Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Int J Mol Sci ; 22(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34830393

RESUMO

Overexpression and frequent mutations in FMS-like tyrosine kinase-3 (FLT3) are considered risk factors for severe acute myeloid leukemia (AML). Hyperactive FLT3 induces premature activation of multiple intracellular signaling pathways, resulting in cell proliferation and anti-apoptosis. We conducted the computational modeling studies of 40 pyrimidine-4,6-diamine-based compounds by integrating docking, molecular dynamics, and three-dimensional structure-activity relationship (3D-QSAR). Molecular docking showed that K644, C694, F691, E692, N701, D829, and F830 are critical residues for the binding of ligands at the hydrophobic active site. Molecular dynamics (MD), together with Molecular Mechanics Poison-Boltzmann/Generalized Born Surface Area, i.e., MM-PB(GB)SA, and linear interaction energy (LIE) estimation, provided critical information on the stability and binding affinity of the selected docked compounds. The MD study suggested that the mutation in the gatekeeper residue F691 exhibited a lower binding affinity to the ligand. Although, the mutation in D835 in the activation loop did not exhibit any significant change in the binding energy to the most active compound. We developed the ligand-based comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) models. CoMFA (q2 = 0.802, r2 = 0.983, and QF32 = 0.698) and CoMSIA (q2 = 0.725, r2 = 0.965 and QF32 = 0.668) established the structure-activity relationship (SAR) and showed a reasonable external predictive power. The contour maps from the CoMFA and CoMSIA models could explain valuable information about the favorable and unfavorable positions for chemical group substitution, which can increase or decrease the inhibitory activity of the compounds. In addition, we designed 30 novel compounds, and their predicted pIC50 values were assessed with the CoMSIA model, followed by the assessment of their physicochemical properties, bioavailability, and free energy calculation. The overall outcome could provide valuable information for designing and synthesizing more potent FLT3 inhibitors.


Assuntos
Leucemia Mieloide Aguda/tratamento farmacológico , Inibidores de Proteínas Quinases/química , Pirimidinas/química , Tirosina Quinase 3 Semelhante a fms/química , Aminas/química , Aminas/uso terapêutico , Sítios de Ligação/efeitos dos fármacos , Domínio Catalítico/efeitos dos fármacos , Simulação por Computador , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/uso terapêutico , Relação Quantitativa Estrutura-Atividade , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Tirosina Quinase 3 Semelhante a fms/genética
2.
Nat Commun ; 12(1): 6110, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34671038

RESUMO

The SH2B family of adaptor proteins, SH2-B, APS, and LNK are key modulators of cellular signalling pathways. Whilst SH2-B and APS have been partially structurally and biochemically characterised, to date there has been no such characterisation of LNK. Here we present two crystal structures of the LNK substrate recognition domain, the SH2 domain, bound to phosphorylated motifs from JAK2 and EPOR, and biochemically define the basis for target recognition. The LNK SH2 domain adopts a canonical SH2 domain fold with an additional N-terminal helix. Targeted analysis of binding to phosphosites in signalling pathways indicated that specificity is conferred by amino acids one- and three-residues downstream of the phosphotyrosine. Several mutations in LNK showed impaired target binding in vitro and a reduced ability to inhibit signalling, allowing an understanding of the molecular basis of LNK dysfunction in variants identified in patients with myeloproliferative disease.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Motivos de Aminoácidos , Animais , Sítios de Ligação , Cristalografia por Raios X , Humanos , Janus Quinase 2/química , Janus Quinase 2/metabolismo , Janus Quinase 3/química , Janus Quinase 3/metabolismo , Camundongos , Mutação , Transtornos Mieloproliferativos/genética , Fosfotirosina , Ligação Proteica , Proteínas Proto-Oncogênicas c-kit/química , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptores da Eritropoetina/química , Receptores da Eritropoetina/metabolismo , Transdução de Sinais , Tirosina Quinase 3 Semelhante a fms/química , Tirosina Quinase 3 Semelhante a fms/metabolismo , Domínios de Homologia de src
3.
Mol Biol Rep ; 48(10): 6831-6843, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34453673

RESUMO

OBJECTIVES: Acute myeloid leukemia (AML) is still challenging in predicting the prognosis due to its high heterogeneity. Molecular aberrations and abnormalities play a significant prognostic role in AML patients. Our aim of the study was to investigate the prognostic role of TNFRSF4 gene expression in AML patients and its potential effect on treatment protocols. METHODS: Bone marrow mononuclear cells were analyzed for TNFRSF4 expression by real-time quantitative PCR as well as of FLT3/ITD and NPM1 mutations in 80 newly diagnosed AML patients and 80 control subjects. RESULTS: TNFRSF4 was significantly overexpressed in the AML patients (p < 0.001). TNFRSF4 expression was associated with unfavorable clinical outcomes including treatment response, relapse free survival, and overall survival. On multivariate testing, TNFRSF4 high expression proved to be an independent prognostic marker for clinical remission and relapse free survival but not overall survival. CONCLUSION: TNFRSF4 expression was revealed as an unfavorable prognostic marker and might be a target for immunotherapy in the future.


Assuntos
Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Receptores OX40/genética , Estudos de Casos e Controles , Linhagem Celular Tumoral , Feminino , Humanos , Estimativa de Kaplan-Meier , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Mutação/genética , Nucleofosmina/química , Nucleofosmina/metabolismo , Prognóstico , Domínios Proteicos , Receptores OX40/metabolismo , Fatores de Risco , Resultado do Tratamento , Tirosina Quinase 3 Semelhante a fms/química , Tirosina Quinase 3 Semelhante a fms/metabolismo
4.
Br J Cancer ; 125(7): 966-974, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34446858

RESUMO

BACKGROUND: Activating mutations in the Fms-like tyrosine kinase 3 (FLT3) are among the most prevalent oncogenic mutations in acute myeloid leukaemia. Inhibitors selectively targeting FLT3 kinase have shown promising clinical activity; their success in the clinic, however, has been limited due to the emergence of acquired resistance. METHODS: CCT245718 was identified and characterised as a dual Aurora A/FLT3 inhibitor through cell-based and biochemical assays. The ability of CCT245718 to overcome TKD-mediated resistance was evaluated in a cell line-based model of drug resistance to FLT3 inhibitors. RESULTS: CCT245718 exhibits potent antiproliferative activity towards FLT3-ITD + AML cell lines and strongly binds to FLT3-ITD and TKD (D835Y) mutants in vitro. Activities of both FLT3-ITD and Aurora A are also inhibited in cells. Inhibition of FLT3 results in reduced phosphorylation of STAT5, downregulation of survivin and induction of apoptotic cell death. Moreover, CCT245718 overcomes TKD-mediated resistance in a MOLM-13-derived cell line containing FLT3 with both ITD and D835Y mutations. It also inhibits FLT3 signalling in both parental and resistant cell lines compared to FLT3-specific inhibitor MLN518, which is only active in the parental cell line. CONCLUSIONS: Our results demonstrate that CCT245718 is a potent dual FLT3/Aurora A inhibitor that can overcome TKD-mediated acquired resistance.


Assuntos
Aurora Quinase A/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Imidazóis/farmacologia , Leucemia Mieloide Aguda/enzimologia , Tirosina Quinase 3 Semelhante a fms/genética , Aurora Quinase A/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imidazóis/química , Leucemia Mieloide Aguda/tratamento farmacológico , Mutação , Fosforilação , Proteínas Recombinantes/farmacologia , Fator de Transcrição STAT5/metabolismo , Survivina/metabolismo , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Tirosina Quinase 3 Semelhante a fms/química
5.
Acta Crystallogr F Struct Biol Commun ; 77(Pt 4): 121-127, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33830077

RESUMO

The overarching paradigm for the activation of class III and V receptor tyrosine kinases (RTKs) prescribes cytokine-mediated dimerization of the receptor ectodomains and homotypic receptor-receptor interactions. However, structural studies have shown that the hematopoietic receptor FLT3, a class III RTK, does not appear to engage in such receptor-receptor contacts, despite its efficient dimerization by dimeric FLT3 ligand (FL). As part of efforts to better understand the intricacies of FLT3 activation, we sought to engineer a monomeric FL. It was found that a Leu27Asp substitution at the dimer interface of the cytokine led to a stable monomeric cytokine (FLL27D) without abrogation of receptor binding. The crystal structure of FLL27D at 1.65 Šresolution revealed that the introduced point mutation led to shielding of the hydrophobic footprint of the dimerization interface in wild-type FL without affecting the conformation of the FLT3 binding site. Thus, FLL27D can serve as a monomeric FL variant to further interrogate the assembly mechanism of extracellular complexes of FLT3 in physiology and disease.


Assuntos
Variação Genética/genética , Proteínas de Membrana/genética , Engenharia de Proteínas/métodos , Difração de Raios X/métodos , Tirosina Quinase 3 Semelhante a fms/genética , Sequência de Aminoácidos , Células HEK293 , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Tirosina Quinase 3 Semelhante a fms/química , Tirosina Quinase 3 Semelhante a fms/metabolismo
6.
Cancer Genet ; 254-255: 92-97, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33647817

RESUMO

The t(1;11)(p32;q23) translocation is a rare but recurrent cytogenetic aberration in acute myeloid leukemia (AML) and B-cell acute lymphoblastic leukemia (B-ALL). This translocation was initially shown to form a fusion gene between KMT2A exon 8 at 11q23 and EPS15 exon 2 at 1p32 in AML. Activating mutations of FLT3 are frequently found in AML but are very rare in ALL. Here, we describe a 75-year-old woman who was diagnosed with B-ALL since her bone marrow was made up of 98.2% lymphoblasts. These blasts were positive for CD19, CD22, CD79a, CD13, and CD33 but negative for CD10 and myeloperoxidase. The karyotype by G-banding and spectral karyotyping was 46,XX,t(1;11)(p32;q23). Expression of KMT2A/EPS15 and reciprocal EPS15/KMT2A fusion transcripts were shown: KMT2A exon 8 was in-frame fused to EPS15 exon 12, indicating that this fusion transcript was a novel type. Considering three reported B-ALL cases, EPS15 breakpoints were markedly different between AML (exon 2) and B-ALL (exons 10-12). Furthermore, an uncommon type of FLT3 mutation in the juxtamembrane domain was detected: in-frame 4-bp deletion and 10-bp insertion. Accordingly, our results indicate that the novel type of KMT2A/EPS15 fusion transcript and FLT3 mutation may cooperate in the pathogenesis of adult B-ALL as class II and class I mutations, respectively.


Assuntos
Cromossomos Humanos Par 11/genética , Cromossomos Humanos Par 1/genética , Mutação/genética , Proteínas de Fusão Oncogênica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Translocação Genética , Tirosina Quinase 3 Semelhante a fms/genética , Idoso , Sequência de Aminoácidos , Sequência de Bases , Células da Medula Óssea/patologia , Forma Celular , Evolução Fatal , Feminino , Humanos , Proteínas de Fusão Oncogênica/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tirosina Quinase 3 Semelhante a fms/química
7.
J Nat Prod ; 84(1): 1-10, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33393294

RESUMO

Acute myeloid leukemia (AML) is an aggressive disease with a poor prognosis and a high degree of relapse seen in patients. Overexpression of FMS-like tyrosine kinase 3 (FLT3) is associated with up to 70% of AML patients. Wild-type FLT3 induces proliferation and inhibits apoptosis in AML cells, while uncontrolled proliferation of FLT3 kinase activity is also associated with FLT3 mutations. Therefore, inhibiting FLT3 activity is a promising AML therapy. Flavonoids are a group of phytochemicals that can target protein kinases, suggesting their potential antitumor activities. In this study, several plant-derived flavonoids have been identified with FLT3 inhibitory activity. Among these compounds, compound 40 (5,7,4'-trihydroxy-6-methoxyflavone) exhibited the most potent inhibition against not only FLT3 (IC50 = 0.44 µM) but also FLT3-D835Y and FLT3-ITD mutants (IC50 = 0.23 and 0.39 µM, respectively). The critical interactions between the FLT3 binding site and the compounds were identified by performing a structure-activity relationship analysis. Furthermore, the results of cellular assays revealed that compounds 28, 31, 32, and 40 exhibited significant cytotoxicity against two human AML cell lines (MOLM-13 and MV-4-11), and compounds 31, 32, and 40 resulted in cell apoptosis and G0/G1 cell cycle arrest. Collectively, these flavonoids have the potential to be further optimized as FLT3 inhibitors and provide valuable chemical information for the development of new AML drugs.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Flavonoides/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Mutação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Tirosina Quinase 3 Semelhante a fms/uso terapêutico , Antineoplásicos/química , Humanos , Leucemia Mieloide Aguda/genética , Inibidores de Proteínas Quinases/química , Ensaios Antitumorais Modelo de Xenoenxerto , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Tirosina Quinase 3 Semelhante a fms/química , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/farmacologia
8.
J Hematol Oncol ; 13(1): 155, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33213500

RESUMO

Acute myeloid leukemia (AML) is a heterogeneous disease caused by several gene mutations and cytogenetic abnormalities affecting differentiation and proliferation of myeloid lineage cells. FLT3 is a receptor tyrosine kinase commonly overexpressed or mutated, and its mutations are associated with poor prognosis in AML. Although aggressive chemotherapy often followed by hematopoietic stem cell transplant is the current standard of care, the recent approval of FLT3-targeted drugs is revolutionizing AML treatment that had remained unchanged since the 1970s. However, despite the dramatic clinical response to targeted agents, such as FLT3 inhibitors, remission is almost invariably short-lived and ensued by relapse and drug resistance. Hence, there is an urgent need to understand the molecular mechanisms driving drug resistance in order to prevent relapse. In this review, we discuss FLT3 as a target and highlight current understanding of FLT3 inhibitor resistance.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Leucemia Mieloide Aguda/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Animais , Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Terapia de Alvo Molecular , Mutação/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Tirosina Quinase 3 Semelhante a fms/química , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo
9.
Molecules ; 25(7)2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32283751

RESUMO

FLT3 and dual Aurora B/FLT3 inhibitors have shown relevance in the search for promising new anticancer compounds, mainly for acute myeloid leukemia (AML). This study was designed to investigate the interactions between human FLT3 in the kinase domain with several indolin-2-one derivatives, structurally similar to Sunitinib. Molegro Virtual Docker (MVD) software was utilized in docking analyses. The predicted model of the training group, considering nineteen amino acid residues, performed in Chemoface, achieved an R2 of 0.82, suggesting that the binding conformations of the ligands with FLT3 are reasonable, and the data can be used to predict the interaction energy of other FLT3 inhibitors with similar molecular patterns. The MolDock Score for energy for compound 1 showed more stable interaction energy (-233.25 kcal mol-1) than the other inhibitors studied, while Sunitinib presented as one of the least stable (-160.94 kcal mol-1). Compounds IAF70, IAF72, IAF75, IAF80, IAF84, and IAF88 can be highlighted as promising derivatives for synthesis and biological evaluation against FLT3. Furthermore, IAF79 can be considered to be a promising dual Aurora B/FLT3 inhibitor, and its molecular pattern can be exploited synthetically to search for new indolin-2-one derivatives that may become drugs used in the treatment of cancers, including AML.


Assuntos
Aurora Quinase B/antagonistas & inibidores , Modelos Teóricos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Algoritmos , Aurora Quinase B/química , Ativação Enzimática/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Tirosina Quinase 3 Semelhante a fms/química
10.
Eur J Med Chem ; 195: 112205, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32272419

RESUMO

FMS-like receptor tyrosine kinase-3 (FLT3) is expressed on acute leukemia cells and is implicated in the survival, proliferation and differentiation of hematopoietic cells in most acute myeloid leukemia (AML) patients. Despite recent achievements in the development of FLT3-targeted small-molecule drugs, there are still unmet medical needs related to kinase selectivity and the progression of some mutant forms of FLT3. Herein, we describe the discovery of novel orally available type 1 FLT3 inhibitors from structure-activity relationship (SAR) studies for the optimization of indirubin derivatives with biological and pharmacokinetic profiles as potential therapeutic agents for AML. The SAR exploration provided important structural insights into the key substituents for potent inhibitory activities of FLT3 and in MV4-11 cells. The profile of the most optimized inhibitor (36) showed IC50 values of 0.87 and 0.32 nM against FLT3 and FLT3/D835Y, respectively, along with potent inhibition against MV4-11 and FLT3/D835Y expressed MOLM14 cells with a GI50 value of 1.0 and 1.87 nM, respectively. With the high oral bioavailability of 42.6%, compound 36 displayed significant in vivo antitumor activity by oral administration of 20 mg/kg once daily dosing schedule for 21 days in a mouse xenograft model. The molecular docking study of 36 in the homology model of the DFG-in conformation of FLT3 resulted in a reasonable binding mode in type 1 kinases similar to the reported type 1 FLT3 inhibitors Crenolanib and Gilteritinib.


Assuntos
Desenho de Fármacos , Indóis/química , Indóis/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Oximas/química , Oximas/farmacologia , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Indóis/administração & dosagem , Indóis/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Simulação de Acoplamento Molecular , Oximas/administração & dosagem , Oximas/metabolismo , Fosforilação/efeitos dos fármacos , Conformação Proteica , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto , Tirosina Quinase 3 Semelhante a fms/química , Tirosina Quinase 3 Semelhante a fms/metabolismo
11.
Mol Ther ; 28(3): 889-900, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-31981494

RESUMO

FLT3 (FMS-like tyrosine kinase 3), expressed on the surface of acute myeloid leukemia (AML) blasts, is a promising AML target, given its role in the development and progression of leukemia, and its limited expression in tissues outside the hematopoietic system. Small molecule FLT3 kinase inhibitors have been developed, but despite having clinical efficacy, they are effective only on a subset of patients and associated with high risk of relapse. A durable therapy that can target a wider population of AML patients is needed. Here, we developed an anti-FLT3-CD3 immunoglobulin G (IgG)-based bispecific antibody (7370) with a high affinity for FLT3 and a long half-life, to target FLT3-expressing AML blasts, irrespective of FLT3 mutational status. We demonstrated that 7370 has picomolar potency against AML cell lines in vitro and in vivo. 7370 was also capable of activating T cells from AML patients, redirecting their cytotoxic activity against autologous blasts at low effector-to-target (E:T) ratio. Additionally, under our dosing regimen, 7370 was well tolerated and exhibited potent efficacy in cynomolgus monkeys by inducing complete but reversible depletion of peripheral FLT3+ dendritic cells (DCs) and bone marrow FLT3+ stem cells and progenitors. Overall, our results support further clinical development of 7370 to broadly target AML patients.


Assuntos
Anticorpos Biespecíficos/farmacologia , Antineoplásicos Imunológicos/farmacologia , Complexo CD3/antagonistas & inibidores , Hematopoese/efeitos dos fármacos , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Animais , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/uso terapêutico , Antineoplásicos Imunológicos/química , Antineoplásicos Imunológicos/uso terapêutico , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Medula Óssea/patologia , Complexo CD3/química , Linhagem Celular Tumoral , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Imunoglobulina G/farmacologia , Imunofenotipagem , Leucemia Mieloide Aguda , Depleção Linfocítica , Macaca fascicularis , Camundongos , Modelos Moleculares , Domínios Proteicos/efeitos dos fármacos , Relação Estrutura-Atividade , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Tirosina Quinase 3 Semelhante a fms/química
12.
FASEB J ; 34(2): 3239-3252, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31908039

RESUMO

Fms-like tyrosine kinase 3 (FLT3) is a glycoprotein, that is a member of the class III receptor tyrosine kinase family. Approximately one-third of acute myeloid leukemia (AML) patients have mutations of this gene, and activation of the FLT3 downstream pathway plays an important role in both normal and malignant hematopoiesis. However, the role of N-glycosylation for FLT3 activation remains unclear. In this study, we showed that the N-glycan structures on wild type (WT), internal tandem duplication (ITD), and tyrosine kinase domain (TKD) mutants of FLT3 were different. Interestingly, expression of either WT or mutant FLT3 in Ba/F3 cells, an interleukin-3 (IL-3)-dependent hematopoietic progenitor cell, greatly induced core fucosylation. To elucidate the function of core fucosylation in FLT3-mediated signaling, we used a CRISPR/Cas9 system to establish α1,6-fucosyltransferase (Fut8) knockout (KO) cells. Surprisingly, the Fut8KO resulted in cell proliferation in an IL-3-independent manner in FLT3-WT cells, which was not observed in the parental cells, and suggested that this proliferation is dependent on FLT3 expression. Fut8KO greatly increased cellular tyrosine phosphorylation levels, together with an activation of STAT5, AKT, and ERK signaling, which could be completely neutralized by restoration with Fut8 in the KO cells. Consistently, a tyrosine kinase inhibitor efficiently inhibited cell proliferation induced by Fut8KO or specific fucosylation inhibitor. Additionally, immunostaining with FLT3 showed that the proteins were mainly expressed on the cell surface in the KO cells, which is similar to FLT3-WT cells, but different from the ITD mutant. Finally, we found that Fut8KO could induce dimer-formation in FLT3 without ligand-stimulation. Taken together, the present study clearly defines the regulatory function of core fucosylation in FLT3, which could provide a valuable direction for development of drugs could be effective in the treatment of AML.


Assuntos
Fucose/metabolismo , Transdução de Sinais , Tirosina Quinase 3 Semelhante a fms/metabolismo , Animais , Glicosilação , Células HEK293 , Humanos , Interleucina-3/metabolismo , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Mutação , Domínios Proteicos , Multimerização Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT5/metabolismo , Tirosina Quinase 3 Semelhante a fms/química , Tirosina Quinase 3 Semelhante a fms/genética
13.
FEBS J ; 287(15): 3200-3220, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31943770

RESUMO

FMS-like tyrosine kinase 3 (FLT3) has been found to be mutated in ~ 30% of acute myeloid leukaemia patients. Small-molecule inhibitors targeting FLT3 that are currently approved or still undergoing clinical trials are subject to drug resistance due to FLT3 mutations. How these mutations lead to drug resistance is hitherto poorly understood. Herein, we studied the molecular mechanism of the drug resistance mutations D835N, Y842S and M664I, which confer resistance against the most advanced inhibitors, quizartinib and PLX3397 (pexidartinib), using enzyme kinetics and computer simulations. In vitro kinase assays were performed to measure the comparative catalytic activity of the native protein and the mutants, using a bacterial expression system developed to this aim. Our results reveal that the differential drug sensitivity profiles can be rationalised by the dynamics of the protein-drug interactions and perturbation of the intraprotein contacts upon mutations. Drug binding induced a single conformation in the native protein, whereas multiple conformations were observed otherwise (in the mutants or in the absence of drugs). The end-point kinetics measurements indicated that the three resistant mutants conferred catalytic activity that is at least as high as that of the reference without such mutations. Overall, our calculations and measurements suggest that the structural dynamics of the drug-resistant mutants that affect the active state and the increased conformational freedom of the remaining inactive drug-bound population are the two major factors that contribute to drug resistance in FLT3 harbouring cancer cells. Our results explain the mechanism of drug resistance mutations and can aid to the design of more effective tyrosine kinase inhibitors.


Assuntos
Aminopiridinas/farmacologia , Benzotiazóis/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Mutação , Neoplasias/tratamento farmacológico , Compostos de Fenilureia/farmacologia , Pirróis/farmacologia , Tirosina Quinase 3 Semelhante a fms/química , Tirosina Quinase 3 Semelhante a fms/genética , Humanos , Neoplasias/genética , Neoplasias/patologia , Conformação Proteica , Inibidores de Proteínas Quinases/farmacologia , Tirosina Quinase 3 Semelhante a fms/metabolismo
14.
Cancer Sci ; 111(2): 312-322, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31821677

RESUMO

FMS-like tyrosine kinase 3 (FLT3) is a type III receptor tyrosine kinase that plays an important role in hematopoietic cell survival, proliferation and differentiation. The most clinically important point is that mutation of the FLT3 gene is the most frequent genetic alteration and a poor prognostic factor in acute myeloid leukemia (AML) patients. There are two major types of FLT3 mutations: internal tandem duplication mutations in the juxtamembrane domain (FLT3-ITD) and point mutations or deletion in the tyrosine kinase domain (FLT3-TKD). Both mutant FLT3 molecules are activated through ligand-independent dimerization and trans-phosphorylation. Mutant FLT3 induces the activation of multiple intracellular signaling pathways, mainly STAT5, MAPK and AKT signals, leading to cell proliferation and anti-apoptosis. Because high-dose chemotherapy and allogeneic hematopoietic stem cell transplantation cannot sufficiently improve the prognosis, clinical development of FLT3 kinase inhibitors expected. Although several FLT3 inhibitors have been developed, it takes more than 20 years from the first identification of FLT3 mutations until FLT3 inhibitors become clinically available for AML patients with FLT3 mutations. To date, three FLT3 inhibitors have been clinically approved as monotherapy or combination therapy with conventional chemotherapeutic agents in Japan and/or Europe and United states. However, several mechanisms of resistance to FLT3 inhibitors have already become apparent during their clinical trials. The resistance mechanisms are complex and emerging resistant clones are heterogenous. Further basic and clinical studies are required to establish the best therapeutic strategy for AML patients with FLT3 mutations.


Assuntos
Leucemia Mieloide Aguda/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Tirosina Quinase 3 Semelhante a fms/genética , Ensaios Clínicos como Assunto , Resistencia a Medicamentos Antineoplásicos , Humanos , Leucemia Mieloide Aguda/genética , Mutação Puntual , Domínios Proteicos , Inibidores de Proteínas Quinases/farmacologia , Duplicações Segmentares Genômicas , Deleção de Sequência , Transdução de Sinais/efeitos dos fármacos , Tirosina Quinase 3 Semelhante a fms/química
15.
Redox Biol ; 28: 101325, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31606550

RESUMO

Oxidative modification of cysteine residues has been shown to regulate the activity of several protein-tyrosine kinases. We explored the possibility that Fms-like tyrosine kinase 3 (FLT3), a hematopoietic receptor-tyrosine kinase, is subject to this type of regulation. An underlying rationale was that the FLT3 gene is frequently mutated in Acute Myeloid Leukemia patients, and resulting oncogenic variants of FLT3 with 'internal tandem duplications (FLT3ITD)' drive production of reactive oxygen in leukemic cells. FLT3 was moderately activated by treatment of intact cells with hydrogen peroxide. Conversely, FLT3ITD signaling was attenuated by cell treatments with agents inhibiting formation of reactive oxygen species. FLT3 and FLT3ITD incorporated DCP-Bio1, a reagent specifically reacting with sulfenic acid residues. Mutation of FLT3ITD cysteines 695 and 790 reduced DCP-Bio1 incorporation, suggesting that these sites are subject to oxidative modification. Functional characterization of individual FLT3ITD cysteine-to-serine mutants of all 8 cytoplasmic cysteines revealed phenotypes in kinase activity, signal transduction and cell transformation. Replacement of cysteines 681, 694, 695, 807, 925, and 945 attenuated signaling and blocked FLT3ITD-mediated cell transformation, whereas mutation of cysteine 790 enhanced activity of both FLT3ITD and wild-type FLT3. These effects were not related to altered FLT3ITD dimerization, but likely caused by changed intramolecular interactions. The findings identify the functional relevance of all cytoplasmic FLT3ITD cysteines, and indicate the potential for redox regulation of this clinically important oncoprotein.


Assuntos
Cicloexanonas/farmacologia , Cisteína/metabolismo , Mutação , Tirosina Quinase 3 Semelhante a fms/química , Tirosina Quinase 3 Semelhante a fms/metabolismo , Linhagem Celular , Citoplasma/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Oxirredução , Conformação Proteica , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Tirosina Quinase 3 Semelhante a fms/genética
16.
J Med Chem ; 62(22): 10305-10320, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31670517

RESUMO

Herein, we describe the design, synthesis, and structure-activity relationships of a series of unique 4-(1H-pyrazol-4-yl)-pyrimidin-2-amine derivatives that selectively inhibit Janus kinase 2 (JAK2) and FLT3 kinases. These screening cascades revealed that 18e was a preferred compound, with IC50 values of 0.7 and 4 nM for JAK2 and FLT3, respectively. Moreover, 18e was a potent JAK2 inhibitor with 37-fold and 56-fold selectivity over JAK1 and JAK3, respectively, and possessed an excellent selectivity profile over the other 100 representative kinases. In a series of cytokine-stimulated cell-based assays, 18e exhibited a higher JAK2 selectivity over other JAK isoforms. The oral administration of 60 mg/kg of 18e could significantly inhibit tumor growth, with a tumor growth inhibition rate of 93 and 85% in MV4-11 and SET-2 xenograft models, respectively. Additionally, 18e showed an excellent bioavailability (F = 58%), a suitable half-life time (T1/2 = 4.1 h), a satisfactory metabolic stability, and a weak CYP3A4 inhibitory activity, suggesting that 18e might be a potential drug candidate for JAK2-driven myeloproliferative neoplasms and FLT3-internal tandem duplication-driven acute myelogenous leukemia.


Assuntos
Antineoplásicos/farmacologia , Janus Quinase 2/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacocinética , Disponibilidade Biológica , Cães , Relação Dose-Resposta a Droga , Feminino , Meia-Vida , Humanos , Janus Quinase 2/química , Janus Quinase 2/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucócitos Mononucleares/efeitos dos fármacos , Masculino , Camundongos SCID , Simulação de Acoplamento Molecular , Transtornos Mieloproliferativos/tratamento farmacológico , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacocinética , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto , Tirosina Quinase 3 Semelhante a fms/química , Tirosina Quinase 3 Semelhante a fms/metabolismo
17.
Phys Chem Chem Phys ; 21(34): 18467-18476, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31342980

RESUMO

The aberrant expression of FLT3 tyrosine kinase is associated primarily with acute myeloid leukaemia. This blood malignancy is often related to the onset of internal tandem duplications (ITDs) in the native sequence of the protein. The ITDs occur mainly in the juxtamembrane domain of the protein and alter the normal activity of the enzyme. In this work, we have studied the native form of FLT3 and six mutants by molecular dynamics simulations. The catalytic activity of FLT3 is exerted by the tyrosine kinase domain (KD) and regulated by the juxtamembrane (JM) domain. Analysis of the dynamics of these two domains have shown that the introduction of ITDs in the JM domain alters both structural and dynamic parameters. The presence of ITDs allowed the protein to span a larger portion of the conformational space, particularly in the JM domain and the activation loop. The FLT3 mutants were found to adopt more stable configurations than the native enzyme. This was due to the different arrangements assumed by the JM domain. Larger fluctuations of the activation loop were found in four of the six mutants. In the native FLT3, the key residue Tyr572 is involved in a strong and stable interaction with an ion pair. This interaction, which is thought to keep the JM in place hence regulating the activity of the enzyme, was found to break in all FLT3 mutants.


Assuntos
Membrana Celular/química , Simulação de Dinâmica Molecular , Tirosina Quinase 3 Semelhante a fms/química , Sequência de Aminoácidos , Humanos , Mutação , Domínios Proteicos , Sequências de Repetição em Tandem , Tirosina Quinase 3 Semelhante a fms/genética
18.
J Phys Chem B ; 123(26): 5385-5394, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31244095

RESUMO

The aberrant expression of kinases is often associated with pathologies such as cancer and autoimmune diseases. Like other types of enzymes, kinases can adopt active and inactive states, where a shift toward more stable active state often leads to disease. Dozens of kinase inhibitors are, therefore, used as drugs. Most of these bind to either the inactive or active state. In this work, we study the transitions between these two states in FLT3, an important drug target in leukemias. Kinases are composed of two lobes (N- and C-terminal lobes) with the catalytic site in-between. Through projection of the largest motions obtained through molecular dynamics (MD) simulations, we show that each of the end-states (active or inactive) already possess the ability for transition as the two lobes rotate which initiates the transition. A targeted simulation approach known as essential dynamics sampling (EDS) was used to speed up the transition between the two protein states. Coupling the EDS to implicit-solvent MD was performed to estimate the free energy barriers of the transitions. The activation energies were found in good agreement with previous estimates obtained for other kinases. Finally, we identified FLT3 intermediates that assumed configurations that resemble that of the c-Src nonreceptor tyrosine kinase. The intermediates show better binding to the drug ponatinib than c-Src and the inactive state of FLT3. This suggests that targeting intermediate states can be used to explain the drug-binding patterns of kinases and for rational drug design.


Assuntos
Simulação de Dinâmica Molecular , Termodinâmica , Tirosina Quinase 3 Semelhante a fms/metabolismo , Humanos , Conformação Proteica , Tirosina Quinase 3 Semelhante a fms/química
19.
Blood ; 134(6): 548-560, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31217189

RESUMO

The presence of FMS-like receptor tyrosine kinase-3 internal tandem duplication (FLT3-ITD) mutations in patients with acute myeloid leukemia (AML) is associated with poor clinical outcome. FLT3 tyrosine kinase inhibitors (TKIs), although effective in kinase ablation, do not eliminate primitive FLT3-ITD+ leukemia cells, which are potential sources of relapse. Thus, understanding the mechanisms underlying FLT3-ITD+ AML cell persistence is essential to devise future AML therapies. Here, we show that expression of protein arginine methyltransferase 1 (PRMT1), the primary type I arginine methyltransferase, is increased significantly in AML cells relative to normal hematopoietic cells. Genome-wide analysis, coimmunoprecipitation assay, and PRMT1-knockout mouse studies indicate that PRMT1 preferentially cooperates with FLT3-ITD, contributing to AML maintenance. Genetic or pharmacological inhibition of PRMT1 markedly blocked FLT3-ITD+ AML cell maintenance. Mechanistically, PRMT1 catalyzed FLT3-ITD protein methylation at arginine 972/973, and PRMT1 promoted leukemia cell growth in an FLT3 methylation-dependent manner. Moreover, the effects of FLT3-ITD methylation in AML cells were partially due to cross talk with FLT3-ITD phosphorylation at tyrosine 969. Importantly, FLT3 methylation persisted in FLT3-ITD+ AML cells following kinase inhibition, indicating that methylation occurs independently of kinase activity. Finally, in patient-derived xenograft and murine AML models, combined administration of AC220 with a type I PRMT inhibitor (MS023) enhanced elimination of FLT3-ITD+ AML cells relative to AC220 treatment alone. Our study demonstrates that PRMT1-mediated FLT3 methylation promotes AML maintenance and suggests that combining PRMT1 inhibition with FLT3 TKI treatment could be a promising approach to eliminate FLT3-ITD+ AML cells.


Assuntos
Arginina/metabolismo , Duplicação Gênica , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo , Animais , Biomarcadores Tumorais , Catálise , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/patologia , Metilação , Camundongos , Camundongos Knockout , Modelos Moleculares , Prognóstico , Ligação Proteica , Conformação Proteica , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/química , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/química , Ensaios Antitumorais Modelo de Xenoenxerto , Tirosina Quinase 3 Semelhante a fms/química
20.
Eur J Med Chem ; 176: 248-267, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31103903

RESUMO

FLT3 mutation is among the most common genetic mutations in acute myeloid leukemia (AML), which is also related with poor overall survival and refractory in AML patients. Recently, FLT3 inhibitors have been approved for AML therapy. Herein, a series of new compounds with pyrazole amine scaffold was discovered, which showed potent inhibitory activity against FLT3-ITD and significant selectivity against both FLT3-ITD and AML cells expressing FLT3-ITD. Compound 46, possessing the most promising cellular activity, blocked the autophosphorylation of FLT3 pathway in MV4-11 cell line. Furthermore, the apoptosis and downregulation of P-STAT5 were also observed in tumor cells extracted from the MV4-11 cell xenografts model upon compound 46 treatment. Compound 46 was also metabolically stable in vitro and suppressed tumor growth significantly in MV4-11 xenografts model in vivo. Compound 46 showed no toxicity to the viscera of mice and caused no decrease in body weight of mice. In conclusion, the results of this study could provide valuable insights into discovery of new FLT3 inhibitors, and compound 46 was worthy of further development as potential drug candidate to treat AML.


Assuntos
Antineoplásicos/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Pirazóis/uso terapêutico , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Sítios de Ligação , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Camundongos Endogâmicos BALB C , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Mutação , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/toxicidade , Pirazóis/síntese química , Pirazóis/química , Pirazóis/toxicidade , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto , Tirosina Quinase 3 Semelhante a fms/química , Tirosina Quinase 3 Semelhante a fms/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA