Your browser doesn't support javascript.

Portal de Pesquisa da BVS Veterinária

Informação e Conhecimento para a Saúde

Home > Pesquisa > ()
Imprimir Exportar

Formato de exportação:

Exportar

Exportar:

Email
Adicionar mais destinatários

Enviar resultado
| |

Importance of preovulatory estradiol on uterine receptivity and luteal function

Perry, George Allen; Ketchum, Jaclyn Nicole; Quail, Lacey Kay.
Anim. Reprod. (Online); 20(2): e20230061, 2023.
Artigo em Inglês | VETINDEX | ID: biblio-1452314

Resumo

Animals that exhibited estrus had greater pregnancy success compared to animals that did not exhibit estrus before fixed-time AI (FTAI). Estradiol is synthesized in bovine ovarian follicles under gonadotropin regulation and can directly and indirectly regulate the uterine receptivity and luteal function. Estradiol concentrations at FTAI impacted oviductal gene expression and has been reported to play an important role in establishing the timing of uterine receptivity. These changes have been reported to impact uterine pH and sperm transport to the site of fertilization. After fertilization, preovulatory estradiol has been reported to improve embryo survival likely by mediating changes in uterine blood flow, endometrial thickness and changes in histotroph. Cows with greater estradiol concentrations at the time of GnRH-induced ovulation also had a larger dominant follicle size and greater circulating progesterone concentrations on day 7. Therefore, it is impossible to accurately determine the individual benefit of greater estradiol concentrations prior to ovulation and greater progesterone concentrations following ovulation to pregnancy establishment, as these two measurements are confounded. Research has indicated an importance in the occurrence and timing of increasing preovulatory concentrations of estradiol, but increasing estradiol concentrations by supplementation may not be sufficient to increase fertility. Increased production of estradiol by the preovulatory follicle may be required to enhance fertility through the regulation of sperm transport, fertilization, oviductal secretions, the uterine environment, and embryo survival.(AU)
Biblioteca responsável: BR68.1