenvolvimento , Succinato-Semialdeído Desidrogenase , Succinato-Semialdeído Desidrogenase/deficiência , Humanos , Succinato-Semialdeído Desidrogenase/genética , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Erros Inatos do Metabolismo dos Aminoácidos/genética , Consenso , Ácido gama-Aminobutírico/metabolismo , Guias de Prática Clínica como AssuntoRESUMO
The objective of the study is to evaluate the evolving phenotype and genetic spectrum of patients with succinic semialdehyde dehydrogenase deficiency (SSADHD) in long-term follow-up. Longitudinal clinical and biochemical data of 22 pediatric and 9 adult individuals with SSADHD from the patient registry of the International Working Group on Neurotransmitter related Disorders (iNTD) were studied with in silico analyses, pathogenicity scores and molecular modeling of ALDH5A1 variants. Leading initial symptoms, with onset in infancy, were developmental delay and hypotonia. Year of birth and specific initial symptoms influenced the diagnostic delay. Clinical phenotype of 26 individuals (median 12 years, range 1.8-33.4 years) showed a diversifying course in follow-up: 77% behavioral problems, 76% coordination problems, 73% speech disorders, 58% epileptic seizures and 40% movement disorders. After ataxia, dystonia (19%), chorea (11%) and hypokinesia (15%) were the most frequent movement disorders. Involvement of the dentate nucleus in brain imaging was observed together with movement disorders or coordination problems. Short attention span (78.6%) and distractibility (71.4%) were the most frequently behavior traits mentioned by parents while impulsiveness, problems communicating wishes or needs and compulsive behavior were addressed as strongly interfering with family life. Treatment was mainly aimed to control epileptic seizures and psychiatric symptoms. Four new pathogenic variants were identified. In silico scoring system, protein activity and pathogenicity score revealed a high correlation. A genotype/phenotype correlation was not observed, even in siblings. This study presents the diversifying characteristics of disease phenotype during the disease course, highlighting movement disorders, widens the knowledge on the genotypic spectrum of SSADHD and emphasizes a reliable application of in silico approaches.
Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Fenótipo , Succinato-Semialdeído Desidrogenase , Humanos , Succinato-Semialdeído Desidrogenase/deficiência , Succinato-Semialdeído Desidrogenase/genética , Criança , Masculino , Feminino , Pré-Escolar , Adulto , Erros Inatos do Metabolismo dos Aminoácidos/genética , Lactente , Adolescente , Adulto Jovem , Deficiências do Desenvolvimento/genética , Transtornos dos Movimentos/genética , Mutação , Hipotonia Muscular/genéticaRESUMO
Succinic semialdehyde dehydrogenase deficiency (SSADHD) is an inherited metabolic disorder of γ-aminobutyrate (GABA) catabolism. Cerebral waste clearance along glymphatic perivascular spaces depends on aquaporin 4 (AQP4) water channels, the function of which was shown to be influenced by GABA. Sleep disturbances are associated independently with SSADHD and glymphatic dysfunction. This study aimed to determine whether indices of the hyperGABAergic state characteristic of SSADHD coincide with glymphatic dysfunction and sleep disturbances and to explicate the modulatory effect that GABA may have on the glymphatic system. The study included 42 individuals (21 with SSADHD; 21 healthy controls) who underwent brain MRIs and magnetic resonance spectroscopy (MRS) for assessment of glymphatic dysfunction and cortical GABA, plasma GABA measurements, and circadian clock gene expression. The SSADHD subjects responded to an additional Children's Sleep Habits Questionnaire (CSHQ). Compared with the control group, SSADHD subjects did not differ in sex and age but had a higher severity of enlarged perivascular spaces in the centrum semiovale (p < 0.001), basal ganglia (p = 0.01), and midbrain (p = 0.001), as well as a higher MRS-derived GABA/NAA peak (p < 0.001). Within the SSADHD group, the severity of glymphatic dysfunction was specific for a lower MRS-derived GABA/NAA (p = 0.04) and lower plasma GABA (p = 0.004). Additionally, the degree of their glymphatic dysfunction correlated with the CSHQ-estimated sleep disturbances scores (R = 5.18, p = 0.03). In the control group, EPVS burden did not correlate with age or cerebral and plasma GABA values. The modulatory effect that GABA may exert on the glymphatic system has therapeutic implications for sleep-related disorders and neurodegenerative conditions associated with glymphatic dysfunction.
Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Sistema Glinfático , Imageamento por Ressonância Magnética , Transtornos do Sono-Vigília , Succinato-Semialdeído Desidrogenase , Ácido gama-Aminobutírico , Humanos , Masculino , Feminino , Ácido gama-Aminobutírico/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/fisiopatologia , Erros Inatos do Metabolismo dos Aminoácidos/complicações , Transtornos do Sono-Vigília/fisiopatologia , Sistema Glinfático/fisiopatologia , Criança , Succinato-Semialdeído Desidrogenase/deficiência , Espectroscopia de Ressonância Magnética , Adolescente , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Encéfalo/metabolismo , Aquaporina 4 , Laringoestenose/fisiopatologia , Pré-Escolar , Deficiências do DesenvolvimentoRESUMO
Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a rare genetic disorder caused by inefficient metabolic breakdown of the major inhibitory neurotransmitter, γ-aminobutyric acid (GABA). Pathologic brain accumulation of GABA and γ-hydroxybutyrate (GHB), a neuroactive by-product of GABA catabolism, leads to a multitude of molecular abnormalities beginning in early life, culminating in multifaceted clinical presentations including delayed psychomotor development, intellectual disability, hypotonia, and ataxia. Paradoxically, over half of patients with SSADHD also develop epilepsy and face a significant risk of sudden unexpected death in epilepsy (SUDEP). Here, we review some of the relevant molecular mechanisms through which impaired synaptic inhibition, astrocytic malfunctions and myelin defects might contribute to the complex SSADHD phenotype. We also discuss the gaps in knowledge that need to be addressed for the implementation of successful gene and enzyme replacement SSADHD therapies. We conclude with a description of a novel SSADHD mouse model that enables 'on-demand' SSADH restoration, allowing proof-of-concept studies to fine-tune SSADH restoration in preparation for eventual human trials.
Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Succinato-Semialdeído Desidrogenase , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Animais , Criança , Deficiências do Desenvolvimento/genética , Humanos , Camundongos , Succinato-Semialdeído Desidrogenase/deficiência , Succinato-Semialdeído Desidrogenase/metabolismo , Ácido gama-Aminobutírico/metabolismoRESUMO
OBJECTIVE: To explore the genetic basis for a child with succinate semialdehyde dehydrogenase deficiency. METHODS: Peripheral blood samples of the proband and his parents were collected and subjected to Sanger sequencing. High-throughput sequencing was used to verify the gene variants. Bioinformatic software was used to analyze the pathogenicity of the variant sites. RESULTS: Sanger sequencing showed that the proband carried a homozygous c.1529C>T (p.S510F) variant of the ALDH5A1 gene, for which his mother was a carrier. The same variant was not detected in his father. However, high-throughput sequencing revealed that the child and his father both had a deletion of ALDH5A1 gene fragment (chr6: 24 403 265-24 566 986). CONCLUSION: The c.1529C>T variant of the ALDH5A1 gene and deletion of ALDH5A1 gene fragment probably underlay the disease in the child. High-throughput sequencing can detect site variation as well as deletion of gene fragment, which has enabled genetic diagnosis and counseling for the family.
Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Succinato-Semialdeído Desidrogenase , Erros Inatos do Metabolismo dos Aminoácidos/genética , Criança , Deficiências do Desenvolvimento , Humanos , Lactente , Mutação , Succinato-Semialdeído Desidrogenase/deficiência , Succinato-Semialdeído Desidrogenase/genéticaRESUMO
Succinic semialdehyde dehydrogenase deficiency (SSADHD) is an inherited inborn error of the γ-aminobutyric acid (GABA) metabolism pathway. It results from mutations in the ALDH5A1 gene leading to elevated GABA, γ-hydroxybutyric acid (GHB), succinic semialdehyde (SSA), decreased glutamine and alterations in several other metabolites. The phenotype includes developmental and cognitive delays, hypotonia, seizures, neuropsychiatric morbidity and other nervous system pathologies. The composition of the intestinal flora of patients with SSADHD has not been characterized, and dysbiosis of the gut microbiome may unveil novel treatment paradigms. We investigated the gut microbiome in SSADHD using 16S ribosomal DNA sequencing and unmasked evidence of dysbiosis in both aldh5a1-deficient mice and patients with SSADHD. In the murine model, there was a reduction in α-diversity measurements, and there were 4 phyla, 3 classes, 5 orders, 9 families, and 15 genera that differed, with a total of 17 predicted metabolic pathways altered. In patients, there were changes in Fusobacterium, 3 classes, 4 orders, 11 families, and a predicted alteration in genes associated with the digestive system. We believe this is the first evaluation of microbiome structure in an IEM with a neurometabolic phenotype that is not treated dietarily.
Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Disbiose , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Animais , Criança , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/metabolismo , Disbiose/genética , Humanos , Camundongos , Succinato-Semialdeído Desidrogenase/deficiênciaRESUMO
Pathogenic variants in ALDH5A1 cause succinic semialdehyde dehydrogenase (SSADH) deficiency, with >180 cases reported worldwide. However, a nonspecific neurologic presentation and inconsistent variant nomenclature have limited diagnoses. In this study, pathogenic variants in ALDH5A1 were curated and variant prevalence assessed in the Genome Aggregation Database (gnomAD) to determine a minimum carrier frequency and to estimate disease prevalence. Stringent population variant analysis, including 98 reported disease-associated ALDH5A1 variants, indicates a pan-ethnic carrier frequency of â¼1/340, supporting a prevalence of SSADH deficiency of â¼1/460 000 worldwide, with highest carrier frequencies observed in East Asian and South Asian populations. Because heterozygous loss of function alleles are rare in gnomAD and >60% of reported disease-causing variants were missense changes that were not present in gnomAD, the pan-ethnic carrier frequency for SSADH deficiency is likely not fully represented in this study. Additional analyses to investigate the potential impact of more common ALDH5A1 variants with reduced but not deficient enzyme activity, including analysis in diverse populations, are needed to fully assess the prevalence of this ultra-rare disease.
Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/epidemiologia , Erros Inatos do Metabolismo dos Aminoácidos/genética , Deficiências do Desenvolvimento/epidemiologia , Deficiências do Desenvolvimento/genética , Succinato-Semialdeído Desidrogenase/deficiência , Succinato-Semialdeído Desidrogenase/genética , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Criança , Bases de Dados Factuais , Deficiências do Desenvolvimento/patologia , Humanos , Internacionalidade , Perda de Heterozigosidade , Prevalência , Doenças RarasAssuntos
Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Congressos como Assunto , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/terapia , Succinato-Semialdeído Desidrogenase/deficiência , Criança , HumanosRESUMO
Succinic semialdehyde dehydrogenase deficiency (SSADHD), a rare disorder of GABA metabolism, presents with significant neurodevelopmental morbidity. Although there is a growing interest in the concept of quality of life through patient reports as a meaningful outcome in rare disease clinical trials, little is known about the overall impact of SSADHD from the patient/family perspective. The purpose of this study was to determine issues related to quality of life and patient/family experience through a focus group discussion with family caregivers of patients with SSADHD. The discussion included the input of 5 family caregivers, and highlighted concerns related to physical function, cognitive and intellectual function, psychological and behavioral function, social function, and family impact. These themes represent appropriate starting points in the development of a quality-of-life survey that may serve as a meaningful clinical tool in future studies of SSADHD.
Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/fisiopatologia , Erros Inatos do Metabolismo dos Aminoácidos/psicologia , Deficiências do Desenvolvimento/fisiopatologia , Deficiências do Desenvolvimento/psicologia , Família/psicologia , Inquéritos Epidemiológicos/métodos , Qualidade de Vida/psicologia , Succinato-Semialdeído Desidrogenase/deficiência , Adolescente , Adulto , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Criança , Pré-Escolar , Deficiências do Desenvolvimento/metabolismo , Feminino , Grupos Focais , Inquéritos Epidemiológicos/estatística & dados numéricos , Humanos , Masculino , Doenças Raras , Succinato-Semialdeído Desidrogenase/metabolismo , Adulto Jovem , Ácido gama-Aminobutírico/metabolismoRESUMO
BACKGROUND: Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a disorder of GABA degradation with use-dependent downregulation of postsynaptic GABAA/B receptors. We aim to measure the resulting cortical excitation: inhibition ratio using transcranial magnetic stimulation. METHODS: In this single-center observational study, 18 subjects with SSADHD and 8 healthy controls underwent transcranial magnetic stimulation. Resting motor threshold, cortical silent period, and long-interval intracortical inhibition were measured in both groups. Resting motor threshold in focal epilepsy patients from an institutional transcranial magnetic stimulation database were also included. RESULTS: SSADHD subjects had higher resting motor threshold than healthy controls but lower relative to focal epilepsy patients. Resting motor threshold decreased with age in all groups. Cortical silent period was longer in SSADHD subjects than in healthy controls. No difference was detected in long-interval intracortical inhibition between the 2 groups. CONCLUSION: Findings suggest abnormal corticospinal tract physiology in SSADHD, but with preserved developmental trajectory for corticospinal tract maturation. Defining features of these transcranial magnetic stimulation metrics in SSADHD will be better elucidated through this ongoing longitudinal study.
Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/fisiopatologia , Excitabilidade Cortical/fisiologia , Deficiências do Desenvolvimento/fisiopatologia , Succinato-Semialdeído Desidrogenase/deficiência , Estimulação Magnética Transcraniana/métodos , Adolescente , Adulto , Criança , Bases de Dados Factuais , Feminino , Humanos , Masculino , Adulto JovemRESUMO
We examined safety, tolerability, and efficacy of SGS-742, a γ-aminobutyric acid B (GABA-B) receptor antagonist, in patients with succinic semialdehyde dehydrogenase deficiency. This was a single-center randomized, double-blind crossover phase II clinical trial of SGS-742 versus placebo in patients with succinic semialdehyde dehydrogenase deficiency. Procedures included transcranial magnetic stimulation and the Adaptive Behavior Assessment Scale. Nineteen subjects were consented and enrolled; the mean age was 14.0 ± 7.5 years and 11 (58%) were female. We did not find a significant effect of SGS-742 on the Adaptive Behavior Assessment Scale score, motor threshold, and paired-pulse stimulation. The difference in recruitment curve slopes between treatment groups was 0.003 (P = .09). There was no significant difference in incidence of adverse effects between drug and placebo arms. SGS-742 failed to produce improved cognition and normalization of cortical excitability as measured by the Adaptive Behavior Assessment Scale and transcranial magnetic stimulation. Our data do not support the current use of SGS-742 in succinic semialdehyde dehydrogenase deficiency.Trial registry number NCT02019667. Phase 2 Clinical Trial of SGS-742 Therapy in Succinic Semialdehyde Dehydrogenase Deficiency. https://clinicaltrials.gov/ct2/show/NCT02019667.