Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Respir Res ; 25(1): 42, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238743

RESUMO

THE QUESTION ADDRESSED BY THE STUDY: Good biological indicators capable of predicting chronic obstructive pulmonary disease (COPD) phenotypes and clinical trajectories are lacking. Because nuclear and mitochondrial genomes are damaged and released by cigarette smoke exposure, plasma cell-free mitochondrial and nuclear DNA (cf-mtDNA and cf-nDNA) levels could potentially integrate disease physiology and clinical phenotypes in COPD. This study aimed to determine whether plasma cf-mtDNA and cf-nDNA levels are associated with COPD disease severity, exacerbations, and mortality risk. MATERIALS AND METHODS: We quantified mtDNA and nDNA copy numbers in plasma from participants enrolled in the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE, n = 2,702) study and determined associations with relevant clinical parameters. RESULTS: Of the 2,128 participants with COPD, 65% were male and the median age was 64 (interquartile range, 59-69) years. During the baseline visit, cf-mtDNA levels positively correlated with future exacerbation rates in subjects with mild/moderate and severe disease (Global Initiative for Obstructive Lung Disease [GOLD] I/II and III, respectively) or with high eosinophil count (≥ 300). cf-nDNA positively associated with an increased mortality risk (hazard ratio, 1.33 [95% confidence interval, 1.01-1.74] per each natural log of cf-nDNA copy number). Additional analysis revealed that individuals with low cf-mtDNA and high cf-nDNA abundance further increased the mortality risk (hazard ratio, 1.62 [95% confidence interval, 1.16-2.25] per each natural log of cf-nDNA copy number). ANSWER TO THE QUESTION: Plasma cf-mtDNA and cf-nDNA, when integrated into quantitative clinical measurements, may aid in improving COPD severity and progression assessment.


Assuntos
Ácidos Nucleicos Livres , Doença Pulmonar Obstrutiva Crônica , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Ácidos Nucleicos Livres/genética , DNA Mitocondrial , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/genética , Biomarcadores , Fenótipo , Progressão da Doença
2.
Allergy ; 78(1): 156-167, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35986608

RESUMO

BACKGROUND: Interleukin (IL)-33 is an upstream regulator of type 2 (T2) eosinophilic inflammation and has been proposed as a key driver of some asthma phenotypes. OBJECTIVE: To derive gene signatures from in vitro studies of IL-33-stimulated cells and use these to determine IL-33-associated enrichment patterns in asthma. METHODS: Signatures downstream of IL-33 stimulation were derived from our in vitro study of human mast cells and from public datasets of in vitro stimulated human basophils, type 2 innate lymphoid cells (ILC2), regulatory T cells (Treg) and endothelial cells. Gene Set Variation Analysis (GSVA) was used to probe U-BIOPRED and ADEPT sputum transcriptomics to determine enrichment scores (ES) for each signature according to asthma severity, sputum granulocyte status and previously defined molecular phenotypes. RESULTS: IL-33-activated gene signatures were cell-specific with little gene overlap. Individual signatures, however, were associated with similar signalling pathways (TNF, NF-κB, IL-17 and JAK/STAT signalling) and immune cell differentiation pathways (Th17, Th1 and Th2 differentiation). ES for IL-33-activated gene signatures were significantly enriched in asthmatic sputum, particularly in patients with neutrophilic and mixed granulocytic phenotypes. IL-33 mRNA expression was not elevated in asthma whereas the expression of mRNA for IL1RL1, the IL-33 receptor, was up-regulated in the sputum of severe eosinophilic asthma. The mRNA expression for IL1RAP, the IL1RL1 co-receptor, was greatest in severe neutrophilic and mixed granulocytic asthma. CONCLUSIONS: IL-33-activated gene signatures are elevated in neutrophilic and mixed granulocytic asthma corresponding with IL1RAP co-receptor expression. This suggests incorporating T2-low asthma in anti-IL-33 trials.


Assuntos
Asma , Imunidade Inata , Proteína Acessória do Receptor de Interleucina-1 , Humanos , Asma/diagnóstico , Asma/genética , Células Endoteliais/metabolismo , Proteína Acessória do Receptor de Interleucina-1/metabolismo , Linfócitos/metabolismo , RNA Mensageiro/metabolismo , Escarro , Células Th2
3.
Allergy ; 78(11): 2906-2920, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37287344

RESUMO

BACKGROUND: Because of altered airway microbiome in asthma, we analysed the bacterial species in sputum of patients with severe asthma. METHODS: Whole genome sequencing was performed on induced sputum from non-smoking (SAn) and current or ex-smoker (SAs/ex) severe asthma patients, mild/moderate asthma (MMA) and healthy controls (HC). Data were analysed by asthma severity, inflammatory status and transcriptome-associated clusters (TACs). RESULTS: α-diversity at the species level was lower in SAn and SAs/ex, with an increase in Haemophilus influenzae and Moraxella catarrhalis, and Haemophilus influenzae and Tropheryma whipplei, respectively, compared to HC. In neutrophilic asthma, there was greater abundance of Haemophilus influenzae and Moraxella catarrhalis and in eosinophilic asthma, Tropheryma whipplei was increased. There was a reduction in α-diversity in TAC1 and TAC2 that expressed high levels of Haemophilus influenzae and Tropheryma whipplei, and Haemophilus influenzae and Moraxella catarrhalis, respectively, compared to HC. Sputum neutrophils correlated positively with Moraxella catarrhalis and negatively with Prevotella, Neisseria and Veillonella species and Haemophilus parainfluenzae. Sputum eosinophils correlated positively with Tropheryma whipplei which correlated with pack-years of smoking. α- and ß-diversities were stable at one year. CONCLUSIONS: Haemophilus influenzae and Moraxella catarrhalis were more abundant in severe neutrophilic asthma and TAC2 linked to inflammasome and neutrophil activation, while Haemophilus influenzae and Tropheryma whipplei were highest in SAs/ex and in TAC1 associated with highest expression of IL-13 type 2 and ILC2 signatures with the abundance of Tropheryma whipplei correlating positively with sputum eosinophils. Whether these bacterial species drive the inflammatory response in asthma needs evaluation.


Assuntos
Asma , Haemophilus influenzae , Humanos , Moraxella catarrhalis , Escarro/microbiologia , Inflamassomos , Imunidade Inata , Ativação de Neutrófilo , Linfócitos , Asma/diagnóstico , Asma/microbiologia , Bactérias
4.
J Allergy Clin Immunol ; 149(1): 89-101, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33891981

RESUMO

BACKGROUND: Transcriptomic changes in patients who respond clinically to biological therapies may identify responses in other tissues or diseases. OBJECTIVE: We sought to determine whether a disease signature identified in atopic dermatitis (AD) is seen in adults with severe asthma and whether a transcriptomic signature for patients with AD who respond clinically to anti-IL-22 (fezakinumab [FZ]) is enriched in severe asthma. METHODS: An AD disease signature was obtained from analysis of differentially expressed genes between AD lesional and nonlesional skin biopsies. Differentially expressed genes from lesional skin from therapeutic superresponders before and after 12 weeks of FZ treatment defined the FZ-response signature. Gene set variation analysis was used to produce enrichment scores of AD and FZ-response signatures in the Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes asthma cohort. RESULTS: The AD disease signature (112 upregulated genes) encompassing inflammatory, T-cell, TH2, and TH17/TH22 pathways was enriched in the blood and sputum of patients with asthma with increasing severity. Patients with asthma with sputum neutrophilia and mixed granulocyte phenotypes were the most enriched (P < .05). The FZ-response signature (296 downregulated genes) was enriched in asthmatic blood (P < .05) and particularly in neutrophilic and mixed granulocytic sputum (P < .05). These data were confirmed in sputum of the Airway Disease Endotyping for Personalized Therapeutics cohort. IL-22 mRNA across tissues did not correlate with FZ-response enrichment scores, but this response signature correlated with TH22/IL-22 pathways. CONCLUSIONS: The FZ-response signature in AD identifies severe neutrophilic asthmatic patients as potential responders to FZ therapy. This approach will help identify patients for future asthma clinical trials of drugs used successfully in other chronic diseases.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Asma/tratamento farmacológico , Dermatite Atópica/tratamento farmacológico , Fármacos Dermatológicos/uso terapêutico , Interleucinas/antagonistas & inibidores , Adulto , Idoso , Asma/genética , Asma/imunologia , Brônquios/imunologia , Dermatite Atópica/genética , Dermatite Atópica/imunologia , Feminino , Humanos , Imunoglobulina E/sangue , Interleucinas/genética , Interleucinas/imunologia , Masculino , Pessoa de Meia-Idade , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Proteoma/efeitos dos fármacos , Índice de Gravidade de Doença , Pele/imunologia , Escarro/imunologia , Transcriptoma/efeitos dos fármacos , Resultado do Tratamento , Interleucina 22
5.
Eur Respir J ; 59(2)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34737220

RESUMO

RATIONALE: Asthma phenotyping requires novel biomarker discovery. OBJECTIVES: To identify plasma biomarkers associated with asthma phenotypes by application of a new proteomic panel to samples from two well-characterised cohorts of severe (SA) and mild-to-moderate (MMA) asthmatics, COPD subjects and healthy controls (HCs). METHODS: An antibody-based array targeting 177 proteins predominantly involved in pathways relevant to inflammation, lipid metabolism, signal transduction and extracellular matrix was applied to plasma from 525 asthmatics and HCs in the U-BIOPRED cohort, and 142 subjects with asthma and COPD from the validation cohort BIOAIR. Effects of oral corticosteroids (OCS) were determined by a 2-week, placebo-controlled OCS trial in BIOAIR, and confirmed by relation to objective OCS measures in U-BIOPRED. RESULTS: In U-BIOPRED, 110 proteins were significantly different, mostly elevated, in SA compared to MMA and HCs. 10 proteins were elevated in SA versus MMA in both U-BIOPRED and BIOAIR (alpha-1-antichymotrypsin, apolipoprotein-E, complement component 9, complement factor I, macrophage inflammatory protein-3, interleukin-6, sphingomyelin phosphodiesterase 3, TNF receptor superfamily member 11a, transforming growth factor-ß and glutathione S-transferase). OCS treatment decreased most proteins, yet differences between SA and MMA remained following correction for OCS use. Consensus clustering of U-BIOPRED protein data yielded six clusters associated with asthma control, quality of life, blood neutrophils, high-sensitivity C-reactive protein and body mass index, but not Type-2 inflammatory biomarkers. The mast cell specific enzyme carboxypeptidase A3 was one major contributor to cluster differentiation. CONCLUSIONS: The plasma proteomic panel revealed previously unexplored yet potentially useful Type-2-independent biomarkers and validated several proteins with established involvement in the pathophysiology of SA.


Assuntos
Asma , Qualidade de Vida , Proteínas Sanguíneas , Humanos , Inflamação/metabolismo , Proteômica , Índice de Gravidade de Doença , Esteroides/uso terapêutico
6.
Eur Respir J ; 59(6)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34824054

RESUMO

INTRODUCTION: Asthma is a heterogeneous disease with poorly defined phenotypes. Patients with severe asthma often receive multiple treatments including oral corticosteroids (OCS). Treatment may modify the observed metabotype, rendering it challenging to investigate underlying disease mechanisms. Here, we aimed to identify dysregulated metabolic processes in relation to asthma severity and medication. METHODS: Baseline urine was collected prospectively from healthy participants (n=100), patients with mild-to-moderate asthma (n=87) and patients with severe asthma (n=418) in the cross-sectional U-BIOPRED cohort; 12-18-month longitudinal samples were collected from patients with severe asthma (n=305). Metabolomics data were acquired using high-resolution mass spectrometry and analysed using univariate and multivariate methods. RESULTS: A total of 90 metabolites were identified, with 40 significantly altered (p<0.05, false discovery rate <0.05) in severe asthma and 23 by OCS use. Multivariate modelling showed that observed metabotypes in healthy participants and patients with mild-to-moderate asthma differed significantly from those in patients with severe asthma (p=2.6×10-20), OCS-treated asthmatic patients differed significantly from non-treated patients (p=9.5×10-4), and longitudinal metabotypes demonstrated temporal stability. Carnitine levels evidenced the strongest OCS-independent decrease in severe asthma. Reduced carnitine levels were associated with mitochondrial dysfunction via decreases in pathway enrichment scores of fatty acid metabolism and reduced expression of the carnitine transporter SLC22A5 in sputum and bronchial brushings. CONCLUSIONS: This is the first large-scale study to delineate disease- and OCS-associated metabolic differences in asthma. The widespread associations with different therapies upon the observed metabotypes demonstrate the need to evaluate potential modulating effects on a treatment- and metabolite-specific basis. Altered carnitine metabolism is a potentially actionable therapeutic target that is independent of OCS treatment, highlighting the role of mitochondrial dysfunction in severe asthma.


Assuntos
Antiasmáticos , Asma , Corticosteroides/uso terapêutico , Antiasmáticos/uso terapêutico , Asma/genética , Carnitina/uso terapêutico , Estudos Transversais , Humanos , Índice de Gravidade de Doença , Membro 5 da Família 22 de Carreadores de Soluto
7.
Am J Respir Crit Care Med ; 203(1): 37-53, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32667261

RESUMO

Rationale: New approaches are needed to guide personalized treatment of asthma.Objectives: To test if urinary eicosanoid metabolites can direct asthma phenotyping.Methods: Urinary metabolites of prostaglandins (PGs), cysteinyl leukotrienes (CysLTs), and isoprostanes were quantified in the U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Diseases Outcomes) study including 86 adults with mild-to-moderate asthma (MMA), 411 with severe asthma (SA), and 100 healthy control participants. Validation was performed internally in 302 participants with SA followed up after 12-18 months and externally in 95 adolescents with asthma.Measurement and Main Results: Metabolite concentrations in healthy control participants were unrelated to age, body mass index, and sex, except for the PGE2 pathway. Eicosanoid concentrations were generally greater in participants with MMA relative to healthy control participants, with further elevations in participants with SA. However, PGE2 metabolite concentrations were either the same or lower in male nonsmokers with asthma than in healthy control participants. Metabolite concentrations were unchanged in those with asthma who adhered to oral corticosteroid treatment as documented by urinary prednisolone detection, whereas those with SA treated with omalizumab had lower concentrations of LTE4 and the PGD2 metabolite 2,3-dinor-11ß-PGF2α. High concentrations of LTE4 and PGD2 metabolites were associated with lower lung function and increased amounts of exhaled nitric oxide and eosinophil markers in blood, sputum, and urine in U-BIOPRED participants and in adolescents with asthma. These type 2 (T2) asthma associations were reproduced in the follow-up visit of the U-BIOPRED study and were found to be as sensitive to detect T2 inflammation as the established biomarkers.Conclusions: Monitoring of urinary eicosanoids can identify T2 asthma and introduces a new noninvasive approach for molecular phenotyping of adult and adolescent asthma.Clinical trial registered with www.clinicaltrials.gov (NCT01976767).


Assuntos
Asma/metabolismo , Biomarcadores/urina , Inflamação/metabolismo , Leucotrieno E4/metabolismo , Leucotrieno E4/urina , Prostaglandinas/metabolismo , Prostaglandinas/urina , Adulto , Asma/fisiopatologia , Feminino , Humanos , Inflamação/fisiopatologia , Masculino , Pessoa de Meia-Idade
8.
J Allergy Clin Immunol ; 147(1): 123-134, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32353491

RESUMO

BACKGROUND: Asthma is a heterogeneous disease characterized by distinct phenotypes with associated microbial dysbiosis. OBJECTIVES: Our aim was to identify severe asthma phenotypes based on sputum microbiome profiles and assess their stability after 12 to 18 months. A further aim was to evaluate clusters' robustness after inclusion of an independent cohort of patients with mild-to-moderate asthma. METHODS: In this longitudinal multicenter cohort study, sputum samples were collected for microbiome profiling from a subset of the Unbiased Biomarkers in Prediction of Respiratory Disease Outcomes adult patient cohort at baseline and after 12 to 18 months of follow-up. Unsupervised hierarchical clustering was performed by using the Bray-Curtis ß-diversity measure of microbial profiles. For internal validation, partitioning around medoids, consensus cluster distribution, bootstrapping, and topological data analysis were applied. Follow-up samples were studied to evaluate within-patient clustering stability in patients with severe asthma. Cluster robustness was evaluated by using an independent cohort of patients with mild-to-moderate asthma. RESULTS: Data were available for 100 subjects with severe asthma (median age 55 years; 42% males). Two microbiome-driven clusters were identified; they were characterized by differences in asthma onset, smoking status, residential locations, percentage of blood and/or sputum neutrophils and macrophages, lung spirometry results, and concurrent asthma medications (all P values < .05). The cluster 2 patients displayed a commensal-deficient bacterial profile that was associated with worse asthma outcomes than those of the cluster 1 patients. Longitudinal clusters revealed high relative stability after 12 to 18 months in those with severe asthma. Further inclusion of an independent cohort of 24 patients with mild-to-moderate asthma was consistent with the clustering assignments. CONCLUSION: Unbiased microbiome-driven clustering revealed 2 distinct robust phenotypes of severe asthma that exhibited relative overtime stability. This suggests that the sputum microbiome may serve as a biomarker for better characterizing asthma phenotypes.


Assuntos
Asma/microbiologia , Microbiota , Escarro/microbiologia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Manejo de Espécimes , Fatores de Tempo
9.
Allergy ; 75(2): 370-380, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31506971

RESUMO

BACKGROUND: Whether the clinical or pathophysiologic significance of the "treatable trait" high blood eosinophil count in COPD is the same as for asthma remains controversial. We sought to determine the relationship between the blood eosinophil count, clinical characteristics and gene expression from bronchial brushings in COPD and asthma. METHODS: Subjects were recruited into a COPD (emphysema versus airway disease [EvA]) or asthma cohort (Unbiased BIOmarkers in PREDiction of respiratory disease outcomes, U-BIOPRED). We determined gene expression using RNAseq in EvA (n = 283) and Affymetrix microarrays in U-BIOPRED (n = 85). We ran linear regression analysis of the bronchial brushings transcriptional signal versus blood eosinophil counts as well as differential expression using a blood eosinophil > 200 cells/µL as a cut-off. The false discovery rate was controlled at 1% (with continuous values) and 5% (with dichotomized values). RESULTS: There were no differences in age, gender, lung function, exercise capacity and quantitative computed tomography between eosinophilic versus noneosinophilic COPD cases. Total serum IgE was increased in eosinophilic asthma and COPD. In EvA, there were 12 genes with a statistically significant positive association with the linear blood eosinophil count, whereas in U-BIOPRED, 1197 genes showed significant associations (266 positive and 931 negative). The transcriptome showed little overlap between genes and pathways associated with blood eosinophil counts in asthma versus COPD. Only CST1 was common to eosinophilic asthma and COPD and was replicated in independent cohorts. CONCLUSION: Despite shared "treatable traits" between asthma and COPD, the molecular mechanisms underlying these clinical entities are predominately different.


Assuntos
Asma/genética , Asma/imunologia , Eosinófilos/imunologia , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/imunologia , Mucosa Respiratória/imunologia , Transcriptoma , Idoso , Asma/sangue , Biomarcadores/sangue , Feminino , Humanos , Imunoglobulina E/sangue , Contagem de Leucócitos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Doença Pulmonar Obstrutiva Crônica/sangue , RNA-Seq , Células Th2/imunologia
10.
J Allergy Clin Immunol ; 140(6): 1509-1518, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29221581

RESUMO

The last decade has seen the approval of several new biologics for the treatment of severe asthma-targeting specific endotypes and phenotypes. This review will examine how evidence generated from the mepolizumab clinical development program showed that blood eosinophil counts, rather than sputum or tissue eosinophil counts, evolved as a pharmacodynamic and predictive biomarker for the efficacy of treatment with mepolizumab in patients with severe eosinophilic asthma. Based on the available evidence and combined with clinical judgement, a baseline blood eosinophil threshold of 150 cells/µL or greater or a historical blood eosinophil threshold of 300 cells/µL or greater will allow selection of patients with severe eosinophilic asthma who are most likely to achieve clinically significant reductions in the rate of exacerbations with mepolizumab treatment.


Assuntos
Asma/diagnóstico , Células Sanguíneas/patologia , Eosinófilos/patologia , Eosinofilia Pulmonar/diagnóstico , Escarro/citologia , Animais , Antiasmáticos/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Asma/tratamento farmacológico , Biomarcadores Farmacológicos/metabolismo , Progressão da Doença , Humanos , Interleucina-5/imunologia , Contagem de Leucócitos , Valor Preditivo dos Testes , Eosinofilia Pulmonar/tratamento farmacológico , Índice de Gravidade de Doença
11.
Eur Respir J ; 50(3)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28954779

RESUMO

A proportion of severe asthma patients suffers from persistent airflow limitation (PAL), often associated with more symptoms and exacerbations. Little is known about the underlying mechanisms. Here, our aim was to discover unexplored potential mechanisms using Gene Set Variation Analysis (GSVA), a sensitive technique that can detect underlying pathways in heterogeneous samples.Severe asthma patients from the U-BIOPRED cohort with PAL (post-bronchodilator forced expiratory volume in 1 s/forced vital capacity ratio below the lower limit of normal) were compared with those without PAL. Gene expression was assessed on the total RNA of sputum cells, nasal brushings, and endobronchial brushings and biopsies. GSVA was applied to identify differentially enriched predefined gene signatures based on all available gene expression publications and data on airways disease.Differentially enriched gene signatures were identified in nasal brushings (n=1), sputum (n=9), bronchial brushings (n=1) and bronchial biopsies (n=4) that were associated with response to inhaled steroids, eosinophils, interleukin-13, interferon-α, specific CD4+ T-cells and airway remodelling.PAL in severe asthma has distinguishable underlying gene networks that are associated with treatment, inflammatory pathways and airway remodelling. These findings point towards targets for the therapy of PAL in severe asthma.


Assuntos
Asma/genética , Asma/fisiopatologia , Brônquios/fisiopatologia , Broncoconstrição/genética , Adulto , Idoso , Asma/imunologia , Biomarcadores/análise , Estudos Transversais , Eosinófilos/citologia , Eosinófilos/imunologia , Feminino , Volume Expiratório Forçado , Perfilação da Expressão Gênica , Humanos , Interleucina-13/metabolismo , Contagem de Leucócitos , Masculino , Pessoa de Meia-Idade , Países Baixos , Estudos Prospectivos , Índice de Gravidade de Doença , Escarro/citologia , Escarro/imunologia , Transcriptoma , Capacidade Vital
13.
Hum Mol Genet ; 23(16): 4187-200, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24667415

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal, neurodegenerative disorder in which motor neurons in the spinal cord and motor cortex degenerate. Although the majority of ALS cases are sporadic, mutations in Cu-Zn superoxide dismutase-1 (SOD1) are causative for 10-20% of familial ALS (fALS), and recent findings show that a hexanucleotide repeat expansion in the C9ORF72 gene may account for >30% of fALS cases in Europe. SOD1(G93A) transgenic mice have a phenotype and pathology similar to human ALS. In both ALS patients and SOD1(G93A) mice, the first pathological features of disease manifest at the neuromuscular junction, where significant denervation occurs prior to motor neuron degeneration. Strategies aimed at preventing or delaying denervation may therefore be of benefit in ALS. In this study, we show that Nogo-A levels increase in muscle fibres of SOD1(G93A) mice along with the elevation of markers of neuromuscular dysfunction (CHRNA1/MUSK). Symptomatic treatment of SOD1(G93A) mice from 70 days of age with an anti-Nogo-A antibody (GSK577548) significantly improves hindlimb muscle innervation at 90 days, a late symptomatic stage of disease, resulting in increased muscle force and motor unit survival and a significant increase in motor neuron survival. However, not all aspects of this improvement in anti-Nogo-A antibody-treated SOD1(G93A) mice were maintained at end-stage disease. These results show that treatment with anti-Nogo-A antibody significantly improves neuromuscular function in the SOD1(G93A) mouse model of ALS, at least during the earlier stages of disease and suggest that pharmacological inhibition of Nogo-A may be a disease-modifying approach in ALS.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Anticorpos/uso terapêutico , Proteínas da Mielina/imunologia , Superóxido Dismutase/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Anticorpos/imunologia , Modelos Animais de Doenças , Progressão da Doença , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios Motores/patologia , Fibras Musculares de Contração Lenta/metabolismo , Proteínas da Mielina/metabolismo , Proteínas Nogo , Superóxido Dismutase-1
16.
Hum Mol Genet ; 21(5): 1062-77, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22095690

RESUMO

X-linked adrenoleukodystrophy (X-ALD) is an inherited disorder characterized by axonopathy and demyelination in the central nervous system and adrenal insufficiency. Main X-ALD phenotypes are: (i) an adult adrenomyeloneuropathy (AMN) with axonopathy in spinal cords, (ii) cerebral AMN with brain demyelination (cAMN) and (iii) a childhood variant, cALD, characterized by severe cerebral demyelination. Loss of function of the ABCD1 peroxisomal fatty acid transporter and subsequent accumulation of very-long-chain fatty acids (VLCFAs) are the common culprits to all forms of X-ALD, an aberrant microglial activation accounts for the cerebral forms, whereas inflammation allegedly plays no role in AMN. How VLCFA accumulation leads to neurodegeneration and what factors account for the dissimilar clinical outcomes and prognosis of X-ALD variants remain elusive. To gain insights into these questions, we undertook a transcriptomic approach followed by a functional-enrichment analysis in spinal cords of the animal model of AMN, the Abcd1(-) null mice, and in normal-appearing white matter of cAMN and cALD patients. We report that the mouse model shares with cAMN and cALD a common signature comprising dysregulation of oxidative phosphorylation, adipocytokine and insulin signaling pathways, and protein synthesis. Functional validation by quantitative polymerase chain reaction, western blots and assays in spinal cord organotypic cultures confirmed the interplay of these pathways through IkB kinase, being VLCFA in excess a causal, upstream trigger promoting the altered signature. We conclude that X-ALD is, in all its variants, a metabolic/inflammatory syndrome, which may offer new targets in X-ALD therapeutics.


Assuntos
Adipocinas/metabolismo , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/metabolismo , Encéfalo/metabolismo , Ácidos Graxos/metabolismo , Redes e Vias Metabólicas , Fosforilação Oxidativa , Medula Espinal/metabolismo , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Adiponectina/metabolismo , Adulto , Animais , Vias Biossintéticas , Criança , Modelos Animais de Doenças , Progressão da Doença , Expressão Gênica , Perfilação da Expressão Gênica , Estudos de Associação Genética , Humanos , Quinase I-kappa B/metabolismo , Insulina/metabolismo , Resistência à Insulina , Leptina/metabolismo , Camundongos , NF-kappa B/metabolismo , Estresse Oxidativo , Transdução de Sinais , Receptores Toll-Like/metabolismo , Transcriptoma
18.
ERJ Open Res ; 9(5)2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37868143

RESUMO

Rationale: Patients with severe asthma are dependent upon treatment with high doses of inhaled corticosteroids (ICS) and often also oral corticosteroids (OCS). The extent of endogenous androgenic anabolic steroid (EAAS) suppression in asthma has not previously been described in detail. The objective of the present study was to measure urinary concentrations of EAAS in relation to exogenous corticosteroid exposure. Methods: Urine collected at baseline in the U-BIOPRED (Unbiased Biomarkers for the Prediction of Respiratory Disease outcomes) study of severe adult asthmatics (SA, n=408) was analysed by quantitative mass spectrometry. Data were compared to that of mild-to-moderate asthmatics (MMA, n=70) and healthy subjects (HC, n=98) from the same study. Measurements and main results: The concentrations of urinary endogenous steroid metabolites were substantially lower in SA than in MMA or HC. These differences were more pronounced in SA patients with detectable urinary OCS metabolites. Their dehydroepiandrosterone sulfate (DHEA-S) concentrations were <5% of those in HC, and cortisol concentrations were below the detection limit in 75% of females and 82% of males. The concentrations of EAAS in OCS-positive patients, as well as patients on high-dose ICS only, were more suppressed in females than males (p<0.05). Low levels of DHEA were associated with features of more severe disease and were more prevalent in females (p<0.05). The association between low EAAS and corticosteroid treatment was replicated in 289 of the SA patients at follow-up after 12-18 months. Conclusion: The pronounced suppression of endogenous anabolic androgens in females might contribute to sex differences regarding the prevalence of severe asthma.

19.
Thorax ; 66(6): 489-95, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21441172

RESUMO

BACKGROUND: Induced sputum is used to sample inflammatory cells, predominantly neutrophils and macrophages, from the airways of COPD patients. The author's aim was to identify candidate genes associated with the degree of airflow obstruction and the extent of emphysema by expression profiling, and then to confirm these findings for selected candidates using PCR and protein analysis. METHODS: Two sputum studies were performed in Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage 2-4 COPD ex-smokers from the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) cohort. First, gene array profiling at baseline in samples from 148 patients. The findings were replicated in a separate population of 176 patients using real-time PCR. The findings for one selected gene IL-18R were further analysed using immunohistochemistry in lung tissue and induced sputum from patients outside the ECLIPSE cohort. RESULTS: Gene expression profiling revealed changes in 277 genes associated with GOLD stage 2 versus 3 and 4, and 198 genes with changes associated with the degree of emphysema (p < 0.01 for each gene). Twelve of these candidate genes were analysed by PCR in the replication cohort, with significant changes (p < 0.05) observed for 11 genes. IL-18R protein expression was higher on alveolar macrophages in lung tissue of COPD patients (mean 23.2%) compared to controls (mean ex-smokers 2% and non-smokers 2.5%). CONCLUSION: Gene expression profiling in sputum cells identified candidate genes that may play roles in molecular mechanisms associated with COPD. The replication by PCR and protein in different studies confirms these findings, and highlights a potential role for IL-18R upregulation in severe COPD.


Assuntos
Doença Pulmonar Obstrutiva Crônica/genética , Escarro/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Estudos Longitudinais , Macrófagos Alveolares/metabolismo , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase/métodos , Alvéolos Pulmonares/metabolismo , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Receptores de Interleucina-18/genética , Receptores de Interleucina-18/metabolismo , Índice de Gravidade de Doença , Abandono do Hábito de Fumar , Espirometria/métodos , Escarro/citologia , Tomografia Computadorizada por Raios X
20.
J Neurosci Res ; 89(8): 1218-27, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21538462

RESUMO

The molecular basis of schizophrenia is poorly understood; however, different brain regions are believed to play distinct roles in disease symptomology. We have studied gene expression in the superior temporal cortex (Brodmann area 22; BA22), which may play a role in positive pathophysiology, and compared our results with data from the anterior prefrontal cortex (BA10), which shows evidence for a role in negative symptoms. Genome-wide mRNA expression was determined in the BA22 region in 23 schizophrenics and 19 controls and compared with a BA10 data set from the same subjects. After adjustments for confounding sources of variation, we carried out GeneGO pathway enrichment analysis in each region. Significant differences were seen in age-related transcriptional changes between the BA22 and the BA10 regions, 21.8% and 41.4% of disease-associated transcripts showing age association, respectively. After removing age associated changes from our data, we saw the highest enrichment in processes mediating cell adhesion, synaptic contact, cytoskeletal remodelling, and apoptosis in the BA22 region. For the BA10 region, we observed the strongest changes in reproductive signalling, tissue remodelling, and cell differentiation. Further exploratory analysis also identified potentially disease-relevant processes that were undetected in our more stringent primary analysis, including autophagy in the BA22 region and the amyloid process in the BA10 region. Collectively, our analysis suggests disruption of many common pathways and processes underpinning synaptic plasticity in both regions in schizophrenia, whereas individual regions emphasize changes in certain pathways that may help to highlight pathway-specific therapeutic opportunities to treat negative or positive symptoms of the disease.


Assuntos
Córtex Pré-Frontal/metabolismo , Esquizofrenia/genética , Lobo Temporal/metabolismo , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Esquizofrenia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA