Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 27(11): 2634-2640, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28416131

RESUMO

Hepatitis C virus (HCV) NS5B RNA-dependent RNA polymerase (RdRp) plays a central role in virus replication. NS5B has no functional equivalent in mammalian cells, and as a consequence is an attractive target for selective inhibition. This paper describes the discovery of a novel family of HCV NS5B non-nucleoside inhibitors inspired by the bioisosterism between sulfonamide and phosphonamide. Systematic structural optimization in this new series led to the identification of IDX375, a potent non-nucleoside inhibitor that is selective for genotypes 1a and 1b. The structure and binding domain of IDX375 were confirmed by X-ray co-crystalisation study.


Assuntos
Antivirais/química , Hepacivirus/enzimologia , Lactamas/química , Compostos Organofosforados/química , Proteínas não Estruturais Virais/antagonistas & inibidores , Regulação Alostérica , Animais , Antivirais/síntese química , Antivirais/metabolismo , Antivirais/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Genótipo , Meia-Vida , Haplorrinos , Hepacivirus/genética , Hepacivirus/fisiologia , Humanos , Lactamas/farmacologia , Camundongos , Simulação de Dinâmica Molecular , Compostos Organofosforados/farmacologia , Estrutura Terciária de Proteína , Ratos , Relação Estrutura-Atividade , Sulfonamidas/química , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
2.
Bioorg Med Chem Lett ; 25(18): 3984-91, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26231161

RESUMO

We disclose here the synthesis of a series of macrocyclic HCV protease inhibitors, where the homoserine linked together the quinoline P2' motif and the macrocyclic moiety. These compounds exhibit potent inhibitory activity against HCV NS3/4A protease and replicon cell based assay. Their enzymatic and antiviral activities are modulated by substitutions on the quinoline P2' at position 8 by methyl and halogens and by small heterocycles at position 2. The in vitro structure activity relationship (SAR) studies and in vivo pharmacokinetic (PK) evaluations of selected compounds are described herein.


Assuntos
Antivirais/síntese química , Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Homosserina/farmacologia , Inibidores de Serina Proteinase/síntese química , Inibidores de Serina Proteinase/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Antivirais/química , Relação Dose-Resposta a Droga , Hepacivirus/enzimologia , Homosserina/síntese química , Homosserina/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Inibidores de Serina Proteinase/química , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/metabolismo
3.
Bioorg Med Chem Lett ; 25(22): 5427-36, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26410074

RESUMO

Exploration of the P2 region by mimicking the proline motif found in BILN2061 resulted in the discovery of two series of potent HCV NS3/4A protease inhibitors. X-ray crystal structure of the ligand in contact with the NS3/4A protein and modulation of the quinoline heterocyclic region by structure based design and modeling allowed for the optimization of enzyme potency and cellular activity. This research led to the selection of clinical candidate IDX320 having good genotype coverage and pharmacokinetic properties in various species.


Assuntos
Descoberta de Drogas , Hepacivirus/efeitos dos fármacos , Compostos Macrocíclicos/química , Compostos Macrocíclicos/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Animais , Haplorrinos , Hepatócitos/enzimologia , Humanos , Concentração Inibidora 50 , Camundongos , Microssomos Hepáticos/enzimologia , Estrutura Molecular , Ratos , Ratos Sprague-Dawley , Inibidores de Serina Proteinase/síntese química , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/farmacologia , Proteínas não Estruturais Virais/química
4.
Bioorg Med Chem Lett ; 24(18): 4444-4449, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25155387

RESUMO

Structural homology between thrombin inhibitors and the early tetrapeptide HCV protease inhibitor led to the bioisosteric replacement of the P2 proline by a 2,4-disubstituted azetidine within the macrocyclic ß-strand mimic. Molecular modeling guided the design of the series. This approach was validated by the excellent activity and selectivity in biochemical and cell based assays of this novel series and confirmed by the co-crystal structure of the inhibitor with the NS3/4A protein (PDB code: 4TYD).


Assuntos
Azetidinas/farmacologia , Desenho de Fármacos , Inibidores de Serina Proteinase/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Azetidinas/síntese química , Azetidinas/química , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Modelos Moleculares , Estrutura Molecular , Inibidores de Serina Proteinase/síntese química , Inibidores de Serina Proteinase/química , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/metabolismo
5.
Front Immunol ; 14: 1155552, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37143658

RESUMO

Introduction: The haemagglutination inhibition assay (HAI) and the virus microneutralisation assay (MN) are long-established methods for quantifying antibodies against influenza viruses. Despite their widespread use, both assays require standardisation to improve inter-laboratory agreement in testing. The FLUCOP consortium aims to develop a toolbox of standardised serology assays for seasonal influenza. Building upon previous collaborative studies to harmonise the HAI, in this study the FLUCOP consortium carried out a head-to-head comparison of harmonised HAI and MN protocols to better understand the relationship between HAI and MN titres, and the impact of assay harmonisation and standardisation on inter-laboratory variability and agreement between these methods. Methods: In this paper, we present two large international collaborative studies testing harmonised HAI and MN protocols across 10 participating laboratories. In the first, we expanded on previously published work, carrying out HAI testing using egg and cell isolated and propagated wild-type (WT) viruses in addition to high-growth reassortants typically used influenza vaccines strains using HAI. In the second we tested two MN protocols: an overnight ELISA-based format and a 3-5 day format, using reassortant viruses and a WT H3N2 cell isolated virus. As serum panels tested in both studies included many overlapping samples, we were able to look at the correlation of HAI and MN titres across different methods and for different influenza subtypes. Results: We showed that the overnight ELISA and 3-5 day MN formats are not comparable, with titre ratios varying across the dynamic range of the assay. However, the ELISA MN and HAI are comparable, and a conversion factor could possibly be calculated. In both studies, the impact of normalising using a study standard was investigated, and we showed that for almost every strain and assay format tested, normalisation significantly reduced inter-laboratory variation, supporting the continued development of antibody standards for seasonal influenza viruses. Normalisation had no impact on the correlation between overnight ELISA and 3-5 day MN formats.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Humanos , Vírus da Influenza A Subtipo H3N2 , Hemaglutinação , Estações do Ano , Anticorpos Antivirais
6.
Front Immunol ; 14: 1129765, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36926342

RESUMO

Introduction: External Quality Assessment (EQA) schemes are designed to provide a snapshot of laboratory proficiency, identifying issues and providing feedback to improve laboratory performance and inter-laboratory agreement in testing. Currently there are no international EQA schemes for seasonal influenza serology testing. Here we present a feasibility study for conducting an EQA scheme for influenza serology methods. Methods: We invited participant laboratories from industry, contract research organizations (CROs), academia and public health institutions who regularly conduct hemagglutination inhibition (HAI) and microneutralization (MN) assays and have an interest in serology standardization. In total 16 laboratories returned data including 19 data sets for HAI assays and 9 data sets for MN assays. Results: Within run analysis demonstrated good laboratory performance for HAI, with intrinsically higher levels of intra-assay variation for MN assays. Between run analysis showed laboratory and strain specific issues, particularly with B strains for HAI, whilst MN testing was consistently good across labs and strains. Inter-laboratory variability was higher for MN assays than HAI, however both assays showed a significant reduction in inter-laboratory variation when a human sera pool is used as a standard for normalization. Discussion: This study has received positive feedback from participants, highlighting the benefit such an EQA scheme would have on improving laboratory performance, reducing inter laboratory variation and raising awareness of both harmonized protocol use and the benefit of biological standards for seasonal influenza serology testing.


Assuntos
Influenza Humana , Humanos , Hemaglutinação , Laboratórios , Estudos de Viabilidade , Estações do Ano
7.
mSphere ; 6(4): e0056721, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34319129

RESUMO

The hemagglutination inhibition (HAI) assay is an established technique for assessing influenza immunity, through measurement of antihemagglutinin antibodies. Improved reproducibility of this assay is required to provide meaningful data across different testing laboratories. This study assessed the impact of harmonizing the HAI assay protocol/reagents and using standards on interlaboratory variability. Human pre- and postvaccination sera from individuals (n = 30) vaccinated against influenza were tested across six laboratories. We used a design of experiment (DOE) method to evaluate the impact of assay parameters on interlaboratory HAI assay variability. Statistical and mathematical approaches were used for data analysis. We developed a consensus protocol and assessed its performance against in-house HAI testing. We additionally tested the performance of several potential biological standards. In-house testing with four reassortant viruses showed considerable interlaboratory variation (geometric coefficient of variation [GCV] range of 50% to 117%). The age, concentration of turkey red blood cells, incubation duration, and temperature were key assay parameters affecting variability. Use of a consensus protocol with common reagents, including viruses, significantly reduced GCV between laboratories to 22% to 54%. Pooled postvaccination human sera from different vaccination campaigns were effective as biological standards. Our results demonstrate that the harmonization of protocols and critical reagents is effective in reducing interlaboratory variability in HAI assay results and that pools of postvaccination human sera have potential as biological standards that can be used over multiple vaccination campaigns. Moreover, the use of standards together with in-house protocols is as potent as the use of common protocols and reagents in reducing interlaboratory variability. IMPORTANCE The hemagglutination inhibition (HAI) assay is the most commonly used serology assay to detect antibodies from influenza vaccination or influenza virus infection. This assay has been used for decades but requires improved standardization of procedures to provide meaningful data. We designed a large study to assess selected parameters for their contribution to assay variability and developed a standard protocol to promote consistent HAI testing methods across laboratories. The use of this protocol and common reagents resulted in lower levels of variability in results between participating laboratories than achieved using in-house HAI testing. Human sera sourced from vaccination campaigns over several years, and thus including antibody to different influenza vaccine strains, served as effective assay standards. Based on our findings, we recommend the use of a common protocol and/or human serum standards, if available, for testing human sera for the presence of antibodies against seasonal influenza using turkey red blood cells.


Assuntos
Anticorpos Antivirais/sangue , Testes de Inibição da Hemaglutinação/métodos , Testes de Inibição da Hemaglutinação/normas , Vírus da Influenza A/imunologia , Influenza Humana/imunologia , Consenso , Eritrócitos , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza A/classificação , Vírus da Influenza A/genética , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Colaboração Intersetorial , Vírus Reordenados/genética , Vírus Reordenados/imunologia , Padrões de Referência , Reprodutibilidade dos Testes , Turquia
8.
J Virol ; 82(5): 2565-9, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18094159

RESUMO

We investigated the ability of adjuvanted, inactivated split-virion influenza A virus (H5N1) vaccines to protect against infection and demonstrated that the disease exacerbation phenomenon seen with adjuvanted formaldehyde-inactivated respiratory syncytial virus and measles virus investigational vaccines did not occur with these H5N1 vaccines. Macaques were vaccinated twice with or without an aluminum hydroxide or oil-in-water emulsion adjuvanted vaccine. Three months later, animals were challenged with homologous wild-type H5N1. No signs of vaccine-induced disease exacerbation were seen. With either adjuvant, vaccination induced functional and cross-reactive antibodies and protected the lungs and upper respiratory tract. Without an adjuvant, the vaccine provided partial protection. Best results were obtained with the emulsion adjuvant.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Formaldeído/química , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/administração & dosagem , Infecções por Orthomyxoviridae/prevenção & controle , Animais , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/imunologia , Linhagem Celular , Reações Cruzadas , Cães , Ensaio de Imunoadsorção Enzimática , Imunidade Celular , Macaca fascicularis , Infecções por Orthomyxoviridae/virologia , Reação em Cadeia da Polimerase
9.
J Clin Virol ; 96: 99-104, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29035763

RESUMO

BACKGROUND: In clinical trials of cytomegalovirus (CMV) glycoprotein B (gB) vaccines, CMV infection is detected by first depleting serum of anti-gB antibodies and then measuring anti-CMV antibodies with a commercially available enzyme-linked immunosorbent assay (ELISA) kit, with confirmation of positive findings by immunoblot. OBJECTIVES: Identification of CMV immunoantigens for the development of an ELISA that detects specifically CMV infection in clinical samples from individuals immunized with gB vaccines. STUDY DESIGN: Sensitivity and specificity of ELISAs using antigenic regions of CMV proteins UL83/pp65, UL99/pp28, UL44/pp52, UL80a/pp38, UL57, and UL32/pp150 were measured. RESULTS: An IgG ELISA using a UL32/pp150 [862-1048] capture peptide was the most specific (93.7%) and sensitive (96.4%) for detecting CMV-specific antibodies in sera. The ELISA successfully detected CMV-specific antibodies in 22 of 22 sera of subjects who had been vaccinated with a gB vaccine but who had later been infected with CMV. The ELISA was linear over a wide range of CMV concentrations (57-16,814 ELISA units/mL) and was reproducible as indicated by a 5% intra-day and 7% inter-day coefficients of variation. The signal was specifically competed by UL32/pp150 [862-1048] peptide but not by CMV-gB or herpes simplex virus 2 glycoprotein D. Lipid and hemoglobin matrix did not interfere with the assay. CONCLUSION: The UL32/pp150 [862-1048] IgG ELISA can be used for the sensitive and specific detection of CMV infection in gB-vaccinated individuals.


Assuntos
Anticorpos Antivirais/sangue , Ensaios Clínicos como Assunto , Infecções por Citomegalovirus/diagnóstico , Infecções por Citomegalovirus/prevenção & controle , Vacinas contra Citomegalovirus/administração & dosagem , Testes Diagnósticos de Rotina/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Antígenos Virais/imunologia , Humanos , Imunoglobulina G/sangue , Sensibilidade e Especificidade , Vacinas Sintéticas/administração & dosagem
10.
J Med Chem ; 59(5): 1891-8, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26804933

RESUMO

Here, we describe the design, synthesis, biological evaluation, and identification of a clinical candidate non-nucleoside reverse transcriptase inhibitors (NNRTIs) with a novel aryl-phospho-indole (APhI) scaffold. NNRTIs are recommended components of highly active antiretroviral therapy (HAART) for the treatment of HIV-1. Since a major problem associated with NNRTI treatment is the emergence of drug resistant virus, this work focused on optimization of the APhI against clinically relevant HIV-1 Y181C and K103N mutants and the Y181C/K103N double mutant. Optimization of the phosphinate aryl substituent led to the discovery of the 3-Me,5-acrylonitrile-phenyl analogue RP-13s (IDX899) having an EC50 of 11 nM against the Y181C/K103N double mutant.


Assuntos
Fármacos Anti-HIV/farmacologia , Descoberta de Drogas , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/efeitos dos fármacos , HIV-1/enzimologia , Indóis/farmacologia , Ácidos Fosfínicos/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Animais , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Linhagem Celular , Cristalografia por Raios X , Cães , Relação Dose-Resposta a Droga , Transcriptase Reversa do HIV/metabolismo , Hepatócitos/química , Hepatócitos/metabolismo , Humanos , Indóis/síntese química , Indóis/química , Macaca fascicularis , Masculino , Modelos Moleculares , Estrutura Molecular , Ácidos Fosfínicos/síntese química , Ácidos Fosfínicos/química , Ratos , Ratos Sprague-Dawley , Inibidores da Transcriptase Reversa/síntese química , Inibidores da Transcriptase Reversa/química , Relação Estrutura-Atividade
11.
PLoS One ; 10(4): e0121518, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25837802

RESUMO

HSV-2 vaccine is needed to prevent genital disease, latent infection, and virus transmission. A replication-deficient mutant virus (dl5-29) has demonstrated promising efficacy in animal models of genital herpes. However, the immunogenicity, protective efficacy, and non-replicative status of the highly purified clinical vaccine candidate (HSV529) derived from dl5-29 have not been evaluated. Humoral and cellular immune responses were measured in mice and guinea pigs immunized with HSV529. Protection against acute and recurrent genital herpes, mortality, latent infection, and viral shedding after vaginal HSV-2 infection was determined in mice or in naïve and HSV-1 seropositive guinea pigs. HSV529 replication and pathogenicity were investigated in three sensitive models of virus replication: severe combined immunodeficient (SCID/Beige) mice inoculated by the intramuscular route, suckling mice inoculated by the intracranial route, and vaginally-inoculated guinea pigs. HSV529 immunization induced HSV-2-neutralizing antibody production in mice and guinea pigs. In mice, it induced production of specific HSV-2 antibodies and splenocytes secreting IFNγ or IL-5. Immunization effectively prevented HSV-2 infection in all three animal models by reducing mortality, acute genital disease severity and frequency, and viral shedding. It also reduced ganglionic viral latency and recurrent disease in naïve and HSV-1 seropositive guinea pigs. HSV529 replication/propagation was not detected in the muscles of SCID/Beige mice, in the brains of suckling mice, or in vaginal secretions of inoculated guinea pigs. These results confirm the non-replicative status, as well as its immunogenicity and efficacy in mice and guinea pigs, including HSV-1 seropositive guinea pigs. In mice, HSV529 produced Th1/Th2 characteristic immune response thought to be necessary for an effective vaccine. These results further support the clinical investigation of HSV529 in human subjects as a prophylactic vaccine.


Assuntos
Anticorpos Neutralizantes/biossíntese , Anticorpos Antivirais/biossíntese , Herpes Genital/prevenção & controle , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Herpesvirus Humano 2/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Feminino , Cobaias , Herpes Genital/imunologia , Herpes Genital/mortalidade , Herpes Genital/virologia , Vacinas contra o Vírus do Herpes Simples/genética , Vacinas contra o Vírus do Herpes Simples/imunologia , Herpesvirus Humano 2/genética , Humanos , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Imunização , Interferon gama/biossíntese , Interferon gama/metabolismo , Interleucina-5/biossíntese , Interleucina-5/metabolismo , Camundongos , Camundongos SCID , Análise de Sobrevida , Equilíbrio Th1-Th2/efeitos dos fármacos , Vagina/efeitos dos fármacos , Vagina/imunologia , Vagina/virologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Latência Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Eliminação de Partículas Virais/efeitos dos fármacos
12.
Hum Gene Ther ; 13(13): 1611-20, 2002 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-12228016

RESUMO

Pharmacologic gene regulation is a key technology, necessary to achieve safe, long-term gene transfer. The approaches described in the scientific literature all share in common the creation of artificial transcription factors by fusing a DNA-binding domain, a drug-binding domain and a transcription activation domain. These transcription factors activate the transgene expression upon binding of the pharmacologic agent (antibiotics of the tetracycline family, insect hormone, progesterone antagonist, or immunosuppressor drug) to the drug-binding domain. The major limitations to the use of these systems for human gene and cell therapies are the toxicity of the inducer molecule and the immunogenicity of the chimeric transcription factor. Thus, the gene regulation systems should operate with clinically approved drugs with safety records that do not conflict with the therapeutic gene expression regimen. This work focuses on the characterization of the immunogenicity of a tetracycline-activated transcription factor commonly used in preclinical gene therapy, rtTA2-M2, and its impact on reporter gene expression. We demonstrate that intramuscular injection of plasmid or adenoviral vectors encoding rtTA-M2 in outbred primates generates a cellular and humoral immune response to this transcription factor. The immune response to rtTA2-M2 blunts the duration of the expression the rtTA2-M2-controlled transgene in primates, presumably by destruction of the cells that coexpress rtTA2-M2 and the reporter or therapeutic gene. This immune response may result directly from the vectors used in this study, which prompts the development of new gene transfer vectors enabling safe and efficient pharmacologic gene regulation in clinic.


Assuntos
Técnicas de Transferência de Genes , Proteínas Recombinantes de Fusão/genética , Transativadores , Transgenes , Animais , Genes Reporter , Interferon gama/imunologia , Interferon gama/metabolismo , Macaca fascicularis , Proteínas Recombinantes de Fusão/imunologia , Transativadores/imunologia
13.
Hum Vaccin Immunother ; 9(11): 2317-25, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23839107

RESUMO

To characterize the cell mediated immunity (CMI) induced by the investigational CYD tetravalent dengue vaccine (TDV), we developed a whole-blood, intracellular cytokine staining (ICS) assay and a multiplex assay, each requiring 3 mL of blood. We assessed CMI before and 28 d after a first and third injection of CYD-TDV and one year after the third injection in a subset of 80 adolescents and adults enrolled in a phase II trial in Singapore (ClinicalTrial.gov NCT NCT00880893). CD4/IFNγ/TNFα responses specific to dengue NS3 were detected before vaccination. Vaccination induced YF-17D-NS3-specific CD8/IFNγ responses, without significant TNFα, and a CYD-specific Th1/Tc1 cellular response in all participants, which was characterized by predominant IFNγ secretion compared with TNFα, associated with low level IL-13 secretion in multiplex analysis of peripheral blood mononuclear cells (PBMC) supernatants after restimulation with each the CYD vaccine viruses. Responses were directed mainly against CYD-4 after the first vaccination, and were more balanced against all four serotypes after the third vaccination. The same qualitative profile was observed one year after the third vaccination, with approximately 2-fold lower NS3-specific responses, and 3-fold lower serotype-specific cellular responses. These findings confirm previous observations regarding both the nature and specificity of cellular responses induced by CYD-TDV, and for the first time demonstrate the persistence of cellular responses after one year. We also established the feasibility of analyzing CMI with small blood samples, allowing such analysis to be considered for pediatric trials.


Assuntos
Vacinas contra Dengue/administração & dosagem , Vacinas contra Dengue/imunologia , Dengue/imunologia , Dengue/prevenção & controle , Leucócitos Mononucleares/imunologia , Subpopulações de Linfócitos T/imunologia , Vacinação/métodos , Adolescente , Adulto , Criança , Citocinas/biossíntese , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Singapura , Coloração e Rotulagem , Adulto Jovem
14.
J Med Chem ; 54(1): 392-5, 2011 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-21142105

RESUMO

A novel series of 3-aryl-phospho-indole (API) non-nucleoside reverse transcriptase inhibitors of HIV-1 was developed. Chemical variation in the phosphorus linker led to the discovery of 3-phenyl-methyl-phosphinate-2-carboxamide 14, which possessed excellent potency against wild-type HIV-1 as well as viruses bearing K103N and Y181C single mutants in the reverse transcriptase gene. Chiral separation of the enantiomers showed that only R enantiomer retained the activity. The pharmacokinetic, solubility, and metabolic properties of 14 were assessed.


Assuntos
Fármacos Anti-HIV/síntese química , Transcriptase Reversa do HIV/metabolismo , Indóis/síntese química , Ácidos Fosfínicos/síntese química , Inibidores da Transcriptase Reversa/síntese química , Animais , Fármacos Anti-HIV/farmacocinética , Fármacos Anti-HIV/farmacologia , Linhagem Celular , Cães , Farmacorresistência Viral , Transcriptase Reversa do HIV/genética , Haplorrinos , Hepatócitos/metabolismo , Humanos , Indóis/farmacocinética , Indóis/farmacologia , Modelos Moleculares , Mutação , Ácidos Fosfínicos/farmacocinética , Ácidos Fosfínicos/farmacologia , Ratos , Inibidores da Transcriptase Reversa/farmacocinética , Inibidores da Transcriptase Reversa/farmacologia , Solubilidade , Estereoisomerismo , Relação Estrutura-Atividade
15.
Vaccine ; 28(18): 3076-9, 2010 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-20193791

RESUMO

Pandemic influenza vaccines have been manufactured using the A/California/07/2009 (H1N1) strain as recommended by the World Health Organization. We evaluated in mice the immunogenicity of pandemic (H1N1) 2009 vaccine and the impact of prior vaccination against seasonal trivalent influenza vaccines (TIV) on antibody responses against pandemic (H1N1) 2009. In naïve mice, a single dose of unadjuvanted H1N1 vaccine (3 microg of HA) was shown to elicit hemagglutination inhibition (HI) antibody titers >40, a titer associated with protection in humans against seasonal influenza. A second vaccine dose of pandemic (H1N1) 2009 vaccine strongly increased these titers, which were consistently higher in mice previously primed with TIV than in naïve mice. At a low immunization dose (0.3 microg of HA), the AF03-adjuvanted vaccine elicited higher HI antibody titers than the corresponding unadjuvanted vaccines in both naïve and TIV-primed animals, suggesting a potential for antigen dose-sparing. These results are in accordance with the use in humans of a split-virion inactivated pandemic (H1N1) 2009 vaccine formulated with or without AF03 adjuvant to protect children and young adults against influenza A (H1N1) 2009 infection.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Anticorpos Antivirais/sangue , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Vacinação/métodos , Animais , Feminino , Testes de Inibição da Hemaglutinação , Imunização Secundária/métodos , Camundongos , Camundongos Endogâmicos BALB C
16.
Expert Rev Vaccines ; 8(4): 483-92, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19348563

RESUMO

The ongoing epizootic of highly pathogenic avian H5N1 influenza and its direct transmissibility and high pathogenicity in humans has led to renewed interest in the development of influenza vaccines with enhanced immunogenicity. Influenza vaccines are currently under development against influenza strains that are potentially pandemic threats, such as H5N1, as well as against the current seasonal influenza strains for use in populations susceptible to severe influenza disease. Influenza vaccines may be generally divided into two types: seasonal vaccines for use in a population that is largely primed to subtypes of the circulating influenza A strains and pandemic influenza vaccines that are designed to protect against influenza A viruses of a hemagglutinin (HA) subtype, to which the vast majority of the population is immunologically naive. Pandemic influenza vaccines can be further subdivided into prepandemic vaccines produced for use prior to or just after the declaration of a pandemic, and pandemic influenza vaccines that would be produced and used only after a pandemic is declared. Prepandemic influenza vaccines are formulated using HA and neuraminidase, which are likely to be antigenically similar to the influenza virus subtype deemed to pose the most probable pandemic threat. Enhanced vaccine immunogenicity is desirable for pandemic influenza vaccines and for seasonal vaccines used in target populations, such as the elderly, in which vaccine responses against the circulating influenza subtypes may be weak. Various methods to enhance the immunogenicity of influenza vaccines are under evaluation. Along with dose escalation and alternative delivery routes, strategies for improving the immunogenicity of influenza vaccines have focused on the use of immunologic adjuvants. An adjuvanted seasonal influenza vaccine, Fluad, has been licensed in some countries in Europe since 1997 for the elderly population, and a number of clinical trials have been completed or are in progress evaluating the use of adjuvants with pandemic and seasonal influenza vaccines. This review will focus on the use of emulsion-based adjuvants for enhancing the immunogenicity of pandemic influenza vaccines and of seasonal influenza vaccines in target populations.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Emulsões/administração & dosagem , Vacinas contra Influenza/imunologia , Adjuvantes Imunológicos/farmacologia , Ensaios Clínicos como Assunto , Emulsões/farmacologia , Europa (Continente) , Humanos , Virus da Influenza A Subtipo H5N1/imunologia , Vírus da Influenza A/imunologia
17.
Vaccine ; 27(48): 6777-90, 2009 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-19732860

RESUMO

Neutralizing antibody is associated with the prevention and clearance of influenza virus infection. Microneutralization (MN) and hemagglutination inhibition (HI) assays are currently used to evaluate neutralizing antibody responses against human and avian influenza viruses, including H5N1. The MN assay is somewhat labor intensive, while HI is a surrogate for neutralization. Moreover, use of replication competent viruses in these assays requires biosafety level 3 (BSL-3) containment. Therefore, a neutralization assay that does not require BSL-3 facilities would be advantageous. Toward this goal, we generated a panel of pseudotypes expressing influenza hemagglutinin (HA) and neuraminidase (NA) and developed a pseudotype-based neutralization (PN) assay. Here we demonstrate that HA/NA pseudotypes mimic release and entry of influenza virus and that the PN assay exhibits good specificity and reveals quantitative difference in neutralizing antibody titers against different H5N1 clades and subclades. Using immune ferret sera, we demonstrated excellent correlation between the PN, MN, and HI assays. Thus, we conclude that the PN assay is a sensitive and quantifiable method to measure neutralizing antibodies against diverse clades and subclades of H5N1 influenza virus.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/imunologia , Testes de Neutralização/métodos , Infecções por Orthomyxoviridae/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linhagem Celular , Cães , Feminino , Furões , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Hemaglutininas Virais/genética , Hemaglutininas Virais/imunologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Neuraminidase/genética , Neuraminidase/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Sensibilidade e Especificidade , Proteínas Virais/genética , Proteínas Virais/imunologia , Internalização do Vírus , Liberação de Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA