Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(29): e2400898121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38980900

RESUMO

Precise electrochemical synthesis of commodity chemicals and fuels from CO2 building blocks provides a promising route to close the anthropogenic carbon cycle, in which renewable but intermittent electricity could be stored within the greenhouse gas molecules. Here, we report state-of-the-art CO2-to-HCOOH valorization performance over a multiscale optimized Cu-Bi cathodic architecture, delivering a formate Faradaic efficiency exceeding 95% within an aqueous electrolyzer, a C-basis HCOOH purity above 99.8% within a solid-state electrolyzer operated at 100 mA cm-2 for 200 h and an energy efficiency of 39.2%, as well as a tunable aqueous HCOOH concentration ranging from 2.7 to 92.1 wt%. Via a combined two-dimensional reaction phase diagram and finite element analysis, we highlight the role of local geometries of Cu and Bi in branching the adsorption strength for key intermediates like *COOH and *OCHO for CO2 reduction, while the crystal orbital Hamiltonian population analysis rationalizes the vital contribution from moderate binding strength of η2(O,O)-OCHO on Cu-doped Bi surface in promoting HCOOH electrosynthesis. The findings of this study not only shed light on the tuning knobs for precise CO2 valorization, but also provide a different research paradigm for advancing the activity and selectivity optimization in a broad range of electrosynthetic systems.

2.
Angew Chem Int Ed Engl ; 63(23): e202404677, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38513003

RESUMO

Understanding selectivity trends is a crucial hurdle in the developing innovative catalysts for generating hydrogen peroxide through the two-electron oxygen reduction reaction (2e-ORR). The identification of selectivity patterns has been made more accessible through the introduction of a newly developed selectivity descriptor derived from thermodynamics, denoted as ΔΔG introduced in Chem Catal. 2023, 3(3), 100568. To validate the suitability of this parameter as a descriptor for 2e-ORR selectivity, we utilize an extensive library of 155 binary alloys. We validate that ΔΔG reliably depicts the selectivity trends in binary alloys reported for their high activity in the 2e-ORR. This analysis also enables the identification of nine selective 2e-ORR catalysts underscoring the efficacy of ΔΔG as 2e-ORR selectivity descriptor. This work highlights the significance of concurrently considering both selectivity and activity trends. This holistic approach is crucial for obtaining a comprehensive understanding in the identification of high-performance catalyst materials for optimal efficiency in various applications.

3.
Nano Lett ; 22(3): 1257-1264, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-34965148

RESUMO

Se-based nanoalloys as an emerging class of metal chalcogenide with tunable crystalline structure, component distribution, and electronic structure have attracted considerable interest in renewable energy conversion and utilization. In this Letter, we report a series of nanosized M-Se catalysts (M = Cu, Ni, Co) as prepared from laser ablation method and screen their electrocatalytic performance for onsite H2O2 generation from selective oxygen reduction reaction (ORR) in alkaline media. A flexible control on 2e-/4e- ORR pathway has been achieved by engineering the alloying component. Moreover, through a feedback loop between theory and experiment an optimized scaling relationship between oxygenated ORR intermediates has been discovered on cubic Cu7.2Se4 nanocrystals, that is, the ensemble effect of isolated Cu component destabilizes O* binding while the ligand effect of Se to Cu fine-tunes the binding strength of OOH*, leading to a superb H2O2 selectivity above 90% over a wide potential window even after 1400 potential cycles.

4.
Nano Lett ; 22(9): 3636-3644, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35357196

RESUMO

Exposing facet and surface strain are critical factors affecting catalytic performance but unraveling the composition-dependent activity on specific facets under strain-controlled environment is still challenging due to the synthetic difficulties. Herein, we achieved a (001) facet-defined Co-Mn spinel oxide surface with different surface compositions using epitaxial growth on Co3O4 nanocube template. We adopted composition gradient synthesis to relieve the strain layer by layer, minimizing the surface strain effect on catalytic activity. In this system, experimental and calculational analyses of model oxygen reduction reaction (ORR) activity reveals a volcano-like trend with Mn/Co ratios because of an adequate charge transfer from octahedral-Mn to neighboring Co. Co0.5Mn0.5 as an optimized Mn/Co ratio exhibits both outstanding ORR activity (0.894 V vs RHE in 1 M KOH) and stability (2% activity loss against chronoamperometry). By controlling facet and strain, this study provides a well-defined platform for investigating composition-structure-activity relationships in electrocatalytic processes.

5.
Phys Chem Chem Phys ; 24(33): 19911-19918, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35960004

RESUMO

Transition metal dichalcogenides (TMDs) have been considered as promising materials for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) electrocatalysis. While there have been numerous studies focusing on layered TMDs, the ORR and OER catalytic activity trends of various cubic pyrite TMDs have not been systematically explored yet. Herein, we investigated 12 earth abundant element-based pyrite TMDs (MX2, where M = Mn, Fe, Co, Ni and X = S, Se, Te) using density functional theory (DFT) calculations. We initially constructed surface Pourbaix diagrams to determine the most stable surface coverages under the reaction conditions and found that the oxidized surfaces are most energetically preferred in all cases. We then calculated the binding free energies of reaction intermediates (O*, OH* and OOH*) and established their scaling relations. The electrochemical ORR and OER performances were then displayed on two-dimensional volcano plots, which suggest MnS2, FeS2, NiTe2 and CoSe2 to be ORR active, and CoTe2 and CoSe2 to be OER active. In addition, we built multivariate linear regression models to predict ΔGO* and ΔGOH* using only atomic and bulk properties to readily estimate the catalytic activities of pyrite TMDs and to explore correlations between those properties. Particularly, we found that the electron affinity and bulk Bader charges of metal atoms are critical in determining the ORR and OER catalytic activities, which could be used as a guidance for future catalyst design.

6.
J Chem Inf Model ; 61(9): 4514-4520, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34423642

RESUMO

To discover new catalysts using density functional theory (DFT) calculations, binding energies of reaction intermediates are considered as descriptors to predict catalytic activities. Recently, machine learning methods have been developed to reduce the number of computationally intensive DFT calculations for a high-throughput screening. These methods require several steps such as bulk structure optimization, surface structure modeling, and active site identification, which could be time-consuming as the number of new candidate materials increases. To bypass these processes, in this work, we report an atomic structure-free representation of active motifs to predict binding energies. We identify binding site atoms and their nearest neighboring atoms positioned in the same layer and the sublayer, and their atomic properties are collected to construct fingerprints. Our method enabled a quicker training (200-400 s using CPU) compared to the previous deep-learning models and predicted CO and H binding energies with mean absolute errors (MAEs) of 0.120 and 0.105 eV, respectively. Our method is also capable of creating all possible active motifs without any DFT calculations and predicting their binding energies using the trained model. The predicted binding energy distributions can suggest promising candidates to accelerate catalyst discovery.


Assuntos
Aprendizado de Máquina , Sítios de Ligação , Catálise
7.
J Am Chem Soc ; 142(36): 15386-15395, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32786758

RESUMO

The oxygen reduction reaction (ORR) is central in carbon-neutral energy devices. While platinum group materials have shown high activities for ORR, their practical uses are hampered by concerns over deactivation, slow kinetics, exorbitant cost, and scarce nature reserve. The low cost yet high tunability of metal-organic frameworks (MOFs) provide a unique platform for tailoring their characteristic properties as new electrocatalysts. Herein, we report a new concept of design and present stable Zr-chain-based MOFs as efficient electrocatalysts for ORR. The strategy is based on using Zr-chains to promote high chemical and redox stability and, more importantly, tailor the immobilization and packing of redox active-sites at a density that is ideal to improve the reaction kinetics. The obtained new electrocatalyst, PCN-226, thereby shows high ORR activity. We further demonstrate PCN-226 as a promising electrode material for practical applications in rechargeable Zn-air batteries, with a high peak power density of 133 mW cm-2. Being one of the very few electrocatalytic MOFs for ORR, this work provides a new concept by designing chain-based structures to enrich the diversity of efficient electrocatalysts and MOFs.

8.
Phys Chem Chem Phys ; 22(35): 19454-19458, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32856642

RESUMO

Various databases of density functional theory (DFT) calculations for materials and adsorption properties are currently available. Using the Materials Project and GASpy databases of material stability and binding energies (H* and CO*), respectively, we evaluate multiple aspects of catalysts to discover active, stable, CO-tolerant, and cost-effective hydrogen evolution and oxidation catalysts. Finally, we suggest a few candidate materials for future experimental validations. We highlight that the stability analysis is easily obtainable but provides invaluable information to assess thermodynamic and electrochemical stability, bridging the gap between simulations and experiments. Furthermore, it reduces the number of expensive DFT calculations required to predict catalytic activities of surfaces by filtering out unstable materials.

9.
J Chem Inf Model ; 59(11): 4742-4749, 2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31644279

RESUMO

The surface energy of inorganic crystals is important in understanding experimentally relevant surface properties and designing materials for many applications. Predictive methods and data sets exist for surface energies of monometallic crystals. However, predicting these properties for bimetallic or more complicated surfaces is an open challenge. Computing cleavage energy is the first step in calculating surface energy across a large space. Here, we present a workflow to predict cleavage energies ab initio using high-throughput DFT and a machine learning framework. We calculated the cleavage energy of 3033 intermetallic alloys with combinations of 36 elements and 47 space groups. This high-throughput workflow was used to seed a database of cleavage energies. The database was used to train a crystal graph convolutional neural network (CGCNN). The CGCNN model provides an accurate prediction of cleavage energy with a mean absolute test error of 0.0071 eV/Å2. It can also qualitatively reproduce nanoparticle surface distributions (Wulff constructions). Our workflow provides quantitative insights into unexplored chemical space by predicting which surfaces are relatively stable and therefore more realistic. The insights allow us to down-select interesting candidates that we can study with robust theoretical and experimental methods for applications such as catalyst screening and nanomaterials synthesis.


Assuntos
Ligas/química , Teoria da Densidade Funcional , Redes Neurais de Computação , Simulação por Computador , Cristalização , Ouro/química , Modelos Químicos , Modelos Moleculares , Propriedades de Superfície , Termodinâmica , Titânio/química
10.
J Chem Inf Model ; 58(12): 2392-2400, 2018 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-30453739

RESUMO

The rising application of informatics and data science tools for studying inorganic crystals and small molecules has revolutionized approaches to materials discovery and driven the development of accurate machine learning structure/property relationships. We discuss how informatics tools can accelerate research, and we present various combinations of workflows, databases, and surrogate models in the literature. This paradigm has been slower to infiltrate the catalysis community due to larger configuration spaces, difficulty in describing necessary calculations, and thermodynamic/kinetic quantities that require many interdependent calculations. We present our own informatics tool that uses dynamic dependency graphs to share, organize, and schedule calculations to enable new, flexible research workflows in surface science. This approach is illustrated for the large-scale screening of intermetallic surfaces for electrochemical catalyst activity. Similar approaches will be important to bring the benefits of informatics and data science to surface science research. Lastly, we provide our perspective on when to use these tools and considerations when creating them.


Assuntos
Simulação por Computador , Bases de Dados de Compostos Químicos , Software , Propriedades de Superfície , Termodinâmica
11.
Phys Chem Chem Phys ; 20(32): 21095-21104, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30074598

RESUMO

Novel monolayer-boron (borophene) is a recent addition to the family of 2D materials. In particular, full surface hydrogenation of triangular borophene (borophane (BH)) to passivate empty p orbitals in boron is identified as producing a new stable 2D material that possesses direction-dependent Dirac cones similar to graphene. By a series of density functional theory (DFT) computations, we investigated the potential of single transition metal atoms supported on borophane with vacancies (the TM-BH system) as an efficient ORR/OER electrocatalyst for applications in renewable energy technologies. In TM-BH systems, the coupling of d-orbitals of the TM dopant with the p-orbitals of surrounding boron atoms results in an increase in the density of states near the Fermi-level generating active sites to facilitate the ORR/OER via an efficient four-electron transfer mechanism. Among the considered TM-BH systems, Fe-BH and Rh-BH were found to be promising ORR electrocatalysts with overpotentials (ηORR) of 0.43 V and 0.47 V, respectively, whereas, for the OER, Rh-BH with 0.24 V has the smallest ηOER value followed by Co-BH (0.37 V), under the equilibrium electrode potential. These ηORR and ηOER values indicate higher activities than the current most active ORR (Pt(111) (0.63 V)) and OER (rutile-type RuO2 (0.37 V)) electrocatalysts.

12.
Phys Chem Chem Phys ; 18(13): 9161-6, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26974401

RESUMO

We theoretically investigate the electrochemical N2 reduction reaction (NRR) mechanism to produce NH3 on the Ru catalyst. All possible N-N dissociation steps during the reduction processes were evaluated along with the conventional associative and dissociative pathways. Based on the calculated free energy diagrams, it is revealed that the kinetically facile intermediate dissociative pathways during the NRR require a thermodynamic limiting potential (-0.71 V) similar to the associative pathway (-0.68 V), although the initial dissociative pathway as in the Haber-Bosch process has a substantial kinetic barrier for the N-N bond dissociation. The competitive hydrogen evolution is found to be a major hurdle for achieving a high efficiency for the electrochemical nitrogen reduction. In the low overpotential region, the hydrogen adsorption is thermodynamically more favorable than the protonation of N2, thereby reducing the number of active sites for the N2 activation. A comparison of free energies in the presence of different H-coverages on the Ru further demonstrates that the H-coverage can significantly increase the energy barrier for the first protonation of N2, resulting in a change of the potential determining step and an increase in the overpotentials.

13.
Phys Chem Chem Phys ; 18(14): 9652-7, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-26996154

RESUMO

While achieving high product selectivity is one of the major challenges of the CO2 electroreduction technology in general, Pb is one of the few examples with high selectivity that produces formic acid almost exclusively (versus H2, CO, or other byproducts). In this work, we study the mechanism of CO2 electroreduction reactions using Pb to understand the origin of high formic acid selectivity. In particular, we first assess the proton-assisted mechanism proposed in the literature using density functional calculations and find that it cannot fully explain the previous selectivity experiments for the Pb electrode. We then suggest an alternative proton-coupled-electron-transfer mechanism consistent with existing observations, and further validate a new mechanism by experimentally measuring and comparing the onset potentials for CO2 reduction vs. H2 production. We find that the origin of a high selectivity of the Pb catalyst for HCOOH production over CO and H2 lies in the strong O-affinitive and weak C-, H-affinitive characteristics of Pb, leading to the involvement of the *OCHO species as a key intermediate to produce HCOOH exclusively and preventing unwanted H2 production at the same time.

14.
Nanoscale ; 16(19): 9545-9557, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38660774

RESUMO

An active and selective two-electron oxygen reduction reaction (2e- ORR) is required for efficient electrosynthesis of H2O2. This reaction can be promoted by metal phthalocyanines (MPcs), which serve as model catalysts with well-defined structures. MPc molecules have mostly been evaluated on conductive carbon-based substrates, including glassy carbon (GC) and carbon nanotubes (CNTs), yet their influence on the electrocatalytic properties is not well understood. This study demonstrated that the ORR activity per surface area was improved by up to 4-fold with MPc molecules supported on CNTs (MPc/CNTs, M = Co, Mn, and Fe) compared to MPc loaded directly on GC. Ultraviolet photoelectron spectroscopy and density functional theory calculations revealed that the CNTs modified the electronic structure of the MPc molecules to optimize the *OOH binding energy and boost the heterogeneous electron transfer rates. Detailed kinetic analysis enabled multiple reaction pathways to be decoupled to extract the metal-dependent intrinsic 2e-/4e- ORR activities. Finally, MPc/CNT catalysts were employed in an H2O2 electrosynthesis flow cell, which delivered an industrial-scale current density of -200 mA cm-2 and an H2O2 faradaic efficiency of 88.7 ± 0.6% with the CoPc/CNT catalyst in a neutral electrolyte.

15.
Nat Commun ; 15(1): 4692, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824127

RESUMO

Comprehending the catalyst structural evolution during the electrocatalytic process is crucial for establishing robust structure/performance correlations for future catalysts design. Herein, we interrogate the structural evolution of a promising Cu-Ag oxide catalyst precursor during electrochemical carbon monoxide reduction. By using extensive in situ and ex situ characterization techniques, we reveal that the homogenous oxide precursors undergo a transformation to a bimetallic composite consisting of small Ag nanoparticles enveloped by thin layers of amorphous Cu. We believe that the amorphous Cu layer with undercoordinated nature is responsible for the enhanced catalytic performance of the current catalyst composite. By tuning the Cu/Ag ratio in the oxide precursor, we find that increasing the Ag concentration greatly promotes liquid products formation while suppressing the byproduct hydrogen. CO2/CO co-feeding electrolysis and isotopic labelling experiments suggest that high CO concentrations in the feed favor the formation of multi-carbon products. Overall, we anticipate the insights obtained for Cu-Ag bimetallic systems for CO electroreduction in this study may guide future catalyst design with improved performance.

16.
Nat Commun ; 15(1): 192, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167422

RESUMO

High-rate production of multicarbon chemicals via the electrochemical CO2 reduction can be achieved by efficient CO2 mass transport. A key challenge for C-C coupling in high-current-density CO2 reduction is how to promote *CO formation and dimerization. Here, we report molecularly enhanced CO2-to-*CO conversion and *CO dimerization for high-rate ethylene production. Nanoconfinement of ascorbic acid by graphene quantum dots enables immobilization and redox reversibility of ascorbic acid in heterogeneous electrocatalysts. Cu nanowire with ascorbic acid nanoconfined by graphene quantum dots (cAA-CuNW) demonstrates high-rate ethylene production with a Faradaic efficiency of 60.7% and a partial current density of 539 mA/cm2, a 2.9-fold improvement over that of pristine CuNW. Furthermore, under low CO2 ratio of 33%, cAA-CuNW still exhibits efficient ethylene production with a Faradaic efficiency of 41.8%. We find that cAA-CuNW increases *CO coverage and optimizes the *CO binding mode ensemble between atop and bridge for efficient C-C coupling. A mechanistic study reveals that ascorbic acid can facilitate *CO formation and dimerization by favorable electron and proton transfer with strong hydrogen bonding.

17.
Digit Discov ; 3(1): 23-33, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38239898

RESUMO

In light of the pressing need for practical materials and molecular solutions to renewable energy and health problems, to name just two examples, one wonders how to accelerate research and development in the chemical sciences, so as to address the time it takes to bring materials from initial discovery to commercialization. Artificial intelligence (AI)-based techniques, in particular, are having a transformative and accelerating impact on many if not most, technological domains. To shed light on these questions, the authors and participants gathered in person for the ASLLA Symposium on the theme of 'Accelerated Chemical Science with AI' at Gangneung, Republic of Korea. We present the findings, ideas, comments, and often contentious opinions expressed during four panel discussions related to the respective general topics: 'Data', 'New applications', 'Machine learning algorithms', and 'Education'. All discussions were recorded, transcribed into text using Open AI's Whisper, and summarized using LG AI Research's EXAONE LLM, followed by revision by all authors. For the broader benefit of current researchers, educators in higher education, and academic bodies such as associations, publishers, librarians, and companies, we provide chemistry-specific recommendations and summarize the resulting conclusions.

18.
J Chem Phys ; 138(20): 204709, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23742502

RESUMO

We revisit a dangling theoretical question of whether the surface reconstruction of the Si(100) surface would energetically favor the symmetric or buckled dimers on the intrinsic potential energy surfaces at 0 K. This seemingly simple question is still unanswered definitively since all existing density functional based calculations predict the dimers to be buckled, while most wavefunction based correlated treatments prefer the symmetric configurations. Here, we use the doubly hybrid density functional (DHDF) geometry optimizations, in particular, XYGJ-OS, complete active space self-consistent field theory, multi-reference perturbation theory, multi-reference configuration interaction (MRCI), MRCI with the Davidson correction (MRCI + Q), multi-reference average quadratic CC (MRAQCC), and multi-reference average coupled pair functional (MRACPF) methods to address this question. The symmetric dimers are still shown to be lower in energy than the buckled dimers when using the CASPT2 method on the DHDF optimized geometries, consistent with the previous results using B3LYP geometries [Y. Jung, Y. Shao, M. S. Gordon, D. J. Doren, and M. Head-Gordon, J. Chem. Phys. 119, 10917 (2003)]. Interestingly, however, the MRCI + Q, MRAQCC, and MRACPF results (which give a more refined description of electron correlation effects) suggest that the buckled dimer is marginally more stable than its symmetric counterpart. The present study underlines the significance of having an accurate description of the electron-electron correlation as well as proper multi-reference wave functions when exploring the extremely delicate potential energy surfaces of the reconstructed Si(100) surface.


Assuntos
Silício/química , Dimerização , Estrutura Molecular , Propriedades de Superfície
19.
Artigo em Inglês | MEDLINE | ID: mdl-37924286

RESUMO

Discovering new solid electrolytes (SEs) is essential to achieving higher safety and better energy density for all-solid-state lithium batteries. In this work, we report machine learning (ML)-assisted high-throughput virtual screening (HTVS) results to identify new SE materials. This approach expands the chemical space to explore by substituting elements of prototype structures and accelerates an evaluation of properties by applying various ML models. The screening results in a few candidate materials, which are validated by density functional theory calculations and ab initio molecular dynamics simulations. The shortlisted oxysulfide materials satisfy key properties to be successful SEs. The advanced screening method presented in this work will accelerate the discovery of energy materials for related applications.

20.
Nat Commun ; 14(1): 7303, 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37952012

RESUMO

The electrochemical carbon dioxide reduction reaction (CO2RR) is an attractive approach for mitigating CO2 emissions and generating value-added products. Consequently, discovery of promising CO2RR catalysts has become a crucial task, and machine learning (ML) has been utilized to accelerate catalyst discovery. However, current ML approaches are limited to exploring narrow chemical spaces and provide only fragmentary catalytic activity, even though CO2RR produces various chemicals. Here, by merging pre-developed ML model and a CO2RR selectivity map, we establish high-throughput virtual screening strategy to suggest active and selective catalysts for CO2RR without being limited to a database. Further, this strategy can provide guidance on stoichiometry and morphology of the catalyst to researchers. We predict the activity and selectivity of 465 metallic catalysts toward four expected reaction products. During this process, we discover previously unreported and promising behavior of Cu-Ga and Cu-Pd alloys. These findings are then validated through experimental methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA