Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(24): 5220-5236.e16, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37944511

RESUMO

The Sc2.0 project is building a eukaryotic synthetic genome from scratch. A major milestone has been achieved with all individual Sc2.0 chromosomes assembled. Here, we describe the consolidation of multiple synthetic chromosomes using advanced endoreduplication intercrossing with tRNA expression cassettes to generate a strain with 6.5 synthetic chromosomes. The 3D chromosome organization and transcript isoform profiles were evaluated using Hi-C and long-read direct RNA sequencing. We developed CRISPR Directed Biallelic URA3-assisted Genome Scan, or "CRISPR D-BUGS," to map phenotypic variants caused by specific designer modifications, known as "bugs." We first fine-mapped a bug in synthetic chromosome II (synII) and then discovered a combinatorial interaction associated with synIII and synX, revealing an unexpected genetic interaction that links transcriptional regulation, inositol metabolism, and tRNASerCGA abundance. Finally, to expedite consolidation, we employed chromosome substitution to incorporate the largest chromosome (synIV), thereby consolidating >50% of the Sc2.0 genome in one strain.


Assuntos
Cromossomos Artificiais de Levedura , Genoma Fúngico , Saccharomyces cerevisiae , Sequência de Bases , Cromossomos/genética , Saccharomyces cerevisiae/genética , Biologia Sintética
2.
Cell ; 186(24): 5237-5253.e22, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37944512

RESUMO

Here, we report the design, construction, and characterization of a tRNA neochromosome, a designer chromosome that functions as an additional, de novo counterpart to the native complement of Saccharomyces cerevisiae. Intending to address one of the central design principles of the Sc2.0 project, the ∼190-kb tRNA neochromosome houses all 275 relocated nuclear tRNA genes. To maximize stability, the design incorporates orthogonal genetic elements from non-S. cerevisiae yeast species. Furthermore, the presence of 283 rox recombination sites enables an orthogonal tRNA SCRaMbLE system. Following construction in yeast, we obtained evidence of a potent selective force, manifesting as a spontaneous doubling in cell ploidy. Furthermore, tRNA sequencing, transcriptomics, proteomics, nucleosome mapping, replication profiling, FISH, and Hi-C were undertaken to investigate questions of tRNA neochromosome behavior and function. Its construction demonstrates the remarkable tractability of the yeast model and opens up opportunities to directly test hypotheses surrounding these essential non-coding RNAs.


Assuntos
Cromossomos Artificiais de Levedura , Genoma Fúngico , Saccharomyces cerevisiae , Perfilação da Expressão Gênica , Proteômica , Saccharomyces cerevisiae/genética , Biologia Sintética , RNA de Transferência/genética , Cromossomos Artificiais de Levedura/genética
3.
PLoS Biol ; 17(3): e3000182, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30925180

RESUMO

In experimental evolution, scientists evolve organisms in the lab, typically by challenging them to new environmental conditions. How best to evolve a desired trait? Should the challenge be applied abruptly, gradually, periodically, sporadically? Should one apply chemical mutagenesis, and do strains with high innate mutation rate evolve faster? What are ideal population sizes of evolving populations? There are endless strategies, beyond those that can be exposed by individual labs. We therefore arranged a community challenge, Evolthon, in which students and scientists from different labs were asked to evolve Escherichia coli or Saccharomyces cerevisiae for an abiotic stress-low temperature. About 30 participants from around the world explored diverse environmental and genetic regimes of evolution. After a period of evolution in each lab, all strains of each species were competed with one another. In yeast, the most successful strategies were those that used mating, underscoring the importance of sex in evolution. In bacteria, the fittest strain used a strategy based on exploration of different mutation rates. Different strategies displayed variable levels of performance and stability across additional challenges and conditions. This study therefore uncovers principles of effective experimental evolutionary regimens and might prove useful also for biotechnological developments of new strains and for understanding natural strategies in evolutionary arms races between species. Evolthon constitutes a model for community-based scientific exploration that encourages creativity and cooperation.


Assuntos
Evolução Biológica , Escherichia coli/metabolismo , Humanos , Modelos Genéticos , Mutação/genética , Saccharomyces cerevisiae/metabolismo , Temperatura
4.
New Phytol ; 232(3): 1506-1518, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34338336

RESUMO

Fungal plant pathogens are of economic and ecological importance to global agriculture and natural ecosystems. Long-distance atmospheric dispersal of fungal spores (LAD) can pose threats to agricultural and native vegetation lands. An understanding of such patterns of fungal spore dispersal and invasion pathways can provide valuable insights into plant protection. Spore traits affect their dispersal abilities. We propose a general trait-based framework for modelling LAD to reveal dispersal patterns and pathways, and assess subsequent threats of arrival (TOA) quantitatively in the context of biosecurity. To illustrate the framework, we present a study of Australia and its surrounding land masses. The overall dispersal pattern covered almost the entire continent of Australia. Fungal spores in the size class of 10 and 20 µm (aerodynamic diameter) posed the greatest TOA. Our study shows the effects of morphological traits on these potential TOA, and how they varied between source regions, size classes, and seasons. Our framework revealed spore dispersal patterns and pathways. It also facilitates comparisons of spatio-temporal dispersal dynamics among fungal classes, gaining insights into atmospheric long-distance dispersal of fungi as a whole, and provides a basis for assessing fungal pest threats in potential source regions based on easily measured spore characteristics.


Assuntos
Ecossistema , Fungos , Agricultura , Estações do Ano , Esporos Fúngicos
5.
Mol Syst Biol ; 10: 740, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25028489

RESUMO

Microbes can tailor transcriptional responses to diverse environmental challenges despite having streamlined genomes and a limited number of regulators. Here, we present data-driven models that capture the dynamic interplay of the environment and genome-encoded regulatory programs of two types of prokaryotes: Escherichia coli (a bacterium) and Halobacterium salinarum (an archaeon). The models reveal how the genome-wide distributions of cis-acting gene regulatory elements and the conditional influences of transcription factors at each of those elements encode programs for eliciting a wide array of environment-specific responses. We demonstrate how these programs partition transcriptional regulation of genes within regulons and operons to re-organize gene-gene functional associations in each environment. The models capture fitness-relevant co-regulation by different transcriptional control mechanisms acting across the entire genome, to define a generalized, system-level organizing principle for prokaryotic gene regulatory networks that goes well beyond existing paradigms of gene regulation. An online resource (http://egrin2.systemsbiology.net) has been developed to facilitate multiscale exploration of conditional gene regulation in the two prokaryotes.


Assuntos
Redes Reguladoras de Genes , Genoma Microbiano , Modelos Genéticos , Algoritmos , Escherichia coli/genética , Regulação da Expressão Gênica , Aptidão Genética , Halobacterium salinarum/genética , Óperon , Elementos Reguladores de Transcrição , Regulon
6.
Catheter Cardiovasc Interv ; 85(5): 909-15, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24740848

RESUMO

Patients on chronic immunosuppressant therapy after renal transplantation have a high rate of in-hospital mortality and approximately 20% mortality rate per year after conventional valve surgery. While transcatheter aortic valve replacement (TAVR) is an appealing option to consider for such patients, there are not significant outcome data for the procedure in this patient population. We report two cases of aortic root rupture after TAVR in renal transplant patients on chronic immunosuppressant therapy.


Assuntos
Ruptura Aórtica/etiologia , Estenose da Valva Aórtica/cirurgia , Rejeição de Enxerto/tratamento farmacológico , Imunossupressores/uso terapêutico , Transplante de Rim , Substituição da Valva Aórtica Transcateter/efeitos adversos , Idoso , Aorta Torácica , Ruptura Aórtica/diagnóstico , Estenose da Valva Aórtica/complicações , Ecocardiografia Transesofagiana , Evolução Fatal , Feminino , Rejeição de Enxerto/complicações , Humanos , Falência Renal Crônica/cirurgia , Pessoa de Meia-Idade , Tomografia Computadorizada Multidetectores
7.
Nat Commun ; 14(1): 241, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36646716

RESUMO

Deep mutational scanning is a powerful approach to investigate a wide variety of research questions including protein function and stability. Here, we perform deep mutational scanning on three essential E. coli proteins (FabZ, LpxC and MurA) involved in cell envelope synthesis using high-throughput CRISPR genome editing, and study the effect of the mutations in their original genomic context. We use more than 17,000 variants of the proteins to interrogate protein function and the importance of individual amino acids in supporting viability. Additionally, we exploit these libraries to study resistance development against antimicrobial compounds that target the selected proteins. Among the three proteins studied, MurA seems to be the superior antimicrobial target due to its low mutational flexibility, which decreases the chance of acquiring resistance-conferring mutations that simultaneously preserve MurA function. Additionally, we rank anti-LpxC lead compounds for further development, guided by the number of resistance-conferring mutations against each compound. Our results show that deep mutational scanning studies can be used to guide drug development, which we hope will contribute towards the development of novel antimicrobial therapies.


Assuntos
Antibacterianos , Proteínas de Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/química , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Mutação , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/farmacologia
8.
Cell Rep ; 42(8): 112875, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37542718

RESUMO

The success of Mycobacterium tuberculosis (Mtb) is largely attributed to its ability to physiologically adapt and withstand diverse localized stresses within host microenvironments. Here, we present a data-driven model (EGRIN 2.0) that captures the dynamic interplay of environmental cues and genome-encoded regulatory programs in Mtb. Analysis of EGRIN 2.0 shows how modulation of the MtrAB two-component signaling system tunes Mtb growth in response to related host microenvironmental cues. Disruption of MtrAB by tunable CRISPR interference confirms that the signaling system regulates multiple peptidoglycan hydrolases, among other targets, that are important for cell division. Further, MtrA decreases the effectiveness of antibiotics by mechanisms of both intrinsic resistance and drug tolerance. Together, the model-enabled dissection of complex MtrA regulation highlights its importance as a drug target and illustrates how EGRIN 2.0 facilitates discovery and mechanistic characterization of Mtb adaptation to specific host microenvironments within the host.


Assuntos
Mycobacterium tuberculosis , Fatores de Transcrição , Fatores de Transcrição/genética , Proteínas de Bactérias/genética , Divisão Celular , Tolerância a Medicamentos
9.
bioRxiv ; 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-38009101

RESUMO

Atypical protein kinase C (aPKC) is a major regulator of cell polarity. Acting in conjunction with Par6, Par3 and the small GTPase Cdc42, aPKC becomes asymmetrically localised and drives the polarisation of cells. aPKC activity is crucial for its own asymmetric localisation, suggesting a hitherto unknown feedback mechanism contributing to polarisation. Here we show in C. elegans zygotes that the feedback relies on CDC-42 phosphorylation at serine 71 by aPKC, which in turn results in aPKC dissociation from CDC-42. The dissociated aPKC then associates with PAR-3 clusters, which are transported anteriorly by actomyosin-based cortical flow. Moreover, the turnover of aPKC-mediated CDC-42 phosphorylation regulates the organisation of the actomyosin cortex that drives aPKC asymmetry. Given the widespread role of aPKC and Cdc42 in cell polarity, this form of self-regulation of aPKC may be vital for the robust polarisation of many cell types.

10.
mSystems ; 8(1): e0090422, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36537814

RESUMO

There is an urgent need for strategies to discover secondary drugs to prevent or disrupt antimicrobial resistance (AMR), which is causing >700,000 deaths annually. Here, we demonstrate that tetracycline-resistant (TetR) Escherichia coli undergoes global transcriptional and metabolic remodeling, including downregulation of tricarboxylic acid cycle and disruption of redox homeostasis, to support consumption of the proton motive force for tetracycline efflux. Using a pooled genome-wide library of single-gene deletion strains, at least 308 genes, including four transcriptional regulators identified by our network analysis, were confirmed as essential for restoring the fitness of TetR E. coli during treatment with tetracycline. Targeted knockout of ArcA, identified by network analysis as a master regulator of this new compensatory physiological state, significantly compromised fitness of TetR E. coli during tetracycline treatment. A drug, sertraline, which generated a similar metabolome profile as the arcA knockout strain, also resensitized TetR E. coli to tetracycline. We discovered that the potentiating effect of sertraline was eliminated upon knocking out arcA, demonstrating that the mechanism of potential synergy was through action of sertraline on the tetracycline-induced ArcA network in the TetR strain. Our findings demonstrate that therapies that target mechanistic drivers of compensatory physiological states could resensitize AMR pathogens to lost antibiotics. IMPORTANCE Antimicrobial resistance (AMR) is projected to be the cause of >10 million deaths annually by 2050. While efforts to find new potent antibiotics are effective, they are expensive and outpaced by the rate at which new resistant strains emerge. There is desperate need for a rational approach to accelerate the discovery of drugs and drug combinations that effectively clear AMR pathogens and even prevent the emergence of new resistant strains. Using tetracycline-resistant (TetR) Escherichia coli, we demonstrate that gaining resistance is accompanied by loss of fitness, which is restored by compensatory physiological changes. We demonstrate that transcriptional regulators of the compensatory physiologic state are promising drug targets because their disruption increases the susceptibility of TetR E. coli to tetracycline. Thus, we describe a generalizable systems biology approach to identify new vulnerabilities within AMR strains to rationally accelerate the discovery of therapeutics that extend the life span of existing antibiotics.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Resistência a Tetraciclina/genética , Sertralina/farmacologia , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Tetraciclina/farmacologia , Proteínas da Membrana Bacteriana Externa/farmacologia , Proteínas Repressoras/farmacologia , Proteínas de Escherichia coli/genética
11.
Science ; 375(6584): 1000-1005, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35239377

RESUMO

Sequence features of genes and their flanking regulatory regions are determinants of RNA transcript isoform expression and have been used as context-independent plug-and-play modules in synthetic biology. However, genetic context-including the adjacent transcriptional environment-also influences transcript isoform expression levels and boundaries. We used synthetic yeast strains with stochastically repositioned genes to systematically disentangle the effects of sequence and context. Profiling 120 million full-length transcript molecules across 612 genomic perturbations, we observed sequence-independent alterations to gene expression levels and transcript isoform boundaries that were influenced by neighboring transcription. We identified features of transcriptional context that could predict these alterations and used these features to engineer a synthetic circuit where transcript length was controlled by neighboring transcription. This demonstrates how positional context can be leveraged in synthetic genome engineering.


Assuntos
Genoma Fúngico , RNA Fúngico/genética , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética , Transcrição Gênica , Transcriptoma , Regiões 3' não Traduzidas , Sequência de Bases , Rearranjo Gênico , Variação Genética , RNA Fúngico/química , RNA Fúngico/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA-Seq , Análise de Sequência de RNA
12.
BMJ Case Rep ; 20182018 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-30249728

RESUMO

A 44-year-old Caucasian female with a history of endometriosis is admitted to the intensive care unit due to severe left lower quadrant abdominal pain, nausea and vomiting. With patients' positive chandelier sign on pelvic examination, leucocytosis, elevated erythrocyte sedimentation rate and elevated C-reactive protein indicated that she had pelvic inflammatory disease (PID). PCR tests were negative for Neisseria gonorrhoeae and Chlamydia trachomatis; however, her blood and urine cultures grew Group A streptococci (GAS) with a negative rapid Streptococcus throat swab and no known exposure to Streptococcus On further review, patient met criteria for GAS toxic shock syndrome based on diagnostic guidelines. The patient was promptly treated with intravenous antibiotics and supportive care, and she acutely recovered. This case demonstrates a rare cause of PID and an atypical aetiology of severe sepsis. It illuminates the importance of considering PID as a source of infection for undifferentiated bacteraemia.


Assuntos
Doença Inflamatória Pélvica/diagnóstico , Choque Séptico/diagnóstico , Infecções Estreptocócicas/diagnóstico , Streptococcus pyogenes/isolamento & purificação , Adulto , Feminino , Humanos
14.
Trauma Surg Acute Care Open ; 2(1): e000133, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29766120

RESUMO

BACKGROUND: Clinical practice guidelines (CPGs) have the ability to increase efficiency and standardize care. A CPG based on forced vital capacity (FVC) for rib fractures was developed as a tool for triage of these patients. The objectives of this study were to assess the efficacy and compliance of physicians with this rib fracture CPG. METHODS: Patients >18 that were discharged from an urban level 2 trauma center emergency department (ED) between the dates of January 1, 2014, to December 31, 2016, were eligible for the study. Demographics, mechanism, outcomes and FVC were abstracted by review of the electronic medical record. Compliance with the CPG was examined, and comparisons were made between patients successfully discharged and patients who returned. RESULTS: 455 patients met were identified during the study period. 233 were eligible after exclusions. 64% of the cohort was male with median age of 53 years. Falls were the most common mechanism (59.6%). The median number of rib fractures was 2 and median FVC 2500 mL. 28 (12.0%) of the 233 returned to the ED after discharge. The groups were well matched with no significant differences. The most common reason for return was pain (95%). Adjusted analysis showed that increasing age (adjusted OR (AOR) 0.968) and FVC (AOR 0.999) were independent predictors. Adherence with the CPG was good for hemothorax/pneumothorax and bilateral fractures (96%), but lagged with the number of fractures (74%). CONCLUSIONS: This study confirms that the rib fracture CPG is safe and an FVC of 1500 mL is a safe criterion for discharging patients with rib fractures. Interestingly, it appears that older age is protective. More work needs to be done on effective pain control to decrease return to ED visits using this CPG. LEVEL OF EVIDENCE: IV. TYPE OF STUDY: Therapeutic.

15.
Cell Syst ; 3(2): 118-120, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27559923

RESUMO

A new multiomic network inference pipeline, SYGNAL, integrates patient data with mechanistically accurate transcriptional regulatory networks to predict drug combinations with synergistic anti-proliferative effects on glioblastoma multiforme.


Assuntos
Redes Reguladoras de Genes , Glioblastoma/genética , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Proliferação de Células , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos
16.
Front Microbiol ; 6: 409, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25999934

RESUMO

Microbes are diverse and extremely versatile organisms that play vital roles in all ecological niches. Understanding and harnessing microbial systems will be key to the sustainability of our planet. One approach to improving our knowledge of microbial processes is through data-driven and mechanism-informed computational modeling. Individual models of biological networks (such as metabolism, transcription, and signaling) have played pivotal roles in driving microbial research through the years. These networks, however, are highly interconnected and function in concert-a fact that has led to the development of a variety of approaches aimed at simulating the integrated functions of two or more network types. Though the task of integrating these different models is fraught with new challenges, the large amounts of high-throughput data sets being generated, and algorithms being developed, means that the time is at hand for concerted efforts to build integrated regulatory-metabolic networks in a data-driven fashion. In this perspective, we review current approaches for constructing integrated regulatory-metabolic models and outline new strategies for future development of these network models for any microbial system.

17.
Appl Ergon ; 35(3): 215-23, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15145284

RESUMO

An over-the-road study of visual-manual destination entry using an example original equipment GPS-based navigation system was accomplished in traffic on urban streets and motorways. The evaluation used typical drivers, and a vehicle instrumented to record driver eye glances and fixations, driver control inputs, and lateral lane position. The primary task was to drive in a safe manner, in traffic, while maintaining speed and lateral lane position. As a secondary task, the drivers entered successive destinations while driving, using a touch screen, and at their own pace. They were told there was no need to enter the destination quickly. Results are shown for driver glance behavior, lane keeping performance, and subjective ratings. Overall, the drivers were able to accomplish the destination entry tasks with acceptably short glance durations, acceptable total task times, and with satisfactory subjective ratings for ease of entry.


Assuntos
Condução de Veículo , Segurança , Visão Ocular , Humanos , Pesquisa , Análise e Desempenho de Tarefas , Estados Unidos
18.
Front Microbiol ; 5: 379, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25101076

RESUMO

Living organisms persist by virtue of complex interactions among many components organized into dynamic, environment-responsive networks that span multiple scales and dimensions. Biological networks constitute a type of information and communication technology (ICT): they receive information from the outside and inside of cells, integrate and interpret this information, and then activate a response. Biological networks enable molecules within cells, and even cells themselves, to communicate with each other and their environment. We have become accustomed to associating brain activity - particularly activity of the human brain - with a phenomenon we call "intelligence." Yet, four billion years of evolution could have selected networks with topologies and dynamics that confer traits analogous to this intelligence, even though they were outside the intercellular networks of the brain. Here, we explore how macromolecular networks in microbes confer intelligent characteristics, such as memory, anticipation, adaptation and reflection and we review current understanding of how network organization reflects the type of intelligence required for the environments in which they were selected. We propose that, if we were to leave terms such as "human" and "brain" out of the defining features of "intelligence," all forms of life - from microbes to humans - exhibit some or all characteristics consistent with "intelligence." We then review advances in genome-wide data production and analysis, especially in microbes, that provide a lens into microbial intelligence and propose how the insights derived from quantitatively characterizing biomolecular networks may enable synthetic biologists to create intelligent molecular networks for biotechnology, possibly generating new forms of intelligence, first in silico and then in vivo.

19.
BMC Syst Biol ; 8: 122, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25394904

RESUMO

BACKGROUND: Expansion of transcription factors is believed to have played a crucial role in evolution of all organisms by enabling them to deal with dynamic environments and colonize new environments. We investigated how the expansion of the Feast/Famine Regulatory Protein (FFRP) or Lrp-like proteins into an eight-member family in Halobacterium salinarum NRC-1 has aided in niche-adaptation of this archaeon to a complex and dynamically changing hypersaline environment. RESULTS: We mapped genome-wide binding locations for all eight FFRPs, investigated their preference for binding different effector molecules, and identified the contexts in which they act by analyzing transcriptional responses across 35 growth conditions that mimic different environmental and nutritional conditions this organism is likely to encounter in the wild. Integrative analysis of these data constructed an FFRP regulatory network with conditionally active states that reveal how interrelated variations in DNA-binding domains, effector-molecule preferences, and binding sites in target gene promoters have tuned the functions of each FFRP to the environments in which they act. We demonstrate how conditional regulation of similar genes by two FFRPs, AsnC (an activator) and VNG1237C (a repressor), have striking environment-specific fitness consequences for oxidative stress management and growth, respectively. CONCLUSIONS: This study provides a systems perspective into the evolutionary process by which gene duplication within a transcription factor family contributes to environment-specific adaptation of an organism.


Assuntos
Adaptação Biológica/genética , Evolução Biológica , Meio Ambiente , Duplicação Gênica/genética , Regulação da Expressão Gênica em Archaea/genética , Halobacterium salinarum/genética , Fatores de Transcrição/genética , Sítios de Ligação/genética , Halobacterium salinarum/metabolismo , Paraquat
20.
Artigo em Inglês | MEDLINE | ID: mdl-21197660

RESUMO

The evolutionary success of an organism is a testament to its inherent capacity to keep pace with environmental conditions that change over short and long periods. Mechanisms underlying adaptive processes are being investigated with renewed interest and excitement. This revival is partly fueled by powerful technologies that can probe molecular phenomena at a systems scale. Such studies provide spectacular insight into the mechanisms of adaptation, including rewiring of regulatory networks via natural selection of horizontal gene transfers, gene duplication, deletion, readjustment of kinetic parameters, and myriad other genetic reorganizational events. Here, we discuss advances in prokaryotic systems biology from the perspective of evolutionary principles that have shaped regulatory networks for dynamic adaptation to environmental change.


Assuntos
Adaptação Fisiológica , Células Procarióticas/fisiologia , Microbiologia Ambiental , Evolução Molecular , Redes Reguladoras de Genes , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA