Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 574(7780): 717-721, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31645761

RESUMO

Emerging evidence suggests that epigenetic regulation is dependent on metabolic state, and implicates specific metabolic factors in neural functions that drive behaviour1. In neurons, acetylation of histones relies on the metabolite acetyl-CoA, which is produced from acetate by chromatin-bound acetyl-CoA synthetase 2 (ACSS2)2. Notably, the breakdown of alcohol in the liver leads to a rapid increase in levels of blood acetate3, and alcohol is therefore a major source of acetate in the body. Histone acetylation in neurons may thus be under the influence of acetate that is derived from alcohol4, with potential effects on alcohol-induced gene expression in the brain, and on behaviour5. Here, using in vivo stable-isotope labelling in mice, we show that the metabolism of alcohol contributes to rapid acetylation of histones in the brain, and that this occurs in part through the direct deposition of acetyl groups that are derived from alcohol onto histones in an ACSS2-dependent manner. A similar direct deposition was observed when mice were injected with heavy-labelled acetate in vivo. In a pregnant mouse, exposure to labelled alcohol resulted in the incorporation of labelled acetyl groups into gestating fetal brains. In isolated primary hippocampal neurons ex vivo, extracellular acetate induced transcriptional programs related to learning and memory, which were sensitive to ACSS2 inhibition. We show that alcohol-related associative learning requires ACSS2 in vivo. These findings suggest that there is a direct link between alcohol metabolism and gene regulation, through the ACSS2-dependent acetylation of histones in the brain.


Assuntos
Encéfalo/metabolismo , Epigênese Genética , Etanol/administração & dosagem , Histonas/metabolismo , Acetatos/metabolismo , Acetilação , Animais , Cromatina , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Histonas/genética , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Cultura Primária de Células
2.
Curr Opin Cell Biol ; 11(3): 336-41, 1999 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10395565

RESUMO

Persuasive evidence has emerged that acetyltransferases appear to truly function to acetylate both histones and transcription factors in vivo to effect gene activation. In the cell, acetyltransferases have been identified as components of large, multifunctional and evolutionarily conserved macromolecular assemblies, whose components and structures suggest complex functions. In addition, the first atomic resolution structures of HATs have revealed conserved mechanisms of acetyl-CoA interaction among the superfamily of GNATs (Gcn5-related N-acetyltransferases). Finally, enzymatic acetyltransferase activities are themselves regulated by phosphorylation and interaction with other proteins.


Assuntos
Acetiltransferases/metabolismo , Regulação da Expressão Gênica , Histonas/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Animais , Humanos , Ativação Transcricional
3.
Trends Cell Biol ; 8(5): 193-7, 1998 May.
Artigo em Inglês | MEDLINE | ID: mdl-9695838

RESUMO

Several previously characterized transcriptional adaptors and coactivators are now known to be histone acetyltransferases (HATs). Recent studies in Saccharomyces cerevisiae indicate that the Gcn5p HAT exists in large complexes containing several phenotypic classes of transcription factors. Genetic and biochemical studies of these transcription factors and their functions within HAT complexes suggest that acetylation of histones is one function of an integrated system of modular activities. These activities include interaction with activators, histone acetylation and interaction with basal factors. Coordination of these functions may well be an important component of gene activation in vivo.


Assuntos
Acetiltransferases/fisiologia , Cromatina/fisiologia , Proteínas de Saccharomyces cerevisiae , Fatores de Transcrição/fisiologia , Animais , Cromatina/metabolismo , Histona Acetiltransferases , Humanos , Substâncias Macromoleculares , Modelos Biológicos , Fatores de Transcrição/química
4.
Science ; 293(5532): 1142-6, 2001 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-11498592

RESUMO

Modification of histones is an important element in the regulation of gene expression. Previous work suggested a link between acetylation and phosphorylation, but questioned its mechanistic basis. We have purified a histone H3 serine-10 kinase complex from Saccharomyces cerevisiae and have identified its catalytic subunit as Snf1. The Snf1/AMPK family of kinases function in conserved signal transduction pathways. Our results show that Snf1 and the acetyltransferase Gcn5 function in an obligate sequence to enhance INO1 transcription by modifying histone H3 serine-10 and lysine-14. Thus, phosphorylation and acetylation are targeted to the same histone by promoter-specific regulation by a kinase/acetyltransferase pair, supporting models of gene regulation wherein transcription is controlled by coordinated patterns of histone modification.


Assuntos
Proteínas de Ligação a DNA , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Histonas/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Ativação Transcricional , Acetilação , Domínio Catalítico , Histona Acetiltransferases , Lisina/metabolismo , Mio-Inositol-1-Fosfato Sintase/genética , Nucleossomos/metabolismo , Fosforilação , Fosfosserina/metabolismo , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/enzimologia
5.
Microbiol Mol Biol Rev ; 64(2): 435-59, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10839822

RESUMO

The state of chromatin (the packaging of DNA in eukaryotes) has long been recognized to have major effects on levels of gene expression, and numerous chromatin-altering strategies-including ATP-dependent remodeling and histone modification-are employed in the cell to bring about transcriptional regulation. Of these, histone acetylation is one of the best characterized, as recent years have seen the identification and further study of many histone acetyltransferase (HAT) proteins and their associated complexes. Interestingly, most of these proteins were previously shown to have coactivator or other transcription-related functions. Confirmed and putative HAT proteins have been identified from various organisms from yeast to humans, and they include Gcn5-related N-acetyltransferase (GNAT) superfamily members Gcn5, PCAF, Elp3, Hpa2, and Hat1: MYST proteins Sas2, Sas3, Esa1, MOF, Tip60, MOZ, MORF, and HBO1; global coactivators p300 and CREB-binding protein; nuclear receptor coactivators SRC-1, ACTR, and TIF2; TATA-binding protein-associated factor TAF(II)250 and its homologs; and subunits of RNA polymerase III general factor TFIIIC. The acetylation and transcriptional functions of these HATs and the native complexes containing them (such as yeast SAGA, NuA4, and possibly analogous human complexes) are discussed. In addition, some of these HATs are also known to modify certain nonhistone transcription-related proteins, including high-mobility-group chromatin proteins, activators such as p53, coactivators, and general factors. Thus, we also detail these known factor acetyltransferase (FAT) substrates and the demonstrated or potential roles of their acetylation in transcriptional processes.


Assuntos
Acetiltransferases/fisiologia , Histonas/metabolismo , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae , Fatores de Transcrição/metabolismo , Acetilação , Acetiltransferases/química , Animais , Produtos do Gene tat/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Histona Acetiltransferases , Humanos
6.
Mol Cell Biol ; 7(5): 1681-90, 1987 May.
Artigo em Inglês | MEDLINE | ID: mdl-3037332

RESUMO

The polyomavirus enhancer is required in cis for high-level expression of the viral early region and for replication of the viral genome. We introduced multiple mutations in the enhancer which reduced transcription and DNA replication. Polyomaviruses with these mutant enhancers formed very small plaques in whole mouse embryo cells. Revertants of the viral mutants were isolated and characterized. Reversion occurred by any of the following events: restoration of guanosines at nucleotide (nt) 5134 and nt 5140 within the adenovirus 5 E1A enhancer core AGGAAGTGACT; acquisition of an A----G mutation at nt 5258, which is the same mutation that enables polyomavirus to grow in embryonal carcinoma F9 cells; duplication of mutated sequences between nt 5146 and 5292 (including sequences homologous with immunoglobulin G, simian virus 40, and bovine papillomavirus enhancer elements). Reversion restored both the replicative and transcriptional functions of the viruses. Revertants that acquired the F9 mutation at nt 5258 grew at least 20-fold better than the original mutant in whole mouse embryo cells, but replicated only marginally better than the original mutant in 3T6 cells. Viruses with a reversion of the mutation at nt 5140 replicated equally well in both types of cells. Since individual nucleotides in the polyomavirus enhancer simultaneously altered DNA replication and transcription in specific cell types, it is likely that these processes rely upon a common element, such as an enhancer-binding protein.


Assuntos
Replicação do DNA , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Genes Reguladores , Polyomavirus/genética , RNA Viral/biossíntese , Transcrição Gênica , Replicação Viral , Genes Virais , Mutação
7.
Mol Cell Biol ; 15(12): 6999-7009, 1995 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-8524267

RESUMO

The Myc protein has been reported to activate transcription of the rat prothymosin alpha gene by binding to an enhancer element or E box (CACGTG) located in the first intron (S. Gaubatz et al., Mol. Cell. Biol. 14:3853-3862, 1994). The human prothymosin alpha gene contains two such motifs: in the promoter region at kb -1.2 and in intron 1, approximately 2 kb downstream of the transcriptional start site in a region which otherwise bears little homology to the rat gene. Using chloramphenicol acetyltransferase (CAT) reporter constructs driven either by the 5-kb human prothymosin alpha promoter or by a series of truncated promoters, we showed that removal of the E-box sequence had no effect on transient expression of CAT activity in mouse L cells. When intron 1 of the prothymosin alpha gene was inserted into the most extensive promoter construct downstream of the CAT coding region, a diminution in transcription, which remained virtually unchanged upon disruption of the E boxes, was observed. CAT constructs driven by the native prothymosin alpha promoter or the native promoter and intron were indifferent to Myc; equivalent CAT activity was observed in the presence of ectopic normal or mutant Myc genes. Similarly, expression of a transiently transfected wild-type prothymosin alpha gene as the reporter was not affected by a repertoire of myc-derived genes, including myc itself and dominant or recessive negative myc mutants. In COS-1 cells, equivalent amounts of the protein were produced from transfected prothymosin alpha genes regardless of whether genomic E boxes were disrupted, intron 1 was removed, or a repertoire of myc-derived genes was included in the transfection cocktail. More importantly, cotransfection of a dominant negative Max gene failed to reduce transcription of the endogenous prothymosin alpha gene in COS cells or the wild-type transfected gene in COS or L cells. Taken together, the data do not support the idea that Myc activates transcription of the intact human prothymosin alpha gene or reporter constructs that mimic its structure. Rather, they suggest that the human prothymosin alpha promoter and downstream elements are buffered so as to respond poorly, if at all, to transient fluctuations in transcription factors which regulate other genes.


Assuntos
Regulação da Expressão Gênica , Genes myc , Regiões Promotoras Genéticas , Precursores de Proteínas/biossíntese , Precursores de Proteínas/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Timosina/análogos & derivados , Animais , Sequência de Bases , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Fatores de Transcrição de Zíper de Leucina Básica , Sítios de Ligação , Gatos , Linhagem Celular , Cloranfenicol O-Acetiltransferase/análise , Cloranfenicol O-Acetiltransferase/biossíntese , Chlorocebus aethiops , Proteínas de Ligação a DNA/metabolismo , Humanos , Íntrons , Rim , Células L , Camundongos , Dados de Sequência Molecular , Oligodesoxirribonucleotídeos , Proto-Oncogene Mas , Ratos , Proteínas Recombinantes/análise , Proteínas Recombinantes/biossíntese , Sequências Reguladoras de Ácido Nucleico , Mapeamento por Restrição , Timosina/biossíntese , Timosina/genética , Fatores de Transcrição/metabolismo , Transfecção
8.
Mol Cell Biol ; 16(2): 593-602, 1996 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-8552087

RESUMO

Transcriptional adaptor proteins are required for full function of higher eukaryotic acidic activators in the yeast Saccharomyces cerevisiae, suggesting that this pathway of activation is evolutionarily conserved. Consistent with this view, we have identified possible human homologs of yeast ADA2 (yADA2) and yeast GCN5 (yGCN5), components of a putative adaptor complex. While there is overall sequence similarity between the yeast and human proteins, perhaps more significant is conservation of key sequence features with other known adaptors. We show several functional similarities between the human and yeast adaptors. First, as shown for yADA2 and yGCN5, human ADA2 (hADA2) and human GCN5 (hGCN5) interacted in vivo in a yeast two-hybrid assay. Moreover, hGCN5 interacted with yADA2 in this assay, suggesting that the human proteins form similar complexes. Second, both yADA2 and hADA2 contain cryptic activation domains. Third, hGCN5 and yGCN5 had similar stabilizing effects on yADA2 in vivo. Furthermore, the region of yADA2 that interacted with yGCN5 mapped to the amino terminus of yADA2, which is highly conserved in hADA2. Most striking, is the behavior of the human proteins in human cells. First, GAL4-hADA2 activated transcription in HeLa cells, and second, either hADA2 or hGCN5 augmented GAL4-VP16 activation. These data indicated that the human proteins correspond to functional homologs of the yeast adaptors, suggesting that these cofactors play a key role in transcriptional activation.


Assuntos
Proteínas de Ligação a DNA , Regulação da Expressão Gênica , Proteínas de Saccharomyces cerevisiae , Serina Endopeptidases , Transativadores/genética , Fatores de Transcrição/genética , Transcrição Gênica , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular , Sequência Conservada , DNA Complementar/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Células HeLa , Histona Acetiltransferases , Humanos , Dados de Sequência Molecular , Ligação Proteica , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição de p300-CBP
9.
Mol Cell Biol ; 17(1): 519-27, 1997 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-8972232

RESUMO

Yeast and human ADA2 and GCN5 (y- and hADA2 and y- and hGCN5, respectively) have been shown to potentiate transcription in vivo and may function as adaptors to bridge physical interactions between DNA-bound activators and the basal transcriptional machinery. Recently it was shown that yGCN5 is a histone acetyltransferase (HAT), suggesting a link between enzymatic modification of nucleosomes and transcriptional activation. In this report, we demonstrate that hGCN5 is also an HAT and has the same substrate specificity as yGCN5. Since hGCN5 does not complement functional defects caused by deletion of yGCN5, we constructed a series of hGCN5-yGCN5 chimeras to identify human regions capable of activity in yeast. Interestingly, only the putative HAT domain of hGCN5, when fused to the remainder of yGCN5, complemented gcn5- cells for growth and transcriptional activation. Moreover, an amino acid substitution mutation within the HAT domain reduced both HAT activity in vitro and transcription in vivo. These findings directly link enzymatic histone acetylation and transcriptional activation and show evolutionary conservation of this potentially crucial pathway in gene regulation.


Assuntos
Acetiltransferases/metabolismo , Proteínas de Ligação a DNA , Proteínas Fúngicas/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimologia , Ativação Transcricional/fisiologia , Acetilação , Proteínas Fúngicas/genética , Teste de Complementação Genética , Glutationa Transferase/genética , Proteína Vmw65 do Vírus do Herpes Simples/genética , Histona Acetiltransferases , Histonas/metabolismo , Humanos , Mutação , Proteínas Quinases/genética , Proteínas Recombinantes de Fusão , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Especificidade por Substrato , Fatores de Transcrição/metabolismo
10.
Mol Cell Biol ; 20(2): 634-47, 2000 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10611242

RESUMO

SAGA is a 1.8-MDa yeast protein complex that is composed of several distinct classes of transcription-related factors, including the adaptor/acetyltransferase Gcn5, Spt proteins, and a subset of TBP-associated factors. Our results indicate that mutations that completely disrupt SAGA (deletions of SPT7 or SPT20) strongly reduce transcriptional activation at the HIS3 and TRP3 genes and that Gcn5 is required for normal HIS3 transcriptional start site selection. Surprisingly, mutations in Spt proteins involved in the SAGA-TBP interaction (Spt3 and Spt8) cause derepression of HIS3 and TRP3 transcription in the uninduced state. Consistent with this finding, wild-type SAGA inhibits TBP binding to the HIS3 promoter in vitro, while SAGA lacking Spt3 or Spt8 is not inhibitory. We detected two distinct forms of SAGA in cell extracts and, strikingly, one lacks Spt8. Conditions that induce HIS3 and TRP3 transcription result in an altered balance between these complexes strongly in favor of the form without Spt8. These results suggest that the composition of SAGA may be dynamic in vivo and may be regulated through dissociable inhibitory subunits.


Assuntos
Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas Fúngicas/metabolismo , Complexos Multienzimáticos/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Fatores de Transcrição/antagonistas & inibidores , Acetiltransferases/metabolismo , Antranilato Sintase/genética , Pegada de DNA , DNA Fúngico/genética , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/genética , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Genes Fúngicos/genética , Genes Fúngicos/fisiologia , Histona Acetiltransferases , Hidroliases/genética , Indol-3-Glicerolfosfato Sintase/genética , Modelos Genéticos , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Proteínas Quinases/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , TATA Box/genética , Proteína de Ligação a TATA-Box , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética
11.
Mol Cell Biol ; 18(3): 1349-58, 1998 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-9488450

RESUMO

GCN5, a putative transcriptional adapter in humans and yeast, possesses histone acetyltransferase (HAT) activity which has been linked to GCN5's role in transcriptional activation in yeast. In this report, we demonstrate a functional interaction between human GCN5 (hGCN5) and the DNA-dependent protein kinase (DNA-PK) holoenzyme. Yeast two-hybrid screening detected an interaction between the bromodomain of hGCN5 and the p70 subunit of the human Ku heterodimer (p70-p80), which is the DNA-binding component of DNA-PK. Interaction between intact hGCN5 and Ku70 was shown biochemically using recombinant proteins and by coimmunoprecipitation of endogenous proteins following chromatography of HeLa nuclear extracts. We demonstrate that the catalytic subunit of DNA-PK phosphorylates hGCN5 both in vivo and in vitro and, moreover, that the phosphorylation inhibits the HAT activity of hGCN5. These findings suggest a possible regulatory mechanism of HAT activity.


Assuntos
Acetiltransferases/metabolismo , Antígenos Nucleares , Coenzimas/metabolismo , DNA Helicases , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae , Acetiltransferases/genética , Sequência de Aminoácidos , Sítios de Ligação , Fracionamento Celular , Proteína Quinase Ativada por DNA , Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/genética , Células HeLa , Histona Acetiltransferases , Humanos , Autoantígeno Ku , Dados de Sequência Molecular , Proteínas Nucleares/genética , Fosforilação , Proteínas Quinases/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Células Tumorais Cultivadas
12.
Mol Cell Biol ; 19(10): 6621-31, 1999 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-10490601

RESUMO

We have identified two Gcn5-dependent histone acetyltransferase (HAT) complexes from Saccharomyces cerevisiae, the 0.8-MDa ADA complex and the 1.8-MDa SAGA complex. The SAGA (Spt-Ada-Gcn5-acetyltransferase) complex contains several subunits which also function as part of other protein complexes, including a subset of TATA box binding protein-associated factors (TAFIIs) and Tra1. These observations raise the question of whether the 0.8-MDa ADA complex is a subcomplex of SAGA or whether it is a distinct HAT complex that also shares subunits with SAGA. To address this issue, we sought to determine if the ADA complex contained subunits that are not present in the SAGA complex. In this study, we report the purification of the ADA complex over 10 chromatographic steps. By a combination of mass spectrometry analysis and immunoblotting, we demonstrate that the adapter proteins Ada2, Ada3, and Gcn5 are indeed integral components of ADA. Furthermore, we identify the product of the S. cerevisiae gene YOR023C as a novel subunit of the ADA complex and name it Ahc1 for ADA HAT complex component 1. Biochemical functions of YOR023C have not been reported. However, AHC1 in high copy numbers suppresses the cold sensitivity caused by particular mutations in HTA1 (I. Pinto and F. Winston, personal communication), which encodes histone H2A (J. N. Hirschhorn et al., Mol. Cell. Biol. 15:1999-2009, 1995). Deletion of AHC1 disrupted the integrity of the ADA complex but did not affect SAGA or give rise to classic Ada(-) phenotypes. These results indicate that Gcn5, Ada2, and Ada3 function as part of a unique HAT complex (ADA) and represent shared subunits between this complex and SAGA.


Assuntos
Acetiltransferases/isolamento & purificação , Proteínas Cromossômicas não Histona , Proteínas de Ligação a DNA , Proteínas Fúngicas/isolamento & purificação , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimologia , Fatores de Transcrição/isolamento & purificação , Sequência de Aminoácidos , Deleção de Genes , Genes Fúngicos , Histona Acetiltransferases , Espectrometria de Massas , Dados de Sequência Molecular , Fenótipo , Proteínas Quinases/isolamento & purificação , Análise de Sequência de Proteína
13.
Mol Cell Biol ; 18(3): 1296-302, 1998 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-9488444

RESUMO

A large body of evidence from viral systems has established that transcription factors play an important and direct role in activating viral DNA replication. Among the transcriptional activation domains that can stimulate viral DNA replication are acidic domains such as those derived from herpes simplex virus VP16 and the tumor suppressor p53. Here we show that acidic activation domains can also activate a cellular origin of replication in a chromosomal context. When tethered to the yeast ARS1 (autonomously replicating sequence 1) origin of replication, both VP16 and p53 activation domains can enhance origin function. In addition, the C-terminal acidic region of the yeast transcription factor ABF1, which normally activates the ARS1 origin, is sufficient for activating ARS1 function when tethered to the origin. Mutations at residues Trp-53 and Phe-54 of a 20-residue (41 to 60) activation region of p53 abolish the activation of both replication and transcription, suggesting that the same structural determinants may be employed to activate both processes in yeast. Furthermore, using a two-dimensional gel electrophoresis method, we demonstrate that the GAL4-p53 chimeric activator can activate initiation of chromosomal replication from an origin inserted at the native ARS1 locus. These findings strongly suggest functional conservation of the mechanisms used by the acidic activation domains to activate viral DNA replication in mammalian cells and chromosomal replication in yeast.


Assuntos
Replicação do DNA , DNA Fúngico/biossíntese , Proteínas de Ligação a DNA/metabolismo , Proteína Vmw65 do Vírus do Herpes Simples/metabolismo , Origem de Replicação , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional , Proteína Supressora de Tumor p53/metabolismo , Mapeamento Cromossômico , Cromossomos , Proteínas de Ligação a DNA/genética , Proteína Vmw65 do Vírus do Herpes Simples/genética , Peptídeos/genética , Peptídeos/metabolismo , Plasmídeos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade , Fatores de Transcrição/genética , Proteína Supressora de Tumor p53/genética
14.
Mol Cell Biol ; 19(1): 86-98, 1999 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-9858534

RESUMO

SAGA, a recently described protein complex in Saccharomyces cerevisiae, is important for transcription in vivo and possesses histone acetylation function. Here we report both biochemical and genetic analyses of members of three classes of transcription regulatory factors contained within the SAGA complex. We demonstrate a correlation between the phenotypic severity of SAGA mutants and SAGA structural integrity. Specifically, null mutations in the Gcn5/Ada2/Ada3 or Spt3/Spt8 classes cause moderate phenotypes and subtle structural alterations, while mutations in a third subgroup, Spt7/Spt20, as well as Ada1, disrupt the complex and cause severe phenotypes. Interestingly, double mutants (gcn5Delta spt3Delta and gcn5Delta spt8Delta) causing loss of a member of each of the moderate classes have severe phenotypes, similar to spt7Delta, spt20Delta, or ada1Delta mutants. In addition, we have investigated biochemical functions suggested by the moderate phenotypic classes and find that first, normal nucleosomal acetylation by SAGA requires a specific domain of Gcn5, termed the bromodomain. Deletion of this domain also causes specific transcriptional defects at the HIS3 promoter in vivo. Second, SAGA interacts with TBP, the TATA-binding protein, and this interaction requires Spt8 in vitro. Overall, our data demonstrate that SAGA harbors multiple, distinct transcription-related functions, including direct TBP interaction and nucleosomal histone acetylation. Loss of either of these causes slight impairment in vivo, but loss of both is highly detrimental to growth and transcription.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/fisiologia , Proteínas de Saccharomyces cerevisiae , Fatores de Transcrição/metabolismo , Acetilação , Acetiltransferases/genética , Acetiltransferases/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Sítios de Ligação , Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Histona Acetiltransferases , Substâncias Macromoleculares , Mutagênese , Nucleossomos , Fenótipo , Proteínas Quinases/genética , Proteínas Quinases/fisiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteína de Ligação a TATA-Box , Transativadores/metabolismo , Fatores de Transcrição/genética
15.
Mol Cell Biol ; 19(2): 1202-9, 1999 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-9891054

RESUMO

The p53 tumor suppressor protein is a sequence-specific transcription factor that modulates the response of cells to DNA damage. Recent studies suggest that full transcriptional activity of p53 requires the coactivators CREB binding protein (CBP)/p300 and PCAF. These coactivators interact with each other, and both possess intrinsic histone acetyltransferase activity. Furthermore, p300 acetylates p53 to activate its sequence-specific DNA binding activity in vitro. In this study, we demonstrate that PCAF also acetylates p53 in vitro at a lysine residue distinct from that acetylated by p300 and thereby increases p53's ability to bind to its cognate DNA site. We have generated antibodies to acetylated p53 peptides at either of the two lysine residues that are targeted by PCAF or p300 and have demonstrated that these antibodies are highly specific for both acetylation and the particular site. Using these antibodies, we detect acetylation of these sites in vivo, and interestingly, acetylation at both sites increases in response to DNA-damaging agents. These data indicate that site-specific acetylation of p53 increases under physiological conditions that activate p53 and identify CBP/p300 and PCAF as the probable enzymes that modify p53 in vivo.


Assuntos
Acetiltransferases/metabolismo , Dano ao DNA , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae , Transativadores/metabolismo , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo , Acetilação/efeitos da radiação , Sequência de Bases , Sítios de Ligação/genética , Linhagem Celular , DNA/genética , DNA/metabolismo , Histona Acetiltransferases , Humanos , Técnicas In Vitro , Mutagênese Sítio-Dirigida , Oligodesoxirribonucleotídeos/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transfecção , Proteína Supressora de Tumor p53/genética , Raios Ultravioleta
16.
Artigo em Inglês | MEDLINE | ID: mdl-16568953

RESUMO

Regulation of chromatin structure is important for the control of DNA-templated processes such as gene expression and silencing, and its dysregulation is implicated in diverse developmental and cell proliferative defects such as tumorigenesis. Covalent post-translational modifications of histones are one of the prominent means to regulate the chromatin structure. Here, we summarize findings from our lab and others regarding the interactions between different covalent modifications of histones in the budding yeast Saccharomyces cerevisiae. First, we describe the effect of histone H3 phosphorylation at residue serine 10 in transcriptional gene activation, and its histone H3 acetylation dependent and independent modes of action and downstream effects on TATA-binding protein (TBP) recruitment. Further, we review how ubiquitylation of histone H2B and its deubiquitylation by ubiquitin proteases Ubp8 and Ubp10 regulate histone H3 methylations, and consequently affect co-activator-dependent gene transcription and silent chromatin, respectively.


Assuntos
Cromatina/metabolismo , Histonas/metabolismo , Processamento de Proteína Pós-Traducional/genética , Elementos Reguladores de Transcrição/genética , Saccharomyces cerevisiae/genética , Acetilação , Cromatina/genética , Regulação Fúngica da Expressão Gênica/genética , Inativação Gênica/fisiologia , Histonas/genética , Metilação , Saccharomyces cerevisiae/metabolismo , Ativação Transcricional , Ubiquitina/metabolismo
17.
Cancer Res ; 57(17): 3693-6, 1997 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-9288775

RESUMO

The structurally related transcriptional coactivators p300 and CBP possess histone acetyltransferase activity and associate with P/CAF, which is also a histone acetyltransferase. CBP and p300 have properties of tumor suppressor proteins; their interaction with P/CAF is disrupted by the adenoviral E1A oncoprotein, and the genes encoding CBP and p300 are mutated in human cancer. We observed a physical interaction between the transactivation domain of the p53 tumor suppressor protein and CBP. Furthermore, CBP and P/CAF enhanced the ability of p53 to activate expression of the endogenous p21(cip1/waf1) gene, whereas E1A and dominant negative CBP mutants suppressed p53-dependent p21(cip1/waf1) expression. These studies link two tumor suppressor families and provide a framework for understanding the molecular mechanism by which p53 activates transcription.


Assuntos
Proteínas Nucleares/metabolismo , Transativadores , Fatores de Transcrição/metabolismo , Ativação Transcricional , Proteína Supressora de Tumor p53/metabolismo , Sítios de Ligação , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proteína de Ligação a CREB , Inibidor de Quinase Dependente de Ciclina p21 , Ciclinas/genética , Ciclinas/metabolismo , Humanos , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética
18.
Methods Enzymol ; 574: 311-329, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27423866

RESUMO

Metabolic state and chromatin structure are tightly linked, enabling adaptation of gene expression to changing environment and metabolism. The bioenergetic pathways and enzymes that provide metabolic cofactors for histone modification have recently emerged as central regulators of chromatin. Current research therefore focuses on the dynamic interface of cellular metabolism and chromatin structure. Here, we provide an adaptable approach to examine broadly in changing physiological states, how chromatin structure is dynamically modulated by metabolic activity. We employ two complementary methods: high-throughput sequencing to establish the location of epigenetic changes, and stable isotope tracing using mass spectrometry to evaluate chromatin modification dynamics. Our two-pronged approach is of particular advantage when interrogating how metabolic and oncogenic mutations influence the dynamic relationship between metabolism, nutritional environment, and chromatin regulation.


Assuntos
Imunoprecipitação da Cromatina/métodos , Cromatina/química , Cromatina/metabolismo , Espectrometria de Massas/métodos , Animais , Cromatina/genética , Epigênese Genética , Epigenômica/métodos , Histonas/química , Histonas/genética , Histonas/metabolismo , Humanos , Processamento de Proteína Pós-Traducional
19.
Oncogene ; 15(7): 807-16, 1997 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-9266967

RESUMO

The ability of p53 to function as a tumor suppressor is linked to its function as a transcriptional activator, since p53 mutants that do not transactivate are unable to suppress tumor cell growth. Previous studies identified an activation domain in the amino terminal 40 residues of the protein, a region that binds to several general transcription factors and to some oncogene products. For example, mdm-2, a cellular oncoprotein, binds to this region and represses p53 transactivation. Here we describe a new activation domain within the amino terminus of p53 that maps between amino acids 40-83, and whose residues trp-53 and phe-54 are critical for function both in yeast and in mammalian cells. In vivo studies in yeast show that the new activation subdomain, unlike the previously described, is mdm-2 independent. Both p53 activation subdomains (1-40 and 40-83) require the yeast adaptor complex ADA2/ADA3/GCN5 for transcriptional activation. Moreover, since activation by p53 requires GCN5's enzymatic histone acetyltransferase domain, p53 may regulate gene expression by influencing chromatin modification.


Assuntos
Proteínas de Ligação a DNA , Proteínas Fúngicas/genética , Genes p53/genética , Proteínas Nucleares , Fragmentos de Peptídeos/genética , Proteínas Quinases/genética , Proteínas de Saccharomyces cerevisiae , Transativadores/genética , Fatores de Transcrição/genética , Ativação Transcricional/genética , Proteína Supressora de Tumor p53/genética , Proteínas Fúngicas/fisiologia , Histona Acetiltransferases , Fragmentos de Peptídeos/metabolismo , Mapeamento de Peptídeos , Proteínas Quinases/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2 , Transativadores/fisiologia , Fatores de Transcrição/fisiologia , Proteína Supressora de Tumor p53/metabolismo
20.
Oncogene ; 16(9): 1097-112, 1998 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-9528852

RESUMO

We have identified a novel protein, BAP1, which binds to the RING finger domain of the Breast/Ovarian Cancer Susceptibility Gene product, BRCA1. BAP1 is a nuclear-localized, ubiquitin carboxy-terminal hydrolase, suggesting that deubiquitinating enzymes may play a role in BRCA1 function. BAP1 binds to the wild-type BRCA1-RING finger, but not to germline mutants of the BRCA1-RING finger found in breast cancer kindreds. BAP1 and BRCA1 are temporally and spatially co-expressed during murine breast development and remodeling, and show overlapping patterns of subnuclear distribution. BAP1 resides on human chromosome 3p21.3; intragenic homozygous rearrangements and deletions of BAP1 have been found in lung carcinoma cell lines. BAP1 enhances BRCA1-mediated inhibition of breast cancer cell growth and is the first nuclear-localized ubiquitin carboxy-terminal hydrolase to be identified. BAP1 may be a new tumor suppressor gene which functions in the BRCA1 growth control pathway.


Assuntos
Proteína BRCA1/metabolismo , Neoplasias da Mama/patologia , Proteínas de Transporte/metabolismo , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismo , Proteínas Supressoras de Tumor , Ubiquitina Tiolesterase , Ubiquitina-Proteína Ligases , Sequência de Aminoácidos , Animais , Proteína BRCA1/química , Sequência de Bases , Sítios de Ligação , Neoplasias da Mama/genética , Proteínas de Transporte/biossíntese , Proteínas de Transporte/química , Divisão Celular , Mapeamento Cromossômico , Cromossomos Humanos Par 3 , Feminino , Rearranjo Gênico , Homozigoto , Humanos , Cariotipagem , Neoplasias Pulmonares/genética , Camundongos , Dados de Sequência Molecular , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Tioléster Hidrolases/química , Transfecção , Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA