Your browser doesn't support javascript.

Portal de Pesquisa da BVS Veterinária

Informação e Conhecimento para a Saúde

Home > Pesquisa > ()
Imprimir Exportar

Formato de exportação:

Exportar

Exportar:

Email
Adicionar mais destinatários

Enviar resultado
| |

Hidrogéis de gelatina de tilápia (Oreochromis niloticus) associados com hidroxiapatita e -carragenana: um novo material para aplicações biotecnológicas.

LORENA ALVES LEITE.
Tese em Português | VETTESES | ID: vtt-218224

Resumo

Com a expansão da atividade da aquicultura, grandes quantidades de resíduos de pescado são desperdiçados, gerando impacto ambiental indesejável. Diante disso, novas alternativas vem surgindo visando a reutilização dessa matéria-prima na obtenção de biomoléculas com potencial biotecnológico, como a gelatina e hidroxiapatita, que são muito usadas na área de engenharia de tecidos e medicina regenerativa. Além dos resíduos de pescado, algas vermelhas também são fonte de biomoléculas com grande potencial de aplicação em engenharia de tecidos, tais como os polissacarídeos sulfatados. Portanto, o objetivo do trabalho foi desenvolver hidrogéis a base de gelatina e hidroxiapatita extraídos a partir de resíduos de pele de tilápia do Nilo (O. niloticus), associados com -carragenana, oriunda da alga Hypnea musciformis, e reticulados com riboflavina e curcumina visando aplicação como ósseo-reconstrutor. A gelatina foi caracterizada por meio de rendimento, análise eletroforética, força de gel, ponto isoelétrico, FTIR e TGA. Já a hidroxiapatita e -carragenana foram caracterizadas quanto ao FTIR, TGA, MEV-EDS, DR-X e RMN. Foram elaboradas cinco formulações de hidrogéis: GC; GCH; GCHRib; GCHRibUV e GCHCurc, as quais foram preparadas com gelatina, carragenana, hidroxiapatita e reticulantes. Os hidrogéis foram caracterizados por meio de FTIR, TGA, DR-X, MEV, MEV-EDS, grau de intumescimento, grau de reticulação e citotoxicidade com fibroblastos e osteoblastos. A gelatina apresentou elevado peso molecular e uma alta força gel (277 ± 20 g). A hidroxiapatita e -carragenana foram identificadas por meio de DR-X e RMN, respectivamente. Sobre os hidrogéis, o FTIR identificou principais grupos e ligações dos compostos presentes na matriz. No TGA, foi possível confirmar que a adição da hidroxiapatita aumentou a estabilidade térmica. No MEV foi identificado que os hidrogéis são porosos. O MEV-EDS identificou os elementos químicos que fazem parte da composição das biomoléculas utilizadas. Os hidrogéis apresentaram um ótimo grau de intumescimento. No grau de reticulação confirmou-se que a hidroxiapatita atuou como reticulante, e que a riboflavina e curcumina também apresentaram bons resultados, com maior destaque para o hidrogel que continha curcumina (GCHCurc). Por fim, todos os hidrogéis apresentaram viabilidade celular (>100%) em células de fibroblastos e osteoblastos. Deste modo, foi possível concluir que os hidrogéis de gelatina, hidroxiapatita e -carragenana reticulados com riboflavina e curcumina possuem um grande potencial para serem usados na área de reconstrução óssea, com destaque maior para o GCHCurc.
With the expansion of aquaculture activity, large amounts of fish waste are wasted, generating an undesirable environmental impact. Therefore, new alternatives have emerged aiming at the reuse of this raw material to obtain biomolecules with biotechnological potential, such as gelatin and hydroxyapatite, which are widely used in the area of tissue engineering and regenerative medicine. In addition to fish waste, red algae are also a source of biomolecules with great potential for application in tissue engineering, such as sulfated polysaccharides. Therefore, the objective of this work was to develop hydrogels based on gelatin and hydroxyapatite extracted from Nile tilapia (O. niloticus) skin residues, associated with - carrageenan, derived from the algae Hypnea musciformis, and crosslinked with riboflavin and curcumina aiming at application as a bone-reconstructor. Gelatin was characterized by yield, electrophoretic analysis, gel strength, isoelectric point, FTIR and TGA. On the other hand, hydroxyapatite and -carrageenan were characterized in terms of FTIR, TGA, SEM-EDS, DR-X and NMR. Five hydrogel formulations were developed: GC; GCH; GCHRib; GCHRibUV and GCHCurc, which were prepared with gelatin, carrageenan, hydroxyapatite and crosslinkers. The hydrogels were characterized by means of FTIR, TGA, DR-X, SEM, SEM-EDS, degree of swelling, degree of cross-linking and cytotoxicity with fibroblasts and osteoblasts. Gelatin had a high molecular weight and a high gel strength (277±20 g). Hydroxyapatite and - carrageenan were identified by DR-X and NMR, respectively. On the hydrogels, the FTIR identified the main groups and bonds of the compounds present in the matrix. In TGA, it was possible to confirm that the addition of hydroxyapatite increased the thermal stability. In the SEM it was identified that the hydrogels are porous. The MEV-EDS identified the chemical elements that are part of the composition of the biomolecules used. The hydrogels showed an excellent degree of swelling. In terms of crosslinking, it was confirmed that hydroxyapatite acted as a crosslinker, and that riboflavin and curcumin also showed good results, with greater emphasis on the hydrogel containing curcumin (GCHCurc). Finally, all hydrogels showed cell viability (>100%) in fibroblast and osteoblast cells. Thus, it was possible to conclude that the hydrogels of gelatin, hydroxyapatite and -carrageenan cross-linked with riboflavin and curcumin have great potential to be used in the area of bone reconstruction, with greater emphasis on GCHCurc.
Biblioteca responsável: BR68.1