Resumo
Background: Almost all Tityus characterized toxins are from subgenera Atreus and Tityus, there are only a few data about toxins produced by Archaeotityus, an ancient group in Tityus genus. Methods: Tityus (Archaeotityus) mattogrossensis crude venom was fractionated by high performance liquid chromatography, the major fractions were tested in a frog sciatic nerve single sucrose-gap technique. Two fractions (Tm1 and Tm2) were isolated, partially sequenced by MALDI-TOF/MS and electrophysiological assayed on HEK293 Nav 1.3, HEK293 Nav 1.6, DUM and DRG cells. Results: The sucrose-gap technique showed neurotoxicity in four fractions. One fraction caused a delay of action potential repolarization and other three caused a reduction in amplitude. An electrophysiological assay showed that Tm1 is active on HEK293 Nav 1.3, HEK293 Nav 1.6, DUM and DRG cells, and Tm2 on HEK293 Nav 1.3 and DRG cells, but not in HEK293 Nav 1.6. In addition, Tm1 and Tm2 did promote a shift to more negative potentials strongly suggesting that both are α-NaScTx. Conclusion: Although Tityus (Archaeotityus) mattogrossensis is considered an ancient group in Tityus genus, the primary structure of Tm1 and Tm2 is more related to Tityus subgenus. The patch clamp electrophysiological tests suggest that Tm1 and Tm2 are NaScTx, and also promoted no shift to more negative potentials, strongly suggesting that both are α-NaScTx. This paper aimed to explore and characterize for the first time toxins from the ancient scorpion Tityus (Archaeotityus) mattogrossensis.(AU)
Assuntos
Animais , Venenos de Escorpião/isolamento & purificação , Venenos de Escorpião/classificação , Cromatografia Líquida/métodos , Sacarose/análise , Fenômenos Eletrofisiológicos/fisiologiaResumo
Abstract Background: Almost all Tityus characterized toxins are from subgenera Atreus and Tityus, there are only a few data about toxins produced by Archaeotityus, an ancient group in Tityus genus. Methods: Tityus (Archaeotityus) mattogrossensis crude venom was fractionated by high performance liquid chromatography, the major fractions were tested in a frog sciatic nerve single sucrose-gap technique. Two fractions (Tm1 and Tm2) were isolated, partially sequenced by MALDI-TOF/MS and electrophysiological assayed on HEK293 Nav 1.3, HEK293 Nav 1.6, DUM and DRG cells. Results: The sucrose-gap technique showed neurotoxicity in four fractions. One fraction caused a delay of action potential repolarization and other three caused a reduction in amplitude. An electrophysiological assay showed that Tm1 is active on HEK293 Nav 1.3, HEK293 Nav 1.6, DUM and DRG cells, and Tm2 on HEK293 Nav 1.3 and DRG cells, but not in HEK293 Nav 1.6. In addition, Tm1 and Tm2 did promote a shift to more negative potentials strongly suggesting that both are -NaScTx. Conclusion: Although Tityus (Archaeotityus) mattogrossensis is considered an ancient group in Tityus genus, the primary structure of Tm1 and Tm2 is more related to Tityus subgenus. The patch clamp electrophysiological tests suggest that Tm1 and Tm2 are NaScTx, and also promoted no shift to more negative potentials, strongly suggesting that both are -NaScTx. This paper aimed to explore and characterize for the first time toxins from the ancient scorpion Tityus (Archaeotityus) mattogrossensis.
Resumo
The protein composition of animal venoms is usually determined by peptide-centric proteomics approaches (bottom-up proteomics). However, this technique cannot, in most cases, distinguish among toxin proteoforms, herein called toxiforms, because of the protein inference problem. Top-down proteomics (TDP) analyzes intact proteins without digestion and provides high quality data to identify and characterize toxiforms. Denaturing top-down proteomics is the most disseminated subarea of TDP, which performs qualitative and quantitative analyzes of proteoforms up to ~30 kDa in high-throughput and automated fashion. On the other hand, native top-down proteomics provides access to information on large proteins (> 50 kDA) and protein interactions preserving non-covalent bonds and physiological complex stoichiometry. The use of native and denaturing top-down venomics introduced novel and useful techniques to toxinology, allowing an unprecedented characterization of venom proteins and protein complexes at the toxiform level. The collected data contribute to a deep understanding of venom natural history, open new possibilities to study the toxin evolution, and help in the development of better biotherapeutics.(AU)
Assuntos
Peptídeos , Venenos/imunologia , Toxicologia , ProteômicaResumo
The protein composition of animal venoms is usually determined by peptide-centric proteomics approaches (bottom-up proteomics). However, this technique cannot, in most cases, distinguish among toxin proteoforms, herein called toxiforms, because of the protein inference problem. Top-down proteomics (TDP) analyzes intact proteins without digestion and provides high quality data to identify and characterize toxiforms. Denaturing top-down proteomics is the most disseminated subarea of TDP, which performs qualitative and quantitative analyzes of proteoforms up to ~30 kDa in high-throughput and automated fashion. On the other hand, native top-down proteomics provides access to information on large proteins (> 50 kDA) and protein interactions preserving non-covalent bonds and physiological complex stoichiometry. The use of native and denaturing top-down venomics introduced novel and useful techniques to toxinology, allowing an unprecedented characterization of venom proteins and protein complexes at the toxiform level. The collected data contribute to a deep understanding of venom natural history, open new possibilities to study the toxin evolution, and help in the development of better biotherapeutics.(AU)
Assuntos
Proteômica , PeptídeosResumo
Abstract The protein composition of animal venoms is usually determined by peptide-centric proteomics approaches (bottom-up proteomics). However, this technique cannot, in most cases, distinguish among toxin proteoforms, herein called toxiforms, because of the protein inference problem. Top-down proteomics (TDP) analyzes intact proteins without digestion and provides high quality data to identify and characterize toxiforms. Denaturing top-down proteomics is the most disseminated subarea of TDP, which performs qualitative and quantitative analyzes of proteoforms up to ~30 kDa in high-throughput and automated fashion. On the other hand, native top-down proteomics provides access to information on large proteins (> 50 kDA) and protein interactions preserving non-covalent bonds and physiological complex stoichiometry. The use of native and denaturing top-down venomics introduced novel and useful techniques to toxinology, allowing an unprecedented characterization of venom proteins and protein complexes at the toxiform level. The collected data contribute to a deep understanding of venom natural history, open new possibilities to study the toxin evolution, and help in the development of better biotherapeutics.