Your browser doesn't support javascript.

Portal de Pesquisa da BVS Veterinária

Informação e Conhecimento para a Saúde

Home > Pesquisa > ()
Imprimir Exportar

Formato de exportação:

Exportar

Exportar:

Email
Adicionar mais destinatários

Enviar resultado
| |

Antioxidant response of cowpea co-inoculated with plant growth-promoting bacteria under salt stress

Santos, Alexandra de Andrade; Silveira, Joaquim Albenísio Gomes da; Bonifacio, Aurenivia; Rodrigues, Artenisa Cerqueira; Figueiredo, Márcia do Vale Barreto.
Braz. J. Microbiol.; 49(3): 513-521, jul.-set. 2018. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-734818

Resumo

Soil salinity is an important abiotic stress worldwide, and salt-induced oxidative stress can have detrimental effects on the biological nitrogen fixation. We hypothesized that co-inoculation of cowpea plants with Bradyrhizobium and plant growth-promoting bacteria would minimize the deleterious effects of salt stress via the induction of enzymatic and non-enzymatic antioxidative protection. To test our hypothesis, cowpea seeds were inoculated with Bradyrhizobium or co-inoculated with Bradyrhizobium and plant growth-promoting bacteria and then submitted to salt stress. Afterward, the cowpea nodules were collected, and the levels of hydrogen peroxide; lipid peroxidation; total, reduced and oxidized forms of ascorbate and glutathione; and superoxide dismutase, catalase and phenol peroxidase activities were evaluated. The sodium and potassium ion concentrations were measured in shoot samples. Cowpea plants did not present significant differences in sodium and potassium levels when grown under non-saline conditions, but sodium content was strongly increased under salt stress conditions. Under non-saline and salt stress conditions, plants co-inoculated with Bradyrhizobium and Actinomadura or co-inoculated with Bradyrhizobium and Paenibacillus graminis showed lower hydrogen peroxide content in their nodules, whereas lipid peroxidation was increased by 31% in plants that were subjected to salt stress. Furthermore, cowpea nodules co-inoculated with Bradyrhizobium and plant growth-promoting bacteria and exposed to salt stress displayed significant alterations in the total, reduced and oxidized forms of ascorbate and glutathione. Inoculation with Bradyrhizobium and plant growth-promoting bacteria induced increased superoxide dismutase, catalase and phenol peroxidase activities in the nodules of cowpea plants exposed to salt stress. The catalase activity in plants co-inoculated with Bradyrhizobium and Streptomyces was 55% greater than in plants...(AU)
Biblioteca responsável: BR68.1