Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Biol Chem ; 298(12): 102705, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36400200

RESUMO

The Sonic Hedgehog (SHh) precursor protein undergoes biosynthetic autoprocessing to cleave off and covalently attach cholesterol to the SHh signaling ligand, a vital morphogen and oncogenic effector protein. Autoprocessing is self-catalyzed by SHhC, the SHh precursor's C-terminal enzymatic domain. A method to screen for small molecule regulators of this process may be of therapeutic value. Here, we describe the development and validation of the first cellular reporter to monitor human SHhC autoprocessing noninvasively in high-throughput compatible plates. The assay couples intracellular SHhC autoprocessing using endogenous cholesterol to the extracellular secretion of the bioluminescent nanoluciferase enzyme. We developed a WT SHhC reporter line for evaluating potential autoprocessing inhibitors by concentration response-dependent suppression of extracellular bioluminescence. Additionally, a conditional mutant SHhC (D46A) reporter line was developed for identifying potential autoprocessing activators by a concentration response-dependent gain of extracellular bioluminescence. The D46A mutation removes a conserved general base that is critical for the activation of the cholesterol substrate. Inducibility of the D46A reporter was established using a synthetic sterol, 2-α carboxy cholestanol, designed to bypass the defect through intramolecular general base catalysis. To facilitate direct nanoluciferase detection in the cell culture media of 1536-well plates, we designed a novel anionic phosphonylated coelenterazine, CLZ-2P, as the nanoluciferase substrate. This new reporter system offers a long-awaited resource for small molecule discovery for cancer and for developmental disorders where SHh ligand biosynthesis is dysregulated.


Assuntos
Proteínas Hedgehog , Humanos , Colesterol/metabolismo , Proteínas Hedgehog/agonistas , Proteínas Hedgehog/antagonistas & inibidores , Proteínas Hedgehog/metabolismo , Ligantes , Proteínas Oncogênicas , Esteróis
2.
Bioorg Med Chem ; 82: 117231, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36893527

RESUMO

A native enzyme's usual assurance in recognizing their physiological substrate(s) at the ground state and on going to the transition state can be undermined by interactions with selected small molecule antagonists, leading to the generation of abnormal products. We classify this mode of enzyme antagonism resulting in the gain-of-nonnative-function as paracatalytic induction. Enzymes bound by paracatalytic inducers exhibit new or enhanced activity toward transformations that appear aberrant or erroneous. The enzyme/ paracatalytic inducer complex may take up native substrate but then bring about a transformation that is chemically distinct from the normal reaction. Alternatively, the enzyme / paracatalytic inducer complex may exhibit abnormal ground state selectivity, preferentially interacting with and transforming a molecule outside the physiological substrate scope. Paracatalytic inducers can be cytotoxic, while in other cases they divert enzyme activity toward transformations that appear adaptive and even therapeutically useful. In this perspective, we highlight two noteworthy examples from recent literature.


Assuntos
Inibidores Enzimáticos , Inibidores Enzimáticos/farmacologia , Ligação Proteica
3.
Biochemistry ; 61(11): 1022-1028, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34941260

RESUMO

Hedgehog (Hh) signaling ligands undergo carboxy terminal sterylation through specialized autoprocessing, called cholesterolysis. Sterylation is brought about intramolecularly in a single turnover by an adjacent enzymatic domain, called HhC, which is found in precursor Hh proteins only. Previous attempts to identify antagonists of the intramolecular activity of HhC have yielded inhibitors that bind HhC irreversibly through covalent mechanisms, as is common for protein autoprocessing inhibitors. Here, we report an exception to the "irreversibility rule" for autoprocessing inhibition. Using a fluorescence resonance energy transfer-based activity assay for HhC, we screened a focused library of sterol-like analogues for noncovalent inhibitors and identified and validated four structurally related molecules, which were then used for structure-activity relationship studies. The most effective derivative, tBT-HBT, inhibits HhC noncovalently with an IC50 of 300 nM. An allosteric binding site for tBT-HBT, encompassing residues from the two subdomains of HhC, is suggested by kinetic analysis, mutagenesis studies, and photoaffinity labeling. The inhibitors described here resemble a family of noncovalent, allosteric inducers of HhC paracatalysis which we have described previously. The inhibition and the induction appear to be mediated by a shared allosteric site on HhC.


Assuntos
Proteínas Hedgehog , Esteróis , Sítios de Ligação , Cinética , Ligantes , Esteróis/química
4.
Chembiochem ; 23(4): e202100594, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-34890095

RESUMO

Enzymatic beacons, or E-beacons, are 1 : 1 bioconjugates of the nanoluciferase enzyme linked covalently at its C-terminus to hairpin forming ssDNA equipped with a dark quencher. We prepared E-beacons biocatalytically using HhC, the promiscuous Hedgehog C-terminal protein-cholesterol ligase. HhC attached nanoluciferase site-specifically to mono-sterylated hairpin oligonucleotides, called steramers. Three E-beacon dark quenchers were evaluated: Iowa Black, Onyx-A, and dabcyl. Each quencher enabled sensitive, sequence-specific nucleic acid detection through enhanced E-beacon bioluminescence upon target hybridization. We assembled prototype dabcyl-quenched E-beacons specific for SARS-CoV-2. Targeting the E484 codon of the virus Spike protein, E-beacons (80×10-12  M) reported wild-type SARS-CoV-2 nucleic acid at ≥1×10-9  M by increased bioluminescence of 8-fold. E-beacon prepared for the SARS-CoV-2 E484K variant functioned with similar sensitivity. Both E-beacons could discriminate their target from the E484Q mutation of the SARS-CoV-2 Kappa variant. Along with mismatch specificity, E-beacons are two to three orders of magnitude more sensitive than synthetic molecular beacons.


Assuntos
SARS-CoV-2
5.
Biochemistry ; 59(38): 3517-3522, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32931253

RESUMO

We define paracatalysis as the acceleration of a reaction that appears abnormal or nonphysiological. With the high specificity of enzymes, side reactivity of this kind is typically negligible. However, enzyme paracatalysis can be amplified to levels that are biologically significant through interactions with a special class of small molecule "antagonist", here termed a paracatalytic inducer. Compounds with this unusual mode of action tend to be natural products, identified by chance through phenotypic screens. In this Perspective, we suggest two general types of paracatalytic inducer. The first type promotes substrate ambiguity, where the enzyme's ground state selectivity is compromised, enabling the transformation of non-native substrates. The second type involves transition state ambiguity, where the paracatalytic inducer changes the enzyme's interactions with the activated substrate, giving rise to non-native bond making. Although they are unusual, small molecules that induce paracatalysis have established value as hypothesis-generating probes and a few substances, i.e., aspirin and the aminoglycosides, have proven to be translatable as medicines.


Assuntos
Biocatálise/efeitos dos fármacos , Ativadores de Enzimas/farmacologia , Inibidores Enzimáticos/farmacologia , Enzimas/efeitos dos fármacos , Especificidade por Substrato/efeitos dos fármacos
6.
Biochemistry ; 59(6): 736-741, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32013401

RESUMO

Hedgehog proteins, a family of vital cell signaling factors, are expressed in precursor form, which requires specialized autoprocessing, called cholesterolysis, for full biological activity. Cholesterolysis occurs in cis through the action of the precursor's C-terminal enzymatic domain, HhC. In this work, we describe HhC activator compounds (HACs), a novel class of noncovalent modulators that induce autoprocessing infidelity, diminishing native cholesterolysis in favor of precursor autoproteolysis, an otherwise minor and apparently nonphysiological side reaction. HAC-induced autoproteolysis generates hedgehog protein that is cholesterol free and hence signaling deficient. The most effective HAC has an AC50 of 9 µM, accelerates HhC autoproteolytic activity by 225-fold, and functions in the presence and absence of cholesterol, the native substrate. HACs join a rare class of "antagonists" that suppress native enzymatic activity by subverting mechanistic fidelity.


Assuntos
Colesterol/biossíntese , Proteínas de Drosophila/biossíntese , Proteínas Hedgehog/biossíntese , Catálise , Colesterol/genética , Proteínas de Drosophila/genética , Variação Genética/fisiologia , Proteínas Hedgehog/genética , Proteólise
7.
J Am Chem Soc ; 141(46): 18380-18384, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31682419

RESUMO

Hedgehog (Hh) autoprocessing converts Hh precursor protein to cholesterylated Hh ligand for downstream signaling. A conserved active-site aspartate residue, D46, plays a key catalytic role in Hh autoprocessing by serving as a general base to activate substrate cholesterol. Here we report that a charge-altering Asp-to-His mutant (D46H) expands native cholesterylation activity and retains active-site conformation. Native activity toward cholesterol was established for D46H in vitro using a continuous FRET-based autoprocessing assay and in cellulo with stable expression in human 293T cells. The catalytic efficiency of cholesterylation with D46H is similar to that with wild type (WT), with kmax/KM = 2.1 × 103 and 3.7 × 103 M-1 s-1, respectively, and an identical pKa = 5.8 is obtained for both residues by NMR. To our knowledge this is the first example where a general base substitution of an Asp for His preserves both the structure and activity as a general base. Surprisingly, D46H exhibits increased catalytic efficiency toward non-native substrates, especially coprostanol (>200-fold) and epicoprostanol (>300-fold). Expanded substrate tolerance is likely due to stabilization by H46 of the negatively charged tetrahedral intermediate using electrostatic interactions, which are less constrained by geometry than H-bond stabilization by D46. In addition to providing fundamental insights into Hh autoprocessing, our findings have important implications for protein engineering and enzyme design.


Assuntos
Colesterol/metabolismo , Proteínas Hedgehog/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Domínio Catalítico , Colestanol/metabolismo , Células HEK293 , Proteínas Hedgehog/química , Proteínas Hedgehog/genética , Humanos , Modelos Moleculares , Transdução de Sinais , Especificidade por Substrato
8.
Bioconjug Chem ; 30(11): 2799-2804, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31600061

RESUMO

Hedgehog (Hh) precursor proteins contain an autoprocessing domain called HhC whose native function is protein cleavage and C-terminal glycine sterylation. The transformation catalyzed by HhC occurs in cis from a precursor protein and exhibits wide tolerance toward both sterol and protein substrates. Here, we repurpose HhC as a 1:1 protein-nucleic acid ligase, with the sterol serving as a molecular linker. A procedure is described for preparing HhC-active sterylated DNA, called steramers, using aqueous compatible chemistry and commercial reagents. Steramers have KM values of 7-11 µM and reaction t1/2 values of ∼10 min. Modularity of the HhC/steramer method is demonstrated using four different proteins along with structured and unstructured sterylated nucleic acids. The resulting protein-DNA conjugates retain the native solution properties and biochemical function. Unlike self-tagging domains, HhC does not remain fused to the conjugate; rather, enzymatic activity is mechanistically coupled to conjugate release. That unique feature of HhC, coupled with efficient kinetics and substrate tolerance, may ease access and open new applications for these suprabiological chimeras.


Assuntos
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Proteínas Hedgehog/química , Proteínas Hedgehog/metabolismo , Ácidos Nucleicos/química , Ácidos Nucleicos/metabolismo , Esteróis/química , Esteróis/metabolismo , Animais , Drosophila , Cinética
9.
J Am Chem Soc ; 140(3): 916-918, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28930454

RESUMO

Proteins in the hedgehog family undergo self-catalyzed endoproteolysis involving nucleophilic attack by a molecule of cholesterol. Recently, a conserved aspartate residue (D303, or D46) of hedgehog was identified as the general base that activates cholesterol during this unusual autoprocessing event; mutation of the catalyzing functional group (D303A) reduces activity by >104-fold. Here we report near total rescue of this ostensibly dead general base mutant by a synthetic substrate, 3ß-hydroperoxycholestane (3HPC) in which the sterol -OH group is replaced by the hyper nucleophilic -OOH group. Other hedgehog point mutants at D303, also unreactive with cholesterol, accepted 3HPC as a substrate with the rank order: WT > D303A ≈ D303N ≫ D303R, D303E. We attribute the revived activity with 3-HPC to the α-effect, where tandem electronegative atoms exhibit exceptionally high nucleophilicity despite relatively low basicity.


Assuntos
Colestanos/metabolismo , Colesterol/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Hedgehog/metabolismo , Animais , Catálise , Domínio Catalítico , Proteínas de Drosophila/química , Drosophila melanogaster/química , Proteínas Hedgehog/química , Especificidade por Substrato
10.
Chembiochem ; 16(1): 55-8, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25418613

RESUMO

Hedgehog proteins, signaling molecules implicated in human embryo development and cancer, can be inhibited at the stage of autoprocessing by the trivalent arsenical phenyl arsine oxide (PhAs(III) ). The interaction (apparent Ki , 4 × 10(-7) M) is characterized by an optical binding assay and by NMR spectroscopy. PhAs(III) appears to be the first validated inhibitor of hedgehog autoprocessing, which is unique to hedgehog proteins and essential for biological activity.


Assuntos
Arsenicais/química , Colesterol/química , Proteínas Hedgehog/antagonistas & inibidores , Precursores de Proteínas/antagonistas & inibidores , Proteínas Recombinantes de Fusão/química , Animais , Domínio Catalítico , Relação Dose-Resposta a Droga , Drosophila melanogaster/química , Drosophila melanogaster/metabolismo , Expressão Gênica , Proteínas Hedgehog/química , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Hidrólise , Cinética , Modelos Moleculares , Ligação Proteica , Precursores de Proteínas/química , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
11.
Anal Biochem ; 488: 1-5, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26095399

RESUMO

Hedgehog (Hh) proteins function in cell/cell signaling processes linked to human embryo development and the progression of several types of cancer. Here, we describe an optical assay of hedgehog cholesterolysis, a unique autoprocessing event critical for Hh function. The assay uses a recombinant Förster resonance energy transfer (FRET)-active Hh precursor whose cholesterolysis can be monitored continuously in multi-well plates (dynamic range=4, Z'=0.7), offering advantages in throughput over conventional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) assays. Application of the optical assay in a pilot small molecule screen produced a novel cholesterolysis inhibitor (apparent IC50=5×10(-6)M) that appears to inactivate hedgehog covalently by a substitution nucleophilic aromatic (SNAr) mechanism.


Assuntos
Antineoplásicos/farmacologia , Colesterol/metabolismo , Proteínas de Drosophila/antagonistas & inibidores , Proteínas Hedgehog/antagonistas & inibidores , Ensaios de Triagem em Larga Escala , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Motivos de Aminoácidos , Animais , Sequência Conservada , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Transferência Ressonante de Energia de Fluorescência , Proteínas Hedgehog/química , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Cinética , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Nitrobenzoatos/farmacologia , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Projetos Piloto , Mutação Puntual , Domínios e Motivos de Interação entre Proteínas , Precursores de Proteínas/antagonistas & inibidores , Precursores de Proteínas/química , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Proteólise/efeitos dos fármacos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Bibliotecas de Moléculas Pequenas , Tetrazóis/farmacologia
12.
Biotechnol Bioeng ; 110(6): 1565-73, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23280506

RESUMO

The unregulated activity of inteins during expression and consequent side reactions during work-up limits their widespread use in biotechnology and chemical biology. Therefore, we exploited a mechanism-based approach to regulate intein autocatalysis for biotechnological application. The system, inspired by our previous structural studies, is based on reversible trapping of the intein's catalytic cysteine residue through a disulfide bond. Using standard mutagenesis, the disulfide trap can be implemented to impart redox control over different inteins and for a variety of applications both in vitro and in Escherichia coli. Thereby, we first enhanced the output for bioconjugation in intein-mediated protein ligation, also referred to as expressed protein ligation, where precursor recovery and product yield were augmented fourfold to sixfold. Second, in bioseparation experiments, the redox trap boosted precursor recovery and product yield twofold. Finally, the disulfide-trap intein technology stimulated development of a novel bacterial redox sensor. This sensor reliably identified hyperoxic E. coli harboring mutations that disrupt the reductive pathways for thioredoxin and glutathione, against a background of wild-type cells.


Assuntos
Biotecnologia/métodos , Engenharia Genética/métodos , Inteínas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Técnicas Biossensoriais , Cromatografia Líquida , DNA Polimerase III/genética , Escherichia coli/genética , Mutação/genética , Oxirredução , Processamento de Proteína , Ribonucleotídeo Redutases/genética , Ribonucleotídeo Redutases/metabolismo
13.
bioRxiv ; 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38187717

RESUMO

A modified protein fragment complementation assay has been designed and validated as a gain-of-signal biosensor for nucleic acid:nucleic acid interactions. The assay uses fragments of NanoBiT, the split luciferase reporter enzyme, that are esterified at their C-termini to steramers, sterol-modified oligodeoxynucleotides. The Drosophila hedgehog autoprocessing domain, DHhC, served as a self-cleaving catalyst for these bioconjugations. In the presence of ssDNA or RNA with segments complementary to the steramers and adjacent to one another, the two NanoBiT fragments productively associate, reconstituting NanoBiT enzyme activity. NanoBiT luminescence in samples containing nM ssDNA or RNA template exceeded background by 30-fold and as high as 120-fold depending on assay conditions. A unique feature of this detection system is the absence of a self-labeling domain in the NanoBiT bioconjugates. Eliminating that extraneous bulk broadens the detection range from short oligos to full-length mRNA.

14.
Methods Enzymol ; 685: 1-41, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37245899

RESUMO

Paracatalytic inducers are antagonists that shift the specificity of biological catalysts, resulting in non-native transformations. In this Chapter we describe methods to discover paracatalytic inducers of Hedgehog (Hh) protein autoprocessing. Native autoprocessing uses cholesterol as a substrate nucleophile to assist in cleaving an internal peptide bond within a precursor form of Hh. This unusual reaction is brought about by HhC, an enzymatic domain that resides within the C-terminal region of Hh precursor proteins. Recently, we reported paracatalytic inducers as a novel class of Hh autoprocessing antagonists. These small molecules bind HhC and tilt the substrate specificity away from cholesterol in favor of solvent water. The resulting cholesterol-independent autoproteolysis of the Hh precursor generates a non-native Hh side product with substantially reduced biological signaling activity. Protocols are provided for in vitro FRET-based and in-cell bioluminescence assays to discover and characterize paracatalytic inducers of Drosophila and human hedgehog protein autoprocessing, respectively.


Assuntos
Proteínas de Drosophila , Proteínas Hedgehog , Animais , Humanos , Proteínas Hedgehog/genética , Proteínas Hedgehog/química , Proteínas Hedgehog/metabolismo , Proteínas de Drosophila/química , Drosophila/metabolismo , Colesterol/metabolismo , Catálise
16.
Proc Natl Acad Sci U S A ; 106(27): 11005-10, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19541659

RESUMO

Inteins comprise a large family of phylogenetically widespread self-splicing protein catalysts that colonize diverse host proteins. The evolutionary and functional relationship between the intein and the split-host protein, the exteins, is largely unknown. To probe an association, we developed an in vivo and in vitro intein assay based on FRET. The FRET assay reports cleavage of the intein from its N-terminal extein. Applying this assay to randomized extein libraries, we show that the nature of the extein substrate bordering the intein can profoundly influence intein activity. Residues proximal to the intein-splicing junction in both N- and C-terminal exteins can accelerate the N-terminal cleavage rate by >4-fold or attenuate cleavage by 1,000-fold, both resulting in compromised self-splicing efficiency. The existence and the magnitude of extein effects require consideration for maximizing the utility of inteins in biotechnological applications, and they predict biases in intein integration sites in nature.


Assuntos
Exteínas , Inteínas , Aminoácidos/metabolismo , Transferência Ressonante de Energia de Fluorescência , Proteínas Mutantes/metabolismo , Processamento de Proteína
17.
bioRxiv ; 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34494022

RESUMO

Enzymatic beacons, or E-beacons, are 1:1 bioconjugates of the nanoluciferase enzyme linked covalently at its C-terminus to hairpin forming DNA oligonucleotides equipped with a dark quencher. We prepared E-beacons biocatalytically using the promiscuous "hedgehog" protein-cholesterol ligase, HhC. Instead of cholesterol, HhC attached nanoluciferase site-specifically to mono-sterylated hairpin DNA, prepared in high yield by solid phase synthesis. We tested three potential E-beacon dark quenchers: Iowa Black, Onyx-A, and dabcyl. Prototype E-beacon carrying each of those quenchers provided sequence-specific nucleic acid sensing through turn-on bioluminescence. For practical application, we prepared dabcyl-quenched E-beacons for potential use in detecting the COVID-19 virus, SARS-CoV-2. Targeting the E484 codon of the SARS-CoV-2 Spike protein, E-beacons (80 × 10 -12 M) reported wild-type SARS-CoV-2 nucleic acid at ≥1 × 10 -9 M with increased bioluminescence of 8-fold. E-beacon prepared for the E484K variant of SARS-CoV-2 functioned with similar sensitivity. These E-beacons could discriminate their complementary target from nucleic acid encoding the E484Q mutation of the SARS-CoV-2 Kappa variant. Along with specificity, detection sensitivity with E-beacons is two to three orders of magnitude better than synthetic molecular beacons, rivaling the most sensitive nucleic acid detection agents reported to date.

18.
Chem Commun (Camb) ; 55(12): 1829-1832, 2019 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-30672911

RESUMO

Cholesterolysis of Hedgehog family proteins couples endoproteolysis to protein C-terminal sterylation. The transformation is self-catalyzed by HhC, a partially characterized enzymatic domain found in precursor forms of Hedgehog. Here we explore spatial ambiguity in sterol recognition by HhC, using a trio of derivatives where the sterol A-ring is contracted, fused, or distorted. Sterylation assays indicate that these geometric variants react as substrates with relative activity: cholesterol, 1.000 > A-ring contracted, 0.100 > A-ring fused, 0.020 > A-ring distorted, 0.005. Experimental results and computational sterol docking into the first HhC homology model suggest a partially unstructured binding site with substrate recognition governed in large part by hydrophobic interactions.


Assuntos
Proteínas Hedgehog/metabolismo , Esteróis/química , Sítios de Ligação , Colesterol/química , Colesterol/metabolismo , Transferência Ressonante de Energia de Fluorescência , Proteínas Hedgehog/química , Humanos , Cinética , Estrutura Terciária de Proteína , Especificidade por Substrato
20.
Chem Commun (Camb) ; 53(26): 3673-3676, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28304025
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA