Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 84(6): 1049-1061.e8, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38452766

RESUMO

The Polycomb repressive complex 2 (PRC2) mediates epigenetic maintenance of gene silencing in eukaryotes via methylation of histone H3 at lysine 27 (H3K27). Accessory factors define two distinct subtypes, PRC2.1 and PRC2.2, with different actions and chromatin-targeting mechanisms. The mechanisms orchestrating PRC2 assembly are not fully understood. Here, we report that alternative splicing (AS) of PRC2 core component SUZ12 generates an uncharacterized isoform SUZ12-S, which co-exists with the canonical SUZ12-L isoform in virtually all tissues and developmental stages. SUZ12-S drives PRC2.1 formation and favors PRC2 dimerization. While SUZ12-S is necessary and sufficient for the repression of target genes via promoter-proximal H3K27me3 deposition, SUZ12-L maintains global H3K27 methylation levels. Mouse embryonic stem cells (ESCs) lacking either isoform exit pluripotency more slowly and fail to acquire neuronal cell identity. Our findings reveal a physiological mechanism regulating PRC2 assembly and higher-order interactions in eutherians, with impacts on H3K27 methylation and gene repression.


Assuntos
Processamento Alternativo , Complexo Repressor Polycomb 2 , Animais , Camundongos , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Histonas/genética , Histonas/metabolismo , Cromatina/genética , Isoformas de Proteínas/genética
2.
Cell ; 165(5): 1224-1237, 2016 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-27114036

RESUMO

The unicellular ancestor of animals had a complex repertoire of genes linked to multicellular processes. This suggests that changes in the regulatory genome, rather than in gene innovation, were key to the origin of animals. Here, we carry out multiple functional genomic assays in Capsaspora owczarzaki, the unicellular relative of animals with the largest known gene repertoire for transcriptional regulation. We show that changing chromatin states, differential lincRNA expression, and dynamic cis-regulatory sites are associated with life cycle transitions in Capsaspora. Moreover, we demonstrate conservation of animal developmental transcription-factor networks and extensive network interconnection in this premetazoan organism. In contrast, however, Capsaspora lacks animal promoter types, and its regulatory sites are small, proximal, and lack signatures of animal enhancers. Overall, our results indicate that the emergence of animal multicellularity was linked to a major shift in genome cis-regulatory complexity, most notably the appearance of distal enhancer regulation.


Assuntos
Evolução Biológica , Eucariotos/genética , Elementos Reguladores de Transcrição , Animais , Eucariotos/classificação , Eucariotos/citologia , Redes Reguladoras de Genes , Genoma , Histonas/metabolismo , Humanos , Processamento de Proteína Pós-Traducional , RNA não Traduzido
3.
Mol Cell ; 83(15): 2673-2691.e7, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37506700

RESUMO

Cell cycle progression is linked to transcriptome dynamics and variations in the response of pluripotent cells to differentiation cues, mostly through unknown determinants. Here, we characterized the cell-cycle-associated transcriptome and proteome of mouse embryonic stem cells (mESCs) in naive ground state. We found that the thymine DNA glycosylase (TDG) is a cell-cycle-regulated co-factor of the tumor suppressor p53. Furthermore, TDG and p53 co-bind ESC-specific cis-regulatory elements and thereby control transcription of p53-dependent genes during self-renewal. We determined that the dynamic expression of TDG is required to promote the cell-cycle-associated transcriptional heterogeneity. Moreover, we demonstrated that transient depletion of TDG influences cell fate decisions during the early differentiation of mESCs. Our findings reveal an unanticipated role of TDG in promoting molecular heterogeneity during the cell cycle and highlight the central role of protein dynamics for the temporal control of cell fate during development.


Assuntos
Timina DNA Glicosilase , Proteína Supressora de Tumor p53 , Animais , Camundongos , Ciclo Celular/genética , Linhagem Celular , Regulação da Expressão Gênica , Timina DNA Glicosilase/genética , Timina DNA Glicosilase/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
4.
Genes Dev ; 36(7-8): 451-467, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35450883

RESUMO

Genome organization plays a pivotal role in transcription, but how transcription factors (TFs) rewire the structure of the genome to initiate and maintain the programs that lead to oncogenic transformation remains poorly understood. Acute promyelocytic leukemia (APL) is a fatal subtype of leukemia driven by a chromosomal translocation between the promyelocytic leukemia (PML) and retinoic acid receptor α (RARα) genes. We used primary hematopoietic stem and progenitor cells (HSPCs) and leukemic blasts that express the fusion protein PML-RARα as a paradigm to temporally dissect the dynamic changes in the epigenome, transcriptome, and genome architecture induced during oncogenic transformation. We found that PML-RARα initiates a continuum of topologic alterations, including switches from A to B compartments, transcriptional repression, loss of active histone marks, and gain of repressive histone marks. Our multiomics-integrated analysis identifies Klf4 as an early down-regulated gene in PML-RARα-driven leukemogenesis. Furthermore, we characterized the dynamic alterations in the Klf4 cis-regulatory network during APL progression and demonstrated that ectopic Klf4 overexpression can suppress self-renewal and reverse the differentiation block induced by PML-RARα. Our study provides a comprehensive in vivo temporal dissection of the epigenomic and topological reprogramming induced by an oncogenic TF and illustrates how topological architecture can be used to identify new drivers of malignant transformation.


Assuntos
Leucemia Promielocítica Aguda , Diferenciação Celular/genética , Transformação Celular Neoplásica/genética , Humanos , Fator 4 Semelhante a Kruppel , Leucemia Promielocítica Aguda/genética , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Fatores de Transcrição/metabolismo , Tretinoína/farmacologia
5.
PLoS Comput Biol ; 17(9): e1009368, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34473698

RESUMO

The ChIP-seq signal of histone modifications at promoters is a good predictor of gene expression in different cellular contexts, but whether this is also true at enhancers is not clear. To address this issue, we develop quantitative models to characterize the relationship of gene expression with histone modifications at enhancers or promoters. We use embryonic stem cells (ESCs), which contain a full spectrum of active and repressed (poised) enhancers, to train predictive models. As many poised enhancers in ESCs switch towards an active state during differentiation, predictive models can also be trained on poised enhancers throughout differentiation and in development. Remarkably, we determine that histone modifications at enhancers, as well as promoters, are predictive of gene expression in ESCs and throughout differentiation and development. Importantly, we demonstrate that their contribution to the predictive models varies depending on their location in enhancers or promoters. Moreover, we use a local regression (LOESS) to normalize sequencing data from different sources, which allows us to apply predictive models trained in a specific cellular context to a different one. We conclude that the relationship between gene expression and histone modifications at enhancers is universal and different from promoters. Our study provides new insight into how histone modifications relate to gene expression based on their location in enhancers or promoters.


Assuntos
Elementos Facilitadores Genéticos , Expressão Gênica , Código das Histonas/genética , Modelos Genéticos , Regiões Promotoras Genéticas , Animais , Diferenciação Celular/genética , Células Cultivadas , Sequenciamento de Cromatina por Imunoprecipitação/estatística & dados numéricos , Biologia Computacional , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Análise de Regressão
6.
Genes Dev ; 28(19): 2151-62, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25274727

RESUMO

The human genome is segmented into topologically associating domains (TADs), but the role of this conserved organization during transient changes in gene expression is not known. Here we describe the distribution of progestin-induced chromatin modifications and changes in transcriptional activity over TADs in T47D breast cancer cells. Using ChIP-seq (chromatin immunoprecipitation combined with high-throughput sequencing), Hi-C (chromosome capture followed by high-throughput sequencing), and three-dimensional (3D) modeling techniques, we found that the borders of the ∼ 2000 TADs in these cells are largely maintained after hormone treatment and that up to 20% of the TADs could be considered as discrete regulatory units where the majority of the genes are either transcriptionally activated or repressed in a coordinated fashion. The epigenetic signatures of the TADs are homogeneously modified by hormones in correlation with the transcriptional changes. Hormone-induced changes in gene activity and chromatin remodeling are accompanied by differential structural changes for activated and repressed TADs, as reflected by specific and opposite changes in the strength of intra-TAD interactions within responsive TADs. Indeed, 3D modeling of the Hi-C data suggested that the structure of TADs was modified upon treatment. The differential responses of TADs to progestins and estrogens suggest that TADs could function as "regulons" to enable spatially proximal genes to be coordinately transcribed in response to hormones.


Assuntos
Cromatina/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Progestinas/farmacologia , Linhagem Celular Tumoral , Cromatina/química , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Hormônios/farmacologia , Humanos
7.
Mol Cell ; 49(1): 67-79, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23177737

RESUMO

Elucidating the global function of a transcription factor implies the identification of its target genes and genomic binding sites. The role of chromatin in this context is unclear, but the dominant view is that factors bind preferentially to nucleosome-depleted regions identified as DNaseI-hypersensitive sites (DHS). Here we show by ChIP, MNase, and DNaseI assays followed by deep sequencing that the progesterone receptor (PR) requires nucleosomes for optimal binding and function. In breast cancer cells treated with progestins, we identified 25,000 PR binding sites (PRbs). The majority of these sites encompassed several copies of the hexanucleotide TGTYCY, which is highly abundant in the genome. We found that functional PRbs accumulate around progesterone-induced genes, mainly in enhancers. Most of these sites overlap with DHS but exhibit high nucleosome occupancy. Progestin stimulation results in remodeling of these nucleosomes with displacement of histones H1 and H2A/H2B dimers. Our results strongly suggest that nucleosomes are crucial for PR binding and hormonal gene regulation.


Assuntos
Nucleossomos/metabolismo , Receptores de Progesterona/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional , Sequência de Bases , Sítios de Ligação , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina , Imunoprecipitação da Cromatina , Mapeamento Cromossômico , Sequência Consenso , Sequenciamento de Nucleotídeos em Larga Escala , Histonas/metabolismo , Humanos , Nucleossomos/fisiologia , Progestinas/fisiologia , Ligação Proteica , Elementos de Resposta , Análise de Sequência de DNA
8.
Genes Dev ; 26(17): 1972-83, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22948662

RESUMO

Eukaryotic gene regulation implies that transcription factors gain access to genomic information via poorly understood processes involving activation and targeting of kinases, histone-modifying enzymes, and chromatin remodelers to chromatin. Here we report that progestin gene regulation in breast cancer cells requires a rapid and transient increase in poly-(ADP)-ribose (PAR), accompanied by a dramatic decrease of cellular NAD that could have broad implications in cell physiology. This rapid increase in nuclear PARylation is mediated by activation of PAR polymerase PARP-1 as a result of phosphorylation by cyclin-dependent kinase CDK2. Hormone-dependent phosphorylation of PARP-1 by CDK2, within the catalytic domain, enhances its enzymatic capabilities. Activated PARP-1 contributes to the displacement of histone H1 and is essential for regulation of the majority of hormone-responsive genes and for the effect of progestins on cell cycle progression. Both global chromatin immunoprecipitation (ChIP) coupled with deep sequencing (ChIP-seq) and gene expression analysis show a strong overlap between PARP-1 and CDK2. Thus, progestin gene regulation involves a novel signaling pathway that connects CDK2-dependent activation of PARP-1 with histone H1 displacement. Given the multiplicity of PARP targets, this new pathway could be used for the pharmacological management of breast cancer.


Assuntos
Neoplasias da Mama/enzimologia , Quinase 2 Dependente de Ciclina/metabolismo , Regulação Neoplásica da Expressão Gênica , Poli(ADP-Ribose) Polimerases/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Modelos Moleculares , Fosforilação , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/genética , Progestinas/farmacologia , Estrutura Terciária de Proteína
9.
Genes Dev ; 25(8): 845-62, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21447625

RESUMO

Gene regulation by external signals requires access of transcription factors to DNA sequences of target genes, which is limited by the compaction of DNA in chromatin. Although we have gained insight into how core histones and their modifications influence this process, the role of linker histones remains unclear. Here we show that, within the first minute of progesterone action, a complex cooperation between different enzymes acting on chromatin mediates histone H1 displacement as a requisite for gene induction and cell proliferation. First, activated progesterone receptor (PR) recruits the chromatin remodeling complexes NURF and ASCOM (ASC-2 [activating signal cointegrator-2] complex) to hormone target genes. The trimethylation of histone H3 at Lys 4 by the MLL2/MLL3 subunits of ASCOM, enhanced by the hormone-induced displacement of the H3K4 demethylase KDM5B, stabilizes NURF binding. NURF facilitates the PR-mediated recruitment of Cdk2/CyclinA, which is required for histone H1 displacement. Cooperation of ATP-dependent remodeling, histone methylation, and kinase activation, followed by H1 displacement, is a prerequisite for the subsequent displacement of histone H2A/H2B catalyzed by PCAF and BAF. Chromatin immunoprecipitation (ChIP) and sequencing (ChIP-seq) and expression arrays show that H1 displacement is required for hormone induction of most hormone target genes, some of which are involved in cell proliferation.


Assuntos
Histona Desmetilases com o Domínio Jumonji/metabolismo , Proteínas Nucleares/metabolismo , Promegestona/farmacologia , Proteínas Repressoras/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Montagem e Desmontagem da Cromatina , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Histonas , Humanos , Imunoprecipitação , Histona Desmetilases com o Domínio Jumonji/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/genética , Interferência de RNA , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Proteínas Repressoras/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição de p300-CBP/genética
10.
Proc Natl Acad Sci U S A ; 111(13): 4892-7, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24639548

RESUMO

Estrogen receptor-α (ERα) has central role in hormone-dependent breast cancer and its ligand-induced functions have been extensively characterized. However, evidence exists that ERα has functions that are independent of ligands. In the present work, we investigated the binding of ERα to chromatin in the absence of ligands and its functions on gene regulation. We demonstrated that in MCF7 breast cancer cells unliganded ERα binds to more than 4,000 chromatin sites. Unexpectedly, although almost entirely comprised in the larger group of estrogen-induced binding sites, we found that unliganded-ERα binding is specifically linked to genes with developmental functions, compared with estrogen-induced binding. Moreover, we found that siRNA-mediated down-regulation of ERα in absence of estrogen is accompanied by changes in the expression levels of hundreds of coding and noncoding RNAs. Down-regulated mRNAs showed enrichment in genes related to epithelial cell growth and development. Stable ERα down-regulation using shRNA, which caused cell growth arrest, was accompanied by increased H3K27me3 at ERα binding sites. Finally, we found that FOXA1 and AP2γ binding to several sites is decreased upon ERα silencing, suggesting that unliganded ERα participates, together with other factors, in the maintenance of the luminal-specific cistrome in breast cancer cells.


Assuntos
Neoplasias da Mama/genética , Receptor alfa de Estrogênio/metabolismo , Genoma Humano/genética , Sítios de Ligação , Neoplasias da Mama/patologia , Proliferação de Células , Imunoprecipitação da Cromatina , Feminino , Ontologia Genética , Humanos , Ligantes , Células MCF-7 , Reação em Cadeia da Polimerase , RNA Interferente Pequeno/metabolismo
11.
Nucleic Acids Res ; 41(12): 6072-86, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23640331

RESUMO

Steroid receptors were classically described for regulating transcription by binding to target gene promoters. However, genome-wide studies reveal that steroid receptors-binding sites are mainly located at intragenic regions. To determine the role of these sites, we examined the effect of progestins on the transcription of the bcl-x gene, where only intragenic progesterone receptor-binding sites (PRbs) were identified. We found that in response to hormone treatment, the PR is recruited to these sites along with two histone acetyltransferases CREB-binding protein (CBP) and GCN5, leading to an increase in histone H3 and H4 acetylation and to the binding of the SWI/SNF complex. Concomitant, a more relaxed chromatin was detected along bcl-x gene mainly in the regions surrounding the intragenic PRbs. PR also mediated the recruitment of the positive elongation factor pTEFb, favoring RNA polymerase II (Pol II) elongation activity. Together these events promoted the re-distribution of the active Pol II toward the 3'-end of the gene and a decrease in the ratio between proximal and distal transcription. These results suggest a novel mechanism by which PR regulates gene expression by facilitating the proper passage of the polymerase along hormone-dependent genes.


Assuntos
RNA Polimerase II/metabolismo , Receptores de Progesterona/metabolismo , Elongação da Transcrição Genética , Proteína bcl-X/genética , Processamento Alternativo , Sítios de Ligação , Proteína de Ligação a CREB/metabolismo , Linhagem Celular Tumoral , Cromatina/química , Humanos , Fator B de Elongação Transcricional Positiva/metabolismo , Promegestona/farmacologia , Proteína bcl-X/biossíntese , Proteína bcl-X/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo
12.
Methods Mol Biol ; 2624: 55-72, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36723809

RESUMO

The chromatin immunoprecipitation coupled with the next-generation sequencing (ChIP-seq) is a powerful technique that enables to characterize the genomic distribution of chromatin-associated proteins, histone posttranslational modifications, and histone variants. However, in the absence of a reference control for monitoring experimental and biological variations, the standard ChIP-seq scheme is unable to accurately assess changes in the abundance of chromatin targets across different experimental samples. To overcome this limitation, the combination of external spike-in material with the experimental chromatin is offered as an effective solution for quantitative comparison of ChIP-seq data across different conditions. Here, we detail (i) the experimental protocol for preparing quality control spike-in chromatin from Drosophila melanogaster cells and (ii) the computational protocol to compare ChIP-seq samples with spike-in based on the use of the spikChIP software.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Histonas , Animais , Histonas/genética , Histonas/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Cromatina/genética , Imunoprecipitação da Cromatina/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos
13.
Nat Cell Biol ; 25(12): 1833-1847, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37945904

RESUMO

MAF amplification increases the risk of breast cancer (BCa) metastasis through mechanisms that are still poorly understood yet have important clinical implications. Oestrogen-receptor-positive (ER+) BCa requires oestrogen for both growth and metastasis, albeit by ill-known mechanisms. Here we integrate proteomics, transcriptomics, epigenomics, chromatin accessibility and functional assays from human and syngeneic mouse BCa models to show that MAF directly interacts with oestrogen receptor alpha (ERα), thereby promoting a unique chromatin landscape that favours metastatic spread. We identify metastasis-promoting genes that are de novo licensed following oestrogen exposure in a MAF-dependent manner. The histone demethylase KDM1A is key to the epigenomic remodelling that facilitates the expression of the pro-metastatic MAF/oestrogen-driven gene expression program, and loss of KDM1A activity prevents this metastasis. We have thus determined that the molecular basis underlying MAF/oestrogen-mediated metastasis requires genetic, epigenetic and hormone signals from the systemic environment, which influence the ability of BCa cells to metastasize.


Assuntos
Neoplasias da Mama , Epigênese Genética , Receptor alfa de Estrogênio , Amplificação de Genes , Proteínas Proto-Oncogênicas c-maf , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Cromatina , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estrogênios , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Proteínas Proto-Oncogênicas c-maf/genética
14.
Bioinformatics ; 27(24): 3333-40, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21994224

RESUMO

MOTIVATION: High-throughput sequencing (HTS) has revolutionized gene regulation studies and is now fundamental for the detection of protein-DNA and protein-RNA binding, as well as for measuring RNA expression. With increasing variety and sequencing depth of HTS datasets, the need for more flexible and memory-efficient tools to analyse them is growing. RESULTS: We describe Pyicos, a powerful toolkit for the analysis of mapped reads from diverse HTS experiments: ChIP-Seq, either punctuated or broad signals, CLIP-Seq and RNA-Seq. We prove the effectiveness of Pyicos to select for significant signals and show that its accuracy is comparable and sometimes superior to that of methods specifically designed for each particular type of experiment. Pyicos facilitates the analysis of a variety of HTS datatypes through its flexibility and memory efficiency, providing a useful framework for data integration into models of regulatory genomics. AVAILABILITY: Open-source software, with tutorials and protocol files, is available at http://regulatorygenomics.upf.edu/pyicos or as a Galaxy server at http://regulatorygenomics.upf.edu/galaxy CONTACT: eduardo.eyras@upf.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Software , Imunoprecipitação da Cromatina , Biologia Computacional/métodos , Computadores , Regulação da Expressão Gênica , Análise de Sequência de RNA/métodos
15.
Front Cell Dev Biol ; 9: 655201, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996816

RESUMO

Polycomb group (PcG) of proteins are a group of highly conserved epigenetic regulators involved in many biological functions, such as embryonic development, cell proliferation, and adult stem cell determination. PHD finger protein 19 (PHF19) is an associated factor of Polycomb repressor complex 2 (PRC2), often upregulated in human cancers. In particular, myeloid leukemia cell lines show increased levels of PHF19, yet little is known about its function. Here, we have characterized the role of PHF19 in myeloid leukemia cells. We demonstrated that PHF19 depletion decreases cell proliferation and promotes chronic myeloid leukemia (CML) differentiation. Mechanistically, we have shown how PHF19 regulates the proliferation of CML through a direct regulation of the cell cycle inhibitor p21. Furthermore, we observed that MTF2, a PHF19 homolog, partially compensates for PHF19 depletion in a subset of target genes, instructing specific erythroid differentiation. Taken together, our results show that PHF19 is a key transcriptional regulator for cell fate determination and could be a potential therapeutic target for myeloid leukemia treatment.

16.
Elife ; 92020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32155117

RESUMO

The Polycomb-like protein PHF19/PCL3 associates with PRC2 and mediates its recruitment to chromatin in embryonic stem cells. PHF19 is also overexpressed in many cancers. However, neither PHF19 targets nor misregulated pathways involving PHF19 are known. Here, we investigate the role of PHF19 in prostate cancer cells. We find that PHF19 interacts with PRC2 and binds to PRC2 targets on chromatin. PHF19 target genes are involved in proliferation, differentiation, angiogenesis, and extracellular matrix organization. Depletion of PHF19 triggers an increase in MTF2/PCL2 chromatin recruitment, with a genome-wide gain in PRC2 occupancy and H3K27me3 deposition. Transcriptome analysis shows that PHF19 loss promotes deregulation of key genes involved in growth, metastasis, invasion, and of factors that stimulate blood vessels formation. Consistent with this, PHF19 silencing reduces cell proliferation, while promotes invasive growth and angiogenesis. Our findings reveal a role for PHF19 in controlling the balance between cell proliferation and invasiveness in prostate cancer.


Assuntos
Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Neoplasias da Próstata/metabolismo , Fatores de Transcrição/metabolismo , Fosfatos de Cálcio/metabolismo , Diferenciação Celular , Linhagem Celular , Proteínas de Ligação a DNA/genética , Técnicas de Silenciamento de Genes , Estudo de Associação Genômica Ampla , Humanos , Masculino , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Neoplasias da Próstata/genética , Fatores de Transcrição/genética
17.
Sci Adv ; 6(43)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33097530

RESUMO

Ewing sarcoma (EwS) is an aggressive tumor that affects adolescents and young adults. EwS is defined by a chromosomal translocation, EWSR1-FLI1 being the most common, that causes genome reprogramming through remodeling of enhancers. Here, we describe an unexpected function of RING1B, which is highly expressed in EwS. While retaining its repressive activity at Polycomb developmental regulated genes, RING1B colocalizes with EWSR1-FLI1 at active enhancers. We demonstrate that RING1B is necessary for the expression of key EWSR1-FLI1 targets by facilitating oncogene recruitment to their enhancers. Knockdown of RING1B impairs growth of tumor xenografts and expression of genes regulated by EWSR1-FLI1 bound enhancers. Pharmacological inhibition of AURKB with AZD1152 increases H2Aub levels causing down-regulation of RING1B/EWSR1-FLI1 common targets. Our findings demonstrate that RING1B is a critical modulator of EWSR1-FLI1-induced chromatin remodeling, and its inhibition is a potential therapeutic strategy for the treatment of these tumors.


Assuntos
Cromatina , Sarcoma de Ewing , Adolescente , Carcinogênese , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Cromatina/genética , Montagem e Desmontagem da Cromatina , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas de Fusão Oncogênica/genética , Proteína EWS de Ligação a RNA/genética , Sarcoma de Ewing/tratamento farmacológico , Sarcoma de Ewing/genética , Adulto Jovem
18.
J Steroid Biochem Mol Biol ; 109(3-5): 344-9, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18417338

RESUMO

Gene regulation by steroid hormones involves genomic and non-genomic signaling pathways and the relationship between these two pathways is unknown. Genomic actions are often mediated by binding of the ligand-activated hormone receptors to hormone responsive elements (HREs) followed by recruitment of co-regulators, remodeling of chromatin and formation of the transcription initiation complex. The non-genomic effects of steroid hormones involve the rapid and transient activation of several kinase cascades often mediated by a subpopulation of "nuclear" receptors located in the cytoplasmic side of the cell membrane. The progesterone effect on breast cancer cell proliferation involves activation of the Src/Ras/Erk cascade mediated by a specific interaction between two domains of the N-terminal half of PR and the ligand-binding domain of ERalpha. Unexpectedly, selective inhibition of Erk, or its target kinase Msk1, interferes with chromatin remodeling and blocks MMTV transcriptional activation. A complex of activated PR, Erk and Msk1 is recruited to promoter already 5 min after hormone treatment and phosphorylates histone H3 at serine 10, leading to displacement of HP1gamma, as a requisite for recruitment of Src1, chromatin remodeling complexes (hSnf2h and Brg1) and RNA polymerase II. Thus, activation of signaling cascades in the cytoplasm is essential for chromatin remodeling and transcriptional activation of a subset of steroid hormone target genes.


Assuntos
Cromatina/genética , Genoma/genética , Hormônios/metabolismo , Transdução de Sinais , Betaretrovirus/genética , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Histonas/metabolismo , Hormônios/farmacologia , Humanos , Nucleossomos/metabolismo , Fosforilação/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Ligação Proteica , Receptores de Progesterona/metabolismo , Transdução de Sinais/efeitos dos fármacos
19.
Nat Genet ; 50(10): 1452-1462, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30224650

RESUMO

In embryonic stem cells (ESCs), developmental gene promoters are characterized by their bivalent chromatin state, with simultaneous modification by MLL2 and Polycomb complexes. Although essential for embryogenesis, bivalency is functionally not well understood. Here, we show that MLL2 plays a central role in ESC genome organization. We generate a catalog of bona fide bivalent genes in ESCs and demonstrate that loss of MLL2 leads to increased Polycomb occupancy. Consequently, promoters lose accessibility, long-range interactions are redistributed, and ESCs fail to differentiate. We pose that bivalency balances accessibility and long-range connectivity of promoters, allowing developmental gene expression to be properly modulated.


Assuntos
Diferenciação Celular/genética , Cromatina/genética , Cromatina/metabolismo , Histona-Lisina N-Metiltransferase/fisiologia , Células-Tronco Embrionárias Murinas/fisiologia , Proteína de Leucina Linfoide-Mieloide/fisiologia , Regiões Promotoras Genéticas , Animais , Células Cultivadas , Cromatina/química , Montagem e Desmontagem da Cromatina/genética , Drosophila , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Histona-Lisina N-Metiltransferase/genética , Camundongos , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas do Grupo Polycomb/metabolismo , Ligação Proteica/genética
20.
Mol Cell Biol ; 23(6): 1994-2008, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12612073

RESUMO

In breast cancer cells, estrogens activate the Src/Erk pathway through an interaction of the estrogen receptor alpha (ERalpha) with the SH2 domain of c-Src. Progestins have been reported to activate also this pathway either via an interaction of the progesterone receptor isoform B (PRB) with ERalpha, which itself activates c-Src, or by direct interaction of PRB with the SH3 domain of c-Src. Here we identify two domains of PRB, ERID-I and -II, mediating a direct interaction with the ligand-binding domain of ERalpha. ERID-I and ERID-II flank a proline cluster responsible for binding of PRB to c-Src. In mammalian cells, the interaction of PRB with ERalpha and the progestin activation of the Src/Erk cascade are abolished by deletion of either ERID-I or ERID-II. These regions are not required for transactivation of a progesterone-responsive reporter gene. Mutations in the proline cluster of PRB that prevent a direct interaction with c-Src do not affect the strong activation of c-Src by progestins in the presence of ERalpha. Thus, in cells with ERalpha, ERID-I and ERID-II are necessary and sufficient for progestin activation of the endogenous Src/Erk pathway.


Assuntos
Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/fisiologia , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Progesterona/farmacologia , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/química , Animais , Neoplasias da Mama/patologia , Células COS , Chlorocebus aethiops , Ativação Enzimática/efeitos dos fármacos , Receptor alfa de Estrogênio , Genes Reporter , Humanos , Proteína Quinase 3 Ativada por Mitógeno , Mapeamento de Interação de Proteínas , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Receptores de Progesterona/efeitos dos fármacos , Receptores de Progesterona/metabolismo , Relação Estrutura-Atividade , Ativação Transcricional , Transfecção , Células Tumorais Cultivadas , Técnicas do Sistema de Duplo-Híbrido , Domínios de Homologia de src
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA