Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 20(3): e1011942, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498530

RESUMO

Reducing contributions from non-neuronal sources is a crucial step in functional magnetic resonance imaging (fMRI) connectivity analyses. Many viable strategies for denoising fMRI are used in the literature, and practitioners rely on denoising benchmarks for guidance in the selection of an appropriate choice for their study. However, fMRI denoising software is an ever-evolving field, and the benchmarks can quickly become obsolete as the techniques or implementations change. In this work, we present a denoising benchmark featuring a range of denoising strategies, datasets and evaluation metrics for connectivity analyses, based on the popular fMRIprep software. The benchmark prototypes an implementation of a reproducible framework, where the provided Jupyter Book enables readers to reproduce or modify the figures on the Neurolibre reproducible preprint server (https://neurolibre.org/). We demonstrate how such a reproducible benchmark can be used for continuous evaluation of research software, by comparing two versions of the fMRIprep. Most of the benchmark results were consistent with prior literature. Scrubbing, a technique which excludes time points with excessive motion, combined with global signal regression, is generally effective at noise removal. Scrubbing was generally effective, but is incompatible with statistical analyses requiring the continuous sampling of brain signal, for which a simpler strategy, using motion parameters, average activity in select brain compartments, and global signal regression, is preferred. Importantly, we found that certain denoising strategies behave inconsistently across datasets and/or versions of fMRIPrep, or had a different behavior than in previously published benchmarks. This work will hopefully provide useful guidelines for the fMRIprep users community, and highlight the importance of continuous evaluation of research methods.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Artefatos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico/métodos
2.
PLoS Comput Biol ; 19(7): e1011230, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37498959

RESUMO

The Canadian Open Neuroscience Platform (CONP) takes a multifaceted approach to enabling open neuroscience, aiming to make research, data, and tools accessible to everyone, with the ultimate objective of accelerating discovery. Its core infrastructure is the CONP Portal, a repository with a decentralized design, where datasets and analysis tools across disparate platforms can be browsed, searched, accessed, and shared in accordance with FAIR principles. Another key piece of CONP infrastructure is NeuroLibre, a preprint server capable of creating and hosting executable and fully reproducible scientific publications that embed text, figures, and code. As part of its holistic approach, the CONP has also constructed frameworks and guidance for ethics and data governance, provided support and developed resources to help train the next generation of neuroscientists, and has fostered and grown an engaged community through outreach and communications. In this manuscript, we provide a high-level overview of this multipronged platform and its vision of lowering the barriers to the practice of open neuroscience and yielding the associated benefits for both individual researchers and the wider community.


Assuntos
Neurociências , Canadá , Publicações , Comunicação
3.
Brain ; 146(4): 1686-1696, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36059063

RESUMO

Pleiotropy occurs when a genetic variant influences more than one trait. This is a key property of the genomic architecture of psychiatric disorders and has been observed for rare and common genomic variants. It is reasonable to hypothesize that the microscale genetic overlap (pleiotropy) across psychiatric conditions and cognitive traits may lead to similar overlaps at the macroscale brain level such as large-scale brain functional networks. We took advantage of brain connectivity, measured by resting-state functional MRI to measure the effects of pleiotropy on large-scale brain networks, a putative step from genes to behaviour. We processed nine resting-state functional MRI datasets including 32 726 individuals and computed connectome-wide profiles of seven neuropsychiatric copy-number-variants, five polygenic scores, neuroticism and fluid intelligence as well as four idiopathic psychiatric conditions. Nine out of 19 pairs of conditions and traits showed significant functional connectivity correlations (rFunctional connectivity), which could be explained by previously published levels of genomic (rGenetic) and transcriptomic (rTranscriptomic) correlations with moderate to high concordance: rGenetic-rFunctional connectivity = 0.71 [0.40-0.87] and rTranscriptomic-rFunctional connectivity = 0.83 [0.52; 0.94]. Extending this analysis to functional connectivity profiles associated with rare and common genetic risk showed that 30 out of 136 pairs of connectivity profiles were correlated above chance. These similarities between genetic risks and psychiatric disorders at the connectivity level were mainly driven by the overconnectivity of the thalamus and the somatomotor networks. Our findings suggest a substantial genetic component for shared connectivity profiles across conditions and traits, opening avenues to delineate general mechanisms-amenable to intervention-across psychiatric conditions and genetic risks.


Assuntos
Conectoma , Transtornos Mentais , Humanos , Pleiotropia Genética , Imageamento por Ressonância Magnética , Transtornos Mentais/diagnóstico por imagem , Transtornos Mentais/genética , Encéfalo/diagnóstico por imagem
4.
Neuroimage ; 283: 120395, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37832707

RESUMO

Brain decoding aims to infer cognitive states from patterns of brain activity. Substantial inter-individual variations in functional brain organization challenge accurate decoding performed at the group level. In this paper, we tested whether accurate brain decoding models can be trained entirely at the individual level. We trained several classifiers on a dense individual functional magnetic resonance imaging (fMRI) dataset for which six participants completed the entire Human Connectome Project (HCP) task battery >13 times over ten separate fMRI sessions. We evaluated nine decoding methods, from Support Vector Machines (SVM) and Multi-Layer Perceptron (MLP) to Graph Convolutional Neural Networks (GCN). All decoders were trained to classify single fMRI volumes into 21 experimental conditions simultaneously, using ∼7 h of fMRI data per participant. The best prediction accuracies were achieved with GCN and MLP models, whose performance (57-67 % accuracy) approached state-of-the-art accuracy (76 %) with models trained at the group level on >1 K hours of data from the original HCP sample. Our SVM model also performed very well (54-62 % accuracy). Feature importance maps derived from MLP -our best-performing model- revealed informative features in regions relevant to particular cognitive domains, notably in the motor cortex. We also observed that inter-subject classification achieved substantially lower accuracy than subject-specific models, indicating that our decoders learned individual-specific features. This work demonstrates that densely-sampled neuroimaging datasets can be used to train accurate brain decoding models at the individual level. We expect this work to become a useful benchmark for techniques that improve model generalization across multiple subjects and acquisition conditions.


Assuntos
Conectoma , Humanos , Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Redes Neurais de Computação , Aprendizagem
5.
Brain ; 144(7): 1943-1957, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-33704401

RESUMO

Neuroimaging genomic studies of autism spectrum disorder and schizophrenia have mainly adopted a 'top-down' approach, beginning with the behavioural diagnosis, and moving down to intermediate brain phenotypes and underlying genetic factors. Advances in imaging and genomics have been successfully applied to increasingly large case-control studies. As opposed to diagnostic-first approaches, the bottom-up strategy begins at the level of molecular factors enabling the study of mechanisms related to biological risk, irrespective of diagnoses or clinical manifestations. The latter strategy has emerged from questions raised by top-down studies: why are mutations and brain phenotypes over-represented in individuals with a psychiatric diagnosis? Are they related to core symptoms of the disease or to comorbidities? Why are mutations and brain phenotypes associated with several psychiatric diagnoses? Do they impact a single dimension contributing to all diagnoses? In this review, we aimed at summarizing imaging genomic findings in autism and schizophrenia as well as neuropsychiatric variants associated with these conditions. Top-down studies of autism and schizophrenia identified patterns of neuroimaging alterations with small effect-sizes and an extreme polygenic architecture. Genomic variants and neuroimaging patterns are shared across diagnostic categories suggesting pleiotropic mechanisms at the molecular and brain network levels. Although the field is gaining traction; characterizing increasingly reproducible results, it is unlikely that top-down approaches alone will be able to disentangle mechanisms involved in autism or schizophrenia. In stark contrast with top-down approaches, bottom-up studies showed that the effect-sizes of high-risk neuropsychiatric mutations are equally large for neuroimaging and behavioural traits. Low specificity has been perplexing with studies showing that broad classes of genomic variants affect a similar range of behavioural and cognitive dimensions, which may be consistent with the highly polygenic architecture of psychiatric conditions. The surprisingly discordant effect sizes observed between genetic and diagnostic first approaches underscore the necessity to decompose the heterogeneity hindering case-control studies in idiopathic conditions. We propose a systematic investigation across a broad spectrum of neuropsychiatric variants to identify putative latent dimensions underlying idiopathic conditions. Gene expression data on temporal, spatial and cell type organization in the brain have also considerable potential for parsing the mechanisms contributing to these dimensions' phenotypes. While large neuroimaging genomic datasets are now available in unselected populations, there is an urgent need for data on individuals with a range of psychiatric symptoms and high-risk genomic variants. Such efforts together with more standardized methods will improve mechanistically informed predictive modelling for diagnosis and clinical outcomes.


Assuntos
Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/genética , Genômica/métodos , Neuroimagem/métodos , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genética , Transtorno do Espectro Autista/patologia , Humanos , Esquizofrenia/patologia
6.
Neuroimage ; 231: 117847, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33582272

RESUMO

A key goal in neuroscience is to understand brain mechanisms of cognitive functions. An emerging approach is "brain decoding", which consists of inferring a set of experimental conditions performed by a participant, using pattern classification of brain activity. Few works so far have attempted to train a brain decoding model that would generalize across many different cognitive tasks drawn from multiple cognitive domains. To tackle this problem, we proposed a multidomain brain decoder that automatically learns the spatiotemporal dynamics of brain response within a short time window using a deep learning approach. We evaluated the decoding model on a large population of 1200 participants, under 21 different experimental conditions spanning six different cognitive domains, acquired from the Human Connectome Project task-fMRI database. Using a 10s window of fMRI response, the 21 cognitive states were identified with a test accuracy of 90% (chance level 4.8%). Performance remained good when using a 6s window (82%). It was even feasible to decode cognitive states from a single fMRI volume (720ms), with the performance following the shape of the hemodynamic response. Moreover, a saliency map analysis demonstrated that the high decoding performance was driven by the response of biologically meaningful brain regions. Together, we provide an automated tool to annotate human brain activity with fine temporal resolution and fine cognitive granularity. Our model shows potential applications as a reference model for domain adaptation, possibly making contributions in a variety of domains, including neurological and psychiatric disorders.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Cognição/fisiologia , Aprendizado Profundo , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Conectoma/métodos , Humanos , Imageamento por Ressonância Magnética/métodos
7.
Brain ; 143(5): 1315-1331, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31891371

RESUMO

Aetiological and clinical heterogeneity is increasingly recognized as a common characteristic of Alzheimer's disease and related dementias. This heterogeneity complicates diagnosis, treatment, and the design and testing of new drugs. An important line of research is discovery of multimodal biomarkers that will facilitate the targeting of subpopulations with homogeneous pathophysiological signatures. High-throughput 'omics' are unbiased data-driven techniques that probe the complex aetiology of Alzheimer's disease from multiple levels (e.g. network, cellular, and molecular) and thereby account for pathophysiological heterogeneity in clinical populations. This review focuses on data reduction analyses that identify complementary disease-relevant perturbations for three omics techniques: neuroimaging-based subtypes, metabolomics-derived metabolite panels, and genomics-related polygenic risk scores. Neuroimaging can track accrued neurodegeneration and other sources of network impairments, metabolomics provides a global small-molecule snapshot that is sensitive to ongoing pathological processes, and genomics characterizes relatively invariant genetic risk factors representing key pathways associated with Alzheimer's disease. Following this focused review, we present a roadmap for assembling these multiomics measurements into a diagnostic tool highly predictive of individual clinical trajectories, to further the goal of personalized medicine in Alzheimer's disease.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Medicina de Precisão/métodos , Genômica/métodos , Humanos , Metabolômica/métodos , Neuroimagem/métodos
8.
Neuroimage ; 214: 116678, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32119986

RESUMO

Increasing the reproducibility of neuroimaging measurement addresses a central impediment to the advancement of human neuroscience and its clinical applications. Recent efforts demonstrating variance in functional brain organization within and between individuals shows a need for improving reproducibility of functional parcellations without long scan times. We apply bootstrap aggregation, or bagging, to the problem of improving reproducibility in functional parcellation. We use two large datasets to demonstrate that compared to a standard clustering framework, bagging improves the reproducibility and test-retest reliability of both cortical and subcortical functional parcellations across a range of sites, scanners, samples, scan lengths, clustering algorithms, and clustering parameters (e.g., number of clusters, spatial constraints). With as little as 6 â€‹min of scan time, bagging creates more reproducible group and individual level parcellations than standard approaches with twice as much data. This suggests that regardless of the specific parcellation strategy employed, bagging may be a key method for improving functional parcellation and bringing functional neuroimaging-based measurement closer to clinical impact.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/anatomia & histologia , Neuroimagem Funcional/métodos , Processamento de Imagem Assistida por Computador/métodos , Humanos , Imageamento por Ressonância Magnética/métodos
9.
Neuroimage ; 205: 116210, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31593793

RESUMO

Studies using resting-state functional magnetic resonance imaging (rsfMRI) are increasingly collecting data at multiple sites in order to speed up recruitment or increase sample size. The main objective of this study was to assess the long-term consistency of rsfMRI connectivity maps derived at multiple sites and vendors using the Canadian Dementia Imaging Protocol (CDIP, www.cdip-pcid.ca). Nine to 10 min of functional BOLD images were acquired from an adult cognitively healthy volunteer scanned repeatedly at 13 Canadian sites on three scanner makes (General Electric, Philips and Siemens) over the course of 2.5 years. The consistency (spatial Pearson's correlation) of rsfMRI connectivity maps for seven canonical networks ranged from 0.3 to 0.8, with a negligible effect of time, but significant site and vendor effects. We noted systematic differences in data quality (i.e. head motion, number of useable time frames, temporal signal-to-noise ratio) across vendors, which may also confound some of these results, and could not be disentangled in this sample. We also pooled the long-term longitudinal data with a single-site, short-term (1 month) data sample acquired on 26 subjects (10 scans per subject), called HNU1. Using randomly selected pairs of scans from each subject, we quantified the ability of a data-driven unsupervised cluster analysis to match two scans of the same subjects. In this "fingerprinting" experiment, we found that scans from the Canadian subject (Csub) could be matched with high accuracy intra-site (>95% for some networks), but that the accuracy decreased substantially for scans drawn from different sites and vendors, even falling outside of the range of accuracies observed in HNU1. Overall, our results demonstrate good multivariate stability of rsfMRI measures over several years, but substantial impact of scanning site and vendors. How detrimental these effects are will depend on the application, yet our results demonstrate that new methods for harmonizing multisite analysis represent an important area for future work.


Assuntos
Encéfalo/diagnóstico por imagem , Conectoma/normas , Imageamento por Ressonância Magnética/normas , Estudos Multicêntricos como Assunto/normas , Adulto , Canadá , Análise por Conglomerados , Conectoma/instrumentação , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética/instrumentação , Projetos de Pesquisa
10.
Hum Brain Mapp ; 40(4): 1290-1297, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30467922

RESUMO

Quality control (QC) of brain magnetic resonance images (MRI) is an important process requiring a significant amount of manual inspection. Major artifacts, such as severe subject motion, are easy to identify to naïve observers but lack automated identification tools. Clinical trials involving motion-prone neonates typically pool data to obtain sufficient power, and automated quality control protocols are especially important to safeguard data quality. Current study tested an open source method to detect major artifacts among 2D neonatal MRI via supervised machine learning. A total of 1,020 two-dimensional transverse T2-weighted MRI images of preterm newborns were examined and classified as either QC Pass or QC Fail. Then 70 features across focus, texture, noise, and natural scene statistics categories were extracted from each image. Several different classifiers were trained and their performance was compared with subjective rating as the gold standard. We repeated the rating process again to examine the stability of the rating and classification. When tested via 10-fold cross validation, the random undersampling and adaboost ensemble (RUSBoost) method achieved the best overall performance for QC Fail images with 85% positive predictive value along with 75% sensitivity. Similar classification performance was observed in the analyses of the repeated subjective rating. Current results served as a proof of concept for predicting images that fail quality control using no-reference objective image features. We also highlighted the importance of evaluating results beyond mere accuracy as a performance measure for machine learning in imbalanced group settings due to larger proportion of QC Pass quality images.


Assuntos
Artefatos , Interpretação de Imagem Assistida por Computador/normas , Processamento de Imagem Assistida por Computador/normas , Imageamento por Ressonância Magnética/normas , Controle de Qualidade , Aprendizado de Máquina Supervisionado , Conjuntos de Dados como Assunto , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos , Recém-Nascido , Imageamento por Ressonância Magnética/métodos , Masculino
11.
Hum Brain Mapp ; 40(2): 638-651, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30368979

RESUMO

Previous positron emission tomography (PET) studies have quantified filamentous tau pathology using regions-of-interest (ROIs) based on observations of the topographical distribution of neurofibrillary tangles in post-mortem tissue. However, such approaches may not take full advantage of information contained in neuroimaging data. The present study employs an unsupervised data-driven method to identify spatial patterns of tau-PET distribution, and to compare these patterns to previously published "pathology-driven" ROIs. Tau-PET patterns were identified from a discovery sample comprised of 123 normal controls and patients with mild cognitive impairment or Alzheimer's disease (AD) dementia from the Swedish BioFINDER cohort, who underwent [18 F]AV1451 PET scanning. Associations with cognition were tested in a separate sample of 90 individuals from ADNI. BioFINDER [18 F]AV1451 images were entered into a robust voxelwise stable clustering algorithm, which resulted in five clusters. Mean [18 F]AV1451 uptake in the data-driven clusters, and in 35 previously published pathology-driven ROIs, was extracted from ADNI [18 F]AV1451 scans. We performed linear models comparing [18 F]AV1451 signal across all 40 ROIs to tests of global cognition and episodic memory, adjusting for age, sex, and education. Two data-driven ROIs consistently demonstrated the strongest or near-strongest effect sizes across all cognitive tests. Inputting all regions plus demographics into a feature selection routine resulted in selection of two ROIs (one data-driven, one pathology-driven) and education, which together explained 28% of the variance of a global cognitive composite score. Our findings suggest that [18 F]AV1451-PET data naturally clusters into spatial patterns that are biologically meaningful and that may offer advantages as clinical tools.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Neuroimagem/métodos , Reconhecimento Automatizado de Padrão/métodos , Tomografia por Emissão de Pósitrons/métodos , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Carbolinas , Análise por Conglomerados , Estudos de Coortes , Conjuntos de Dados como Assunto , Feminino , Humanos , Masculino
12.
J Magn Reson Imaging ; 49(2): 456-465, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30635988

RESUMO

BACKGROUND: Harmonized protocols to collect imaging data must be devised, employed, and maintained in multicentric studies to reduce interscanner variability in subsequent analyses. PURPOSE: To present a standardized protocol for multicentric research on dementia linked to neurodegeneration in aging, harmonized on all three major vendor platforms. The protocol includes a common procedure for qualification, quality control, and quality assurance and feasibility in large-scale studies. STUDY TYPE: Prospective. SUBJECTS: The study involved a geometric phantom, a single individual volunteer, and 143 cognitively healthy, mild cognitively impaired, and Alzheimer's disease participants in a large-scale, multicentric study. FIELD STRENGTH/SEQUENCES: MRI was perform with 3T scanners (GE, Philips, Siemens) and included 3D T1 w, PD/T2 w, T2* , T2 w-FLAIR, diffusion, and BOLD resting state acquisitions. ASSESSMENT: Measures included signal- and contrast-to-noise ratios (SNR and CNR, respectively), total brain volumes, and total scan time. STATISTICAL TESTS: SNR, CNR, and scan time were compared between scanner vendors using analysis of variance (ANOVA) and Tukey tests, while brain volumes were tested using linear mixed models. RESULTS: Geometric phantom T1 w SNR was significantly (P < 0.001) higher in Philips (mean: 71.4) than Siemens (29.5), while no significant difference was observed between vendors for T2 w (32.0 and 37.2, respectively, P = 0.243). Single individual volunteer T1 w CNR was higher in subcortical regions for Siemens (P < 0.001), while Philips had higher cortical CNR (P = 0.044). No significant difference in brain volumes was observed between vendors (P = 0.310/0.582/0.055). The average scan time was 41.0 minutes (SD: 2.8) and was not significantly different between sites (P = 0.071) and cognitive groups (P = 0.853). DATA CONCLUSION: The harmonized Canadian Dementia Imaging Protocol suits the needs of studies that need to ensure quality MRI data acquisition for the measurement of brain changes across adulthood, due to aging, neurodegeneration, and other etiologies. A detailed description, exam cards, and operators' manual are freely available at the following site: www.cdip-pcid.ca. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;49:456-465.


Assuntos
Envelhecimento , Doença de Alzheimer/diagnóstico por imagem , Demência/diagnóstico por imagem , Imageamento por Ressonância Magnética/normas , Doenças Neurodegenerativas/diagnóstico por imagem , Algoritmos , Encéfalo/diagnóstico por imagem , Canadá/epidemiologia , Humanos , Modelos Lineares , Imagens de Fantasmas , Estudos Prospectivos , Garantia da Qualidade dos Cuidados de Saúde , Controle de Qualidade , Reprodutibilidade dos Testes , Razão Sinal-Ruído
13.
Brain ; 141(6): 1871-1883, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29688388

RESUMO

See Tijms and Visser (doi:10.1093/brain/awy113) for a scientific commentary on this article.Alzheimer's disease is preceded by a lengthy 'preclinical' stage spanning many years, during which subtle brain changes occur in the absence of overt cognitive symptoms. Predicting when the onset of disease symptoms will occur is an unsolved challenge in individuals with sporadic Alzheimer's disease. In individuals with autosomal dominant genetic Alzheimer's disease, the age of symptom onset is similar across generations, allowing the prediction of individual onset times with some accuracy. We extend this concept to persons with a parental history of sporadic Alzheimer's disease to test whether an individual's symptom onset age can be informed by the onset age of their affected parent, and whether this estimated onset age can be predicted using only MRI. Structural and functional MRIs were acquired from 255 ageing cognitively healthy subjects with a parental history of sporadic Alzheimer's disease from the PREVENT-AD cohort. Years to estimated symptom onset was calculated as participant age minus age of parental symptom onset. Grey matter volume was extracted from T1-weighted images and whole-brain resting state functional connectivity was evaluated using degree count. Both modalities were summarized using a 444-region cortical-subcortical atlas. The entire sample was divided into training (n = 138) and testing (n = 68) sets. Within the training set, individuals closer to or beyond their parent's symptom onset demonstrated reduced grey matter volume and altered functional connectivity, specifically in regions known to be vulnerable in Alzheimer's disease. Machine learning was used to identify a weighted set of imaging features trained to predict years to estimated symptom onset. This feature set alone significantly predicted years to estimated symptom onset in the unseen testing data. This model, using only neuroimaging features, significantly outperformed a similar model instead trained with cognitive, genetic, imaging and demographic features used in a traditional clinical setting. We next tested if these brain properties could be generalized to predict time to clinical progression in a subgroup of 26 individuals from the Alzheimer's Disease Neuroimaging Initiative, who eventually converted either to mild cognitive impairment or to Alzheimer's dementia. The feature set trained on years to estimated symptom onset in the PREVENT-AD predicted variance in time to clinical conversion in this separate longitudinal dataset. Adjusting for participant age did not impact any of the results. These findings demonstrate that years to estimated symptom onset or similar measures can be predicted from brain features and may help estimate presymptomatic disease progression in at-risk individuals.


Assuntos
Doença de Alzheimer/complicações , Doença de Alzheimer/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Transtornos Cognitivos/etiologia , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Apolipoproteínas E/genética , Mapeamento Encefálico , Transtornos Cognitivos/diagnóstico por imagem , Disfunção Cognitiva , Estudos de Coortes , Progressão da Doença , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade
14.
Neuroimage ; 170: 68-82, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28739120

RESUMO

Moving from group level to individual level functional parcellation maps is a critical step for developing a rich understanding of the links between individual variation in functional network architecture and cognitive and clinical phenotypes. Still, the identification of functional units in the brain based on intrinsic functional connectivity and its dynamic variations between and within subjects remains challenging. Recently, the bootstrap analysis of stable clusters (BASC) framework was developed to quantify the stability of functional brain networks both across and within subjects. This multi-level approach utilizes bootstrap resampling for both individual and group-level clustering to delineate functional units based on their consistency across and within subjects, while providing a measure of their stability. Here, we optimized the BASC framework for functional parcellation of the basal ganglia by investigating a variety of clustering algorithms and similarity measures. Reproducibility and test-retest reliability were computed to validate this analytic framework as a tool to describe inter-individual differences in the stability of functional networks. The functional parcellation revealed by stable clusters replicated previous divisions found in the basal ganglia based on intrinsic functional connectivity. While we found moderate to high reproducibility, test-retest reliability was high at the boundaries of the functional units as well as within their cores. This is interesting because the boundaries between functional networks have been shown to explain most individual phenotypic variability. The current study provides evidence for the consistency of the parcellation of the basal ganglia, and provides the first group level parcellation built from individual-level cluster solutions. These novel results demonstrate the utility of BASC for quantifying inter-individual differences in the functional organization of brain regions, and encourage usage in future studies.


Assuntos
Gânglios da Base/diagnóstico por imagem , Gânglios da Base/fisiologia , Mapeamento Encefálico/métodos , Individualidade , Imageamento por Ressonância Magnética/métodos , Adulto , Mapeamento Encefálico/normas , Feminino , Humanos , Imageamento por Ressonância Magnética/normas , Masculino , Pessoa de Meia-Idade , Adulto Jovem
15.
Hum Brain Mapp ; 39(5): 2133-2146, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29411457

RESUMO

The aim of this study was to investigate the interplay between structural connectivity and cortical demyelination in early multiple sclerosis. About 27 multiple sclerosis patients and 18 age-matched controls underwent two MRI scanning sessions. The first was done at 7T and involved acquiring quantitative T1 and T2 * high-resolution maps to estimate cortical myelination. The second was done on a Connectom scanner and consisted of acquiring high angular resolution diffusion-weighted images to compute white matter structural connectivity metrics: strength, clustering and local efficiency. To further investigate the interplay between structural connectivity and cortical demyelination, patients were divided into four groups according to disease-duration: 0-1 year, 1-2 years, 2-3 years, and >3 years. ANOVA and Spearman's correlations were used to highlight relations between metrics. ANOVA detected a significant effect between disease duration and both cortical myelin (p = 2 × 10-8 ) and connectivity metrics (p < 10-4 ). We observed significant cortical myelin loss in the shorter disease-duration cohorts (0-1 year, p = .0015), and an increase in connectivity in the longer disease-duration cohort (2-3 years, strength: p = .01, local efficiency: p = .002, clustering: p = .001). Moreover, significant covariations between myelin estimation and white matter connectivity metrics were observed: Spearman's Rho correlation coefficients of 0.52 (p = .0003), 0.55 (p = .0001), and 0.53 (p = .0001) for strength, local efficiency, and clustering, respectively. An association between cortical myelin loss and changes in white matter connectivity in early multiple sclerosis was detected. These changes in network organization might be the result of compensatory mechanisms in response to the ongoing cortical diffuse damage in the early stages of multiple sclerosis.


Assuntos
Córtex Cerebral/patologia , Doenças Desmielinizantes/patologia , Esclerose Múltipla/patologia , Rede Nervosa/patologia , Adulto , Análise de Variância , Estudos de Casos e Controles , Córtex Cerebral/diagnóstico por imagem , Conectoma , Doenças Desmielinizantes/complicações , Doenças Desmielinizantes/diagnóstico por imagem , Avaliação da Deficiência , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/complicações , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/fisiopatologia , Rede Nervosa/diagnóstico por imagem
17.
PLoS Comput Biol ; 13(3): e1005209, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28278228

RESUMO

The rate of progress in human neurosciences is limited by the inability to easily apply a wide range of analysis methods to the plethora of different datasets acquired in labs around the world. In this work, we introduce a framework for creating, testing, versioning and archiving portable applications for analyzing neuroimaging data organized and described in compliance with the Brain Imaging Data Structure (BIDS). The portability of these applications (BIDS Apps) is achieved by using container technologies that encapsulate all binary and other dependencies in one convenient package. BIDS Apps run on all three major operating systems with no need for complex setup and configuration and thanks to the comprehensiveness of the BIDS standard they require little manual user input. Previous containerized data processing solutions were limited to single user environments and not compatible with most multi-tenant High Performance Computing systems. BIDS Apps overcome this limitation by taking advantage of the Singularity container technology. As a proof of concept, this work is accompanied by 22 ready to use BIDS Apps, packaging a diverse set of commonly used neuroimaging algorithms.


Assuntos
Encéfalo/anatomia & histologia , Interpretação de Imagem Assistida por Computador/métodos , Neuroimagem/métodos , Sistemas de Informação em Radiologia/organização & administração , Software , Interface Usuário-Computador , Algoritmos , Humanos , Imageamento por Ressonância Magnética/métodos
18.
Neuroimage ; 147: 532-541, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28011254

RESUMO

Resting-state functional connectivity (RSFC) studies have provided strong evidences that visual deprivation influences the brain's functional architecture. In particular, reduced RSFC coupling between occipital (visual) and temporal (auditory) regions has been reliably observed in early blind individuals (EB) at rest. In contrast, task-dependent activation studies have repeatedly demonstrated enhanced co-activation and connectivity of occipital and temporal regions during auditory processing in EB. To investigate this apparent discrepancy, the functional coupling between temporal and occipital networks at rest was directly compared to that of an auditory task in both EB and sighted controls (SC). Functional brain clusters shared across groups and cognitive states (rest and auditory task) were defined. In EBs, we observed higher occipito-temporal correlations in activity during the task than at rest. The reverse pattern was observed in SC. We also observed higher temporal variability of occipito-temporal RSFC in EB suggesting that occipital regions in this population may play the role of a multiple demand system. Our study reveals how the connectivity profile of sighted and early blind people is differentially influenced by their cognitive state, bridging the gap between previous task-dependent and RSFC studies. Our results also highlight how inferring group-differences in functional brain architecture solely based on resting-state acquisition has to be considered with caution.


Assuntos
Córtex Auditivo/fisiopatologia , Percepção Auditiva/fisiologia , Cegueira/fisiopatologia , Conectoma/métodos , Córtex Visual/fisiopatologia , Adulto , Córtex Auditivo/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Descanso , Córtex Visual/diagnóstico por imagem , Adulto Jovem
19.
Neuroimage ; 149: 220-232, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28161310

RESUMO

Connectivity studies using resting-state functional magnetic resonance imaging are increasingly pooling data acquired at multiple sites. While this may allow investigators to speed up recruitment or increase sample size, multisite studies also potentially introduce systematic biases in connectivity measures across sites. In this work, we measure the inter-site effect in connectivity and its impact on our ability to detect individual and group differences. Our study was based on real, as opposed to simulated, multisite fMRI datasets collected in N=345 young, healthy subjects across 8 scanning sites with 3T scanners and heterogeneous scanning protocols, drawn from the 1000 functional connectome project. We first empirically show that typical functional networks were reliably found at the group level in all sites, and that the amplitude of the inter-site effects was small to moderate, with a Cohen's effect size below 0.5 on average across brain connections. We then implemented a series of Monte-Carlo simulations, based on real data, to evaluate the impact of the multisite effects on detection power in statistical tests comparing two groups (with and without the effect) using a general linear model, as well as on the prediction of group labels with a support-vector machine. As a reference, we also implemented the same simulations with fMRI data collected at a single site using an identical sample size. Simulations revealed that using data from heterogeneous sites only slightly decreased our ability to detect changes compared to a monosite study with the GLM, and had a greater impact on prediction accuracy. However, the deleterious effect of multisite data pooling tended to decrease as the total sample size increased, to a point where differences between monosite and multisite simulations were small with N=120 subjects. Taken together, our results support the feasibility of multisite studies in rs-fMRI provided the sample size is large enough.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Vias Neurais/fisiologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Neurológicos , Método de Monte Carlo , Estudos Multicêntricos como Assunto , Descanso , Máquina de Vetores de Suporte , Adulto Jovem
20.
Neuroimage ; 144(Pt B): 275-286, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27423255

RESUMO

In 2011, the "ADHD-200 Global Competition" was held with the aim of identifying biomarkers of attention-deficit/hyperactivity disorder from resting-state functional magnetic resonance imaging (rs-fMRI) and structural MRI (s-MRI) data collected on 973 individuals. Statisticians and computer scientists were potentially the most qualified for the machine learning aspect of the competition, but generally lacked the specialized skills to implement the necessary steps of data preparation for rs-fMRI. Realizing this barrier to entry, the Neuro Bureau prospectively collaborated with all competitors by preprocessing the data and sharing these results at the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC) (http://www.nitrc.org/frs/?group_id=383). This "ADHD-200 Preprocessed" release included multiple analytical pipelines to cater to different philosophies of data analysis. The processed derivatives included denoised and registered 4D fMRI volumes, regional time series extracted from brain parcellations, maps of 10 intrinsic connectivity networks, fractional amplitude of low frequency fluctuation, and regional homogeneity, along with grey matter density maps. The data was used by several teams who competed in the ADHD-200 Global Competition, including the winning entry by a group of biostaticians. To the best of our knowledge, the ADHD-200 Preprocessed release was the first large public resource of preprocessed resting-state fMRI and structural MRI data, and remains to this day the only resource featuring a battery of alternative processing paths.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Bases de Dados Factuais , Neuroimagem Funcional , Imageamento por Ressonância Magnética , Adolescente , Adulto , Criança , Feminino , Humanos , Disseminação de Informação , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA