Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Synapse ; 70(7): 269-76, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26887562

RESUMO

Neuronal integration of high-frequency signals is important for rapid information processing. Cerebellar mossy fiber axons (MFs) can fire action potentials (APs) at frequencies of more than one kilohertz. However, it is unclear whether and how the postsynaptic cerebellar granule cells (GCs) are able to process these high-frequency MF inputs. Here, we measured AP firing in GCs during high-frequency MF stimulation and show that GC firing frequency increased non-linearly when MF stimulation frequency was increased from 100 to 750 Hz. To investigate the mechanisms enabling such high-frequency signaling, we analyzed the role of N-methyl-d-aspartate receptors (NMDARs), which have been implicated in synaptic signaling at lower frequencies. Application of D-2-amino-5-phosphonopentanoic acid (APV), a potent inhibitor of NMDARs, strongly impaired the GC firing frequency during high-frequency MF stimulation. APV had no significant effect on single excitatory postsynaptic potentials (EPSPs) or currents (EPSCs) evoked at 1 Hz at resting membrane potentials. However, the time course of EPSCs evoked at 1 Hz at depolarized potentials or following high-frequency MF stimulation was accelerated by APV. Thus, our results show that NMDAR-mediated currents amplify high-frequency MF inputs by prolonging the time courses of synaptic inputs, thereby causing greater synaptic summation of inputs. Hence, NMDARs support the integration of MF synaptic input at frequencies up to at least 750 Hz. Synapse 70:269-276, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Potenciais Pós-Sinápticos Excitadores , Fibras Nervosas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Fibras Nervosas/efeitos dos fármacos , Fibras Nervosas/fisiologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Valina/análogos & derivados , Valina/farmacologia
2.
Elife ; 92020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32022688

RESUMO

Cerebellar granule cells (GCs) make up the majority of all neurons in the vertebrate brain, but heterogeneities among GCs and potential functional consequences are poorly understood. Here, we identified unexpected gradients in the biophysical properties of GCs in mice. GCs closer to the white matter (inner-zone GCs) had higher firing thresholds and could sustain firing with larger current inputs than GCs closer to the Purkinje cell layer (outer-zone GCs). Dynamic Clamp experiments showed that inner- and outer-zone GCs preferentially respond to high- and low-frequency mossy fiber inputs, respectively, enabling dispersion of the mossy fiber input into its frequency components as performed by a Fourier transformation. Furthermore, inner-zone GCs have faster axonal conduction velocity and elicit faster synaptic potentials in Purkinje cells. Neuronal network modeling revealed that these gradients improve spike-timing precision of Purkinje cells and decrease the number of GCs required to learn spike-sequences. Thus, our study uncovers biophysical gradients in the cerebellar cortex enabling a Fourier-like transformation of mossy fiber inputs.


The timing of movements such as posture, balance and speech are coordinated by a region of the brain called the cerebellum. Although this part of the brain is small, it contains a huge number of tiny nerve cells known as granule cells. These cells make up more than half the nerve cells in the human brain. But why there are so many is not well understood.The cerebellum receives signals from sensory organs, such as the ears and eyes, which are passed on as electrical pulses from nerve to nerve until they reach the granule cells. These electrical pulses can have very different repetition rates, ranging from one pulse to a thousand pulses per second. Previous studies have suggested that granule cells are a uniform population that can detect specific patterns within these electrical pulses. However, this would require granule cells to identify patterns in signals that have a range of different repetition rates, which is difficult for individual nerve cells to do.To investigate if granule cells are indeed a uniform population, Straub, Witter, Eshra, Hoidis et al. measured the electrical properties of granule cells from the cerebellum of mice. This revealed that granule cells have different electrical properties depending on how deep they are within the cerebellum. These differences enabled the granule cells to detect sensory signals that had specific repetition rates: signals that contained lots of repeats per second were relayed by granule cells in the lower layers of the cerebellum, while signals that contained fewer repeats were relayed by granule cells in the outer layers.This ability to separate signals based on their rate of repetition is similar to how digital audio files are compressed into an MP3. Computer simulations suggested that having granule cells that can detect specific rates of repetition improves the storage capacity of the brain.These findings further our understanding of how the cerebellum works and the cellular mechanisms that underlie how humans learn and memorize the timing of movement. This mechanism of separating signals to improve storage capacity may apply to other regions of the brain, such as the hippocampus, where differences between nerve cells have also recently been reported.


Assuntos
Córtex Cerebelar , Neurônios , Animais , Fenômenos Biofísicos/fisiologia , Córtex Cerebelar/citologia , Córtex Cerebelar/metabolismo , Córtex Cerebelar/fisiologia , Análise de Fourier , Camundongos , Modelos Neurológicos , Fibras Nervosas/metabolismo , Fibras Nervosas/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Neurônios/fisiologia , Células de Purkinje/citologia , Células de Purkinje/metabolismo , Células de Purkinje/fisiologia , Potenciais Sinápticos/fisiologia , Substância Branca/citologia , Substância Branca/metabolismo , Substância Branca/fisiologia
3.
Elife ; 82019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31496517

RESUMO

Hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels control electrical rhythmicity and excitability in the heart and brain, but the function of HCN channels at the subcellular level in axons remains poorly understood. Here, we show that the action potential conduction velocity in both myelinated and unmyelinated central axons can be bidirectionally modulated by a HCN channel blocker, cyclic adenosine monophosphate (cAMP), and neuromodulators. Recordings from mouse cerebellar mossy fiber boutons show that HCN channels ensure reliable high-frequency firing and are strongly modulated by cAMP (EC50 40 µM; estimated endogenous cAMP concentration 13 µM). In addition, immunogold-electron microscopy revealed HCN2 as the dominating subunit in cerebellar mossy fibers. Computational modeling indicated that HCN2 channels control conduction velocity primarily by altering the resting membrane potential and are associated with significant metabolic costs. These results suggest that the cAMP-HCN pathway provides neuromodulators with an opportunity to finely tune energy consumption and temporal delays across axons in the brain.


Assuntos
Potenciais de Ação , Axônios/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Fibras Nervosas/fisiologia , Condução Nervosa , Canais de Potássio/metabolismo , Animais , Simulação por Computador , AMP Cíclico/metabolismo , Camundongos , Modelos Neurológicos
4.
Neurosci Res ; 127: 61-69, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29221908

RESUMO

In the central nervous system, the frequency at which reliable synaptic transmission can be maintained varies strongly between different types of synapses. Several pre- and postsynaptic processes must interact to enable high-frequency synaptic transmission. One of the mechanistically most challenging issues arises during repetitive neurotransmitter release, when synaptic vesicles fuse in rapid sequence with the presynaptic plasma membrane within the active zone (AZ), potentially interfering with the structural integrity of the AZ itself. Here we summarize potential mechanisms that help to maintain AZ integrity, including arrangement and mobility of release sites, calcium channel mobility, as well as release site clearance via lateral diffusion of vesicular proteins and via endocytotic membrane retrieval. We discuss how different types of synapses use these strategies to maintain high-frequency synaptic transmission.


Assuntos
Terminações Pré-Sinápticas/metabolismo , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/fisiologia , Animais , Canais de Cálcio , Endocitose , Neurônios/citologia , Neurônios/fisiologia , Sinapses/classificação
5.
Neuron ; 84(1): 152-163, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25220814

RESUMO

Fast synaptic transmission is important for rapid information processing. To explore the maximal rate of neuronal signaling and to analyze the presynaptic mechanisms, we focused on the input layer of the cerebellar cortex, where exceptionally high action potential (AP) frequencies have been reported in vivo. With paired recordings between presynaptic cerebellar mossy fiber boutons and postsynaptic granule cells, we demonstrate reliable neurotransmission up to ∼1 kHz. Presynaptic APs are ultrafast, with ∼100 µs half-duration. Both Kv1 and Kv3 potassium channels mediate the fast repolarization, rapidly inactivating sodium channels ensure metabolic efficiency, and little AP broadening occurs during bursts of up to 1.5 kHz. Presynaptic Cav2.1 (P/Q-type) calcium channels open efficiently during ultrafast APs. Furthermore, a subset of synaptic vesicles is tightly coupled to Ca(2+) channels, and vesicles are rapidly recruited to the release site. These data reveal mechanisms of presynaptic AP generation and transmitter release underlying neuronal kHz signaling.


Assuntos
Potenciais de Ação/fisiologia , Transdução de Sinais/fisiologia , Sinapses/fisiologia , Animais , Córtex Cerebelar/citologia , Córtex Cerebelar/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA