Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Anal Biochem ; 693: 115585, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38851475

RESUMO

Over the past few years, the implementation of mass spectrometry (MS) in QC laboratories has become a more common occurrence. The multi-attribute method (MAM), and emerging intact multi-attribute method (iMAM), are powerful analytical tools utilising liquid chromatography-mass spectrometry (LC-MS) methods that enable the monitoring of critical quality attributes (CQAs) in biotherapeutic proteins in compliant settings. Both MAM and iMAM are intended to replace or supplement several conventional assays with a single LC-MS method utilising MS data in combination with robust, semi-automated data processing workflows. MAM and iMAM workflows can also be implemented into current Good Manufacturing Practices environments due to the availability of CFR 11 compliant chromatography data system software. In this study, MAM and iMAM are employed for the analysis of 4 batches of a glucagon-like peptide-Fc fusion protein. MAM approach involved a first the discovery phase for the identification of CQAs and second, the target monitoring phase of the selected CQAs in other samples. New peak detection was performed on the data set to determine the appearance, absence or change of any peak. For native iMAM workflow both size exclusion and strong cation exchange chromatography were optimized for the identification and monitoring of CQAs at the intact level.

2.
Anal Bioanal Chem ; 416(4): 1069-1084, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38102410

RESUMO

Adeno-associated viruses (AAVs) are viral vectors used as delivery systems for gene therapies. Intact protein characterization of AAV viral capsid proteins (VPs) and their post-translational modifications is critical to ensuring product quality. In this study, microchip-based ZipChip capillary electrophoresis-mass spectrometry (CE-MS) was applied for the rapid characterization of AAV intact VPs, specifically full and empty viral capsids of serotypes AAV6, AAV8 and AAV9, which was accomplished using 5 min of analysis time. Low levels of dimethyl sulfoxide (4%) in the background electrolyte (BGE) improved MS signal quality and component detection. A sensitivity evaluation revealed consistent detection of VP proteoforms when as little as 2.64 × 106 viral particles (≈26.4 picograms) were injected. Besides the traditional VP proteoforms used for serotype identification, multiple VP3 variants were detected, including truncated VP3 variants most likely generated by leaky scanning as well as unacetylated and un-cleaved VP3 proteoforms. Phosphorylation, known to impact AAV transduction efficiency, was also seen in all serotypes analysed. Additionally, low abundant fragments originating from either N- or C-terminus truncation were detected. As the aforementioned VP components can impact product quality and efficacy, the ZipChip's ability to rapidly characterize them illustrates its strength in monitoring product quality during AAV production.


Assuntos
Proteínas do Capsídeo , Dependovirus , Dependovirus/genética , Dependovirus/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/análise , Proteínas do Capsídeo/metabolismo , Processamento de Proteína Pós-Traducional , Espectrometria de Massas , Eletroforese Capilar , Vetores Genéticos
3.
Anal Chem ; 95(40): 15118-15124, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37772750

RESUMO

Charge-detection mass spectrometry (CDMS) enables direct measurement of the charge of an ion alongside its mass-to-charge ratio. CDMS offers unique capabilities for the analysis of samples where isotopic resolution or the separation of charge states cannot be achieved, i.e., heterogeneous macromolecules or highly complex mixtures. CDMS is usually performed using static nano-electrospray ionization-based direct infusion with acquisition times in the range of several tens of minutes to hours. Whether CDMS analysis is also attainable on shorter time scales, e.g., comparable to chromatographic peak widths, has not yet been extensively investigated. In this contribution, we probed the compatibility of CDMS with online liquid chromatography interfacing. Size exclusion chromatography was coupled to CDMS for separation and mass determination of a mixture of transferrin and ß-galactosidase. Molecular masses obtained were compared to results from mass spectrometry based on ion ensembles. A relationship between the number of CDMS spectra acquired and the achievable mass accuracy was established. Both proteins were found to be confidently identified using CDMS spectra obtained from a single chromatographic run when peak widths in the range of 1.4-2.5 min, translating to 140-180 spectra per protein were achieved. After demonstration of the proof of concept, the approach was tested for the characterization of the highly complex glycoprotein α-1-acid glycoprotein and the Fc-fusion protein etanercept. With chromatographic peak widths of approximately 3 min, translating to ∼200 spectra, both proteins were successfully identified, demonstrating applicability for samples of high inherent molecular complexity.


Assuntos
Espectrometria de Massas por Ionização por Electrospray , Transferrina , Espectrometria de Massas por Ionização por Electrospray/métodos , Cromatografia Líquida , Cromatografia em Gel , Orosomucoide
4.
Biotechnol Bioeng ; 118(5): 2016-2030, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33586781

RESUMO

A variety of mechanisms including transcriptional silencing, gene copy loss, and increased susceptibility to cellular stress have been associated with a sudden or gradual loss of monoclonal antibody (mAb) production in Chinese hamster ovary (CHO) cell lines. In this study, we utilized single-cell RNA-seq (scRNA-seq) to study a clonally derived CHO cell line that underwent production instability leading to a dramatic reduction of the levels of mAb produced. From the scRNA-seq data, we identified subclusters associated with variations in the mAb transgenes and observed that heavy chain gene expression was significantly lower than that of the light chain across the population. Using trajectory inference, the evolution of the cell line was reconstructed and was found to correlate with a reduction in heavy and light chain gene expression. Genes encoding for proteins involved in the response to oxidative stress and apoptosis were found to increase in expression as cells progressed along the trajectory. Future studies of CHO cell lines using this technology have the potential to dramatically enhance our understanding of the characteristics underpinning efficient manufacturing performance as well as product quality.


Assuntos
Perfilação da Expressão Gênica/métodos , Análise de Célula Única/métodos , Transcriptoma/genética , Animais , Anticorpos Monoclonais/análise , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo , Células CHO , Cricetinae , Cricetulus , Sequenciamento de Nucleotídeos em Larga Escala , Transgenes/genética
5.
Analyst ; 146(21): 6547-6555, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34585175

RESUMO

Disulfide bond reduction within antibody mass spectrometry workflows is typically carried out using chemical reducing agents to produce antibody subunits for middle-down and middle-up analysis. In this contribution we offer an online electrochemical reduction method for the reduction of antibodies coupled with liquid chromatography (LC) and mass spectrometry (MS), reducing the disulfide bonds present in the antibody without the need for chemical reducing agents. An electrochemical cell placed before the analytical column and mass spectrometer facilitated complete reduction of NISTmAb inter- and intrachain disulfide bonds. Reduction and analysis were carried out under optimal solvent conditions using a trapping column and switching valve to facilitate solvent exchange during analysis. The level of reduction was shown to be affected by electrochemical potential, temperature and solvent organic content, but with optimization, complete disulfide bond cleavage was achieved. The use of an inline electrochemical cell offers a simple, rapid, workflow solution for liquid chromatography mass spectrometry analysis of antibody subunits.


Assuntos
Dissulfetos , Técnicas Eletroquímicas , Cromatografia Líquida , Espectrometria de Massas , Fluxo de Trabalho
6.
Anal Chem ; 92(7): 5431-5438, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32105056

RESUMO

Charge sensitive separation methods such as ion exchange chromatography (CEX) and capillary electrophoresis (CE) have recently been coupled to mass spectrometry to facilitate high resolution profiling of proteoforms present within the charge variant profile of complex biopharmaceuticals. Here we apply pH gradient cation exchange chromatography and microfluidic capillary electrophoresis using the ZipChip platform for comparative characterization of the monoclonal antibody Cetuximab. Cetuximab harbors four glycans per molecule, two on each heavy chain, of which the Fab glycans have been reported to be complex and multiply sialylated. The presence of these extra glycosylation sites in the variable region of the molecule causes significant charge variant and glycan heterogeneity, which makes comprehensive analysis on the intact protein level challenging. Both pH gradient CEX-MS and CE-MS were found to be powerful for the separation of Cetuximab charge variants with eight major peaks being baseline resolved using both separation platforms. Informative native-like mass spectra were collected for each charge variant peak using both platforms that facilitated deconvolution and further analysis. The total proteoform coverage was exceptionally high with >100 isoforms identified and relatively quantified with CEX-MS, in case of CE-MS the proteoform coverage was >200. A deep insight into the heterogeneity of Cetuximab was unveiled, the high level of sensitivity achievable enables the implementation of the presented technologies even at early stages of the biopharmaceutical development platform, such as in developability assessment, process development and also for monitoring process consistency.


Assuntos
Cetuximab/imunologia , Cromatografia por Troca Iônica , Eletroforese Capilar , Espectrometria de Massas , Proteínas/análise , Dispositivos Lab-On-A-Chip , Proteínas/imunologia
7.
Anal Bioanal Chem ; 412(25): 6833-6848, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32710279

RESUMO

Peptide mapping analysis is a regulatory expectation to verify the primary structure of a recombinant product sequence and to monitor post-translational modifications (PTMs). Although proteolytic digestion has been used for decades, it remains a labour-intensive procedure that can be challenging to accurately reproduce. Here, we describe a fast and reproducible protocol for protease digestion that is automated using immobilised trypsin on magnetic beads, which has been incorporated into an optimised peptide mapping workflow to show method transferability across laboratories. The complete workflow has the potential for use within a multi-attribute method (MAM) approach in drug development, production and QC laboratories. The sample preparation workflow is simple, ideally suited to inexperienced operators and has been extensively studied to show global applicability and robustness for mAbs by performing sample digestion and LC-MS analysis at four independent sites in Europe. LC-MS/MS along with database searching was used to characterise the protein and determine relevant product quality attributes (PQAs) for further testing. A list of relevant critical quality attributes (CQAs) was then established by creating a peptide workbook containing the specific mass-to-charge (m/z) ratios of the modified and unmodified peptides of the selected CQAs, to be monitored in a subsequent test using LC-MS analysis. Data is provided that shows robust digestion efficiency and low levels of protocol induced PTMs. Graphical abstract.


Assuntos
Anticorpos Monoclonais/química , Mapeamento de Peptídeos/métodos , Tripsina/química , Anticorpos Monoclonais/imunologia , Automação , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos
8.
Mar Drugs ; 17(1)2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30626008

RESUMO

Shewanella sp. HM13 is a cold-adapted Gram-negative bacterium isolated from the intestine of a horse mackerel. It produces a large amount of outer membrane vesicles (OMVs), which are particles released in the medium where the bacterium is cultured. This strain biosynthesizes a single major cargo protein in the OMVs, a fact that makes Shewanella sp. HM13 a good candidate for the production of extracellular recombinant proteins. Therefore, the structural characterization of the components of the vesicles, such as lipopolysaccharides, takes on a fundamental role for understanding the mechanism of biogenesis of the OMVs and their applications. The aim of this study was to investigate the structure of the oligosaccharide (OS) isolated from Shewanella sp. HM13 cells as the first step for a comparison with that from the vesicles. The lipooligosaccharide (LOS) was isolated from dry cells, purified, and hydrolyzed by alkaline treatment. The obtained OS was analyzed completely, and the composition of fatty acids was obtained by chemical methods. In particular, the OS was investigated in detail by ¹H and 13C NMR spectroscopy and MALDI-TOF mass spectrometry. The oligosaccharide was characterized by the presence of a residue of 8-amino-3,8-dideoxy-manno-oct-2-ulosonic acid (Kdo8N) and of a d,d-heptose, with both residues being identified in other oligosaccharides from Shewanella species.


Assuntos
Membrana Celular/química , Lipopolissacarídeos/química , Shewanella , Adaptação Fisiológica , Regiões Antárticas , Configuração de Carboidratos , Temperatura Baixa , Espectroscopia de Ressonância Magnética
9.
Anal Chem ; 90(15): 9006-9015, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29943976

RESUMO

Single-use technologies (SUTs) are widely used during biopharmaceutical manufacture as disposable bioreactors or media and buffer storage bags. Despite their advantages, the risk of release of extractable and leachable (E&Ls) substances is considered an important drawback in adopting disposables in the biomanufacturing process. E&Ls may detrimentally affect cell viability or productivity or may persist during purification and present a risk to the patient if remaining in the final drug product. In this study, 34 plastic films from single-use bags (SUBs) for cell cultivation were extracted with selected solvents that represent reasonable worst-case conditions for most typical biomanufacturing applications. SUBs were incubated at small-scale under accelerated-aging conditions that represented standard operational conditions of use. Leachables analysis was performed following dispersive liquid-liquid microextraction (DLLME) for analyte preconcentration and removal of matrix interference. Resulting extracts were characterized by GC-headspace for volatiles, high resolution GC-Orbitrap-MS/MS for semivolatiles, high resolution LC-Orbitrap-MS/MS for nonvolatiles, and ICP-MS for trace elemental analysis. Multivariate statistical analysis of the analytical data revealed significant correlations between the type and concentration of compounds and bags features including brand, manufacturing date and polymer type. The analytical data demonstrates that, over recent years, the nature of E&Ls has been altered due to the implementation of manufacturing changes and new types of polymers and may change further with the future advent of regulations that will limit or ban the use of certain raw materials and additives. The broad E&L database generated herein facilitates toxicological assessments from a biomanufacturing standpoint and provides practical guidelines for confident determination of E&Ls to enable screening and elimination of nonsatisfactory films for single use bioprocessing.


Assuntos
Contaminação de Medicamentos , Embalagem de Medicamentos/métodos , Espectrometria de Massas/métodos , Plásticos/análise , Solventes/análise , Compostos Orgânicos Voláteis/análise , Produtos Biológicos/química , Cromatografia Líquida/instrumentação , Cromatografia Líquida/métodos , Contaminação de Medicamentos/prevenção & controle , Embalagem de Medicamentos/instrumentação , Desenho de Equipamento , Cromatografia Gasosa-Espectrometria de Massas/instrumentação , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Microextração em Fase Líquida/instrumentação , Microextração em Fase Líquida/métodos , Espectrometria de Massas/instrumentação , Espectrometria de Massas em Tandem/instrumentação , Espectrometria de Massas em Tandem/métodos
10.
Glycobiology ; 27(5): 425-437, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28158578

RESUMO

Chemo-enzymatic synthesis of oligosaccharides exploits the diversity of glycosidases and their ability to promote transglycosylation reactions in parallel with hydrolysis. Methods to increase the transglycosylation/hydrolysis ratio include site-directed mutagenesis and medium modification. The former approach was successful in several cases and has provided the best synthetic yields with glycosynthases-mutants at the catalytic nucleophile position that promote transglycosylation with high efficiency, but do not hydrolyze the oligosaccharide products. Several glycosidases have proven recalcitrant to this conversion, thus alternative methods to increase the transglycosylation/hydrolysis ratio by mutation would be very useful. Here we show that a mutant of a ß-galactosidase from Alicyclobacillus acidocaldarius in an invariant residue in the active site of the enzymes of this family (glutamic acid 361) carries out efficient transglycosylation reactions on different acceptors only in the presence of external ions with yields up to 177-fold higher than that of the wild type. This is the first case in which sodium azide and sodium formate in combination with site-directed mutagenesis have been used to introduce transglycosylation activity into a glycosidase. These observations will hopefully guide further efforts to generate useful synthases.


Assuntos
Alicyclobacillus/enzimologia , Glicosilação , Oligossacarídeos/química , beta-Galactosidase/química , Alicyclobacillus/genética , Substituição de Aminoácidos , Catálise , Domínio Catalítico , Hidrólise , Cinética , Mutação , Oligossacarídeos/biossíntese , Especificidade por Substrato , beta-Galactosidase/genética
11.
Extremophiles ; 20(5): 687-94, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27329160

RESUMO

Halomonas pantelleriensis DSM9661(Τ) is a Gram-negative haloalkaliphilic bacterium isolated from the sand of the volcanic Venus mirror lake, closed to seashore in the Pantelleria Island in the south of Italy. It is able to optimally grow in media containing 3-15 % (w/v) total salt and at pH between 9 and 10. To survive in these harsh conditions, the bacterium has developed several strategies that probably concern the bacteria outer membrane, a barrier regulating the exchange with the environment. In such a context, the lipopolysaccharides (LPSs), which are among the major constituent of the Gram-negative outer membrane, are thought to contribute to the restrictive membrane permeability properties. The structure of the lipid A family derived from the LPS of Halomonas pantelleriensis DSM 9661(T) is reported herein. The lipid A was obtained from the purified LPS by mild acid hydrolysis. The lipid A, which contains different numbers of fatty acids residues, and its partially deacylated derivatives were completely characterized by means of ESI FT-ICR mass spectrometry and chemical analysis. Preliminary immunological assays were performed, and a comparison with the lipid A structure of the phylogenetic proximal Halomonas magadiensis is also reported.


Assuntos
Halomonas/química , Lipídeo A/química , Linhagem Celular Tumoral , Halomonas/imunologia , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Lipídeo A/imunologia
12.
J Am Chem Soc ; 137(1): 179-89, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25525681

RESUMO

The low temperatures of polar regions and high-altitude environments, especially icy habitats, present challenges for many microorganisms. Their ability to live under subfreezing conditions implies the production of compounds conferring cryotolerance. Colwellia psychrerythraea 34H, a γ-proteobacterium isolated from subzero Arctic marine sediments, provides a model for the study of life in cold environments. We report here the identification and detailed molecular primary and secondary structures of capsular polysaccharide from C. psychrerythraea 34H cells. The polymer was isolated in the water layer when cells were extracted by phenol/water and characterized by one- and two-dimensional NMR spectroscopy together with chemical analysis. Molecular mechanics and dynamics calculations were also performed. The polysaccharide consists of a tetrasaccharidic repeating unit containing two amino sugars and two uronic acids bearing threonine as substituent. The structural features of this unique polysaccharide resemble those present in antifreeze proteins and glycoproteins. These results suggest a possible correlation between the capsule structure and the ability of C. psychrerythraea to colonize subfreezing marine environments.


Assuntos
Alteromonadaceae/química , Proteínas Anticongelantes/química , Polissacarídeos/química , Alteromonadaceae/citologia , Proteínas Anticongelantes/isolamento & purificação , Configuração de Carboidratos , Sequência de Carboidratos , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Polissacarídeos/isolamento & purificação
13.
J Pharm Biomed Anal ; 248: 116301, 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38901155

RESUMO

Early-stage cell line screening is a vital step in developing biosimilars of therapeutic monoclonal antibodies (mAbs). While the quality of the manufactured antibodies is commonly assessed by charge-based separation methods employing UV absorbance detection, these methods lack the ability to identify resolved mAb variants. We evaluated the performance of microfluidic capillary electrophoresis coupled to mass spectrometry (MCE-MS) as a rapid tool for profiling mAb biosimilar candidates from clonal cell lines. A representative originator sample was used to develop the MCE-MS method. The addition of dimethylsulfoxide (DMSO) to the background electrolyte yielded up to 60-fold enhancement of the protein MS signal. The resulting electropherograms consistently provided resolution of mAb charge variants within 10 min. Deconvoluted mass spectra facilitated the identification of basic variants such as C-terminal lysine and proline amidation, while the acidic variants could be assigned to deamidated forms. The MCE-MS method also allowed the identification of 18 different glycoforms in biosimilar samples. To mimic early-stage cell line selection, samples from five clonal cell lines that all expressed the same biosimilar candidate mAb were compared to their originator mAb. Based on the similarity observed in charge variants and glycoform profiles acquired by MCE-MS, the most promising candidate could be selected. The MCE-MS method demonstrated good overall reproducibility, as confirmed by a transferability study involving two separate laboratories. This study highlights the efficacy of the MCE-MS method for rapid proteoform screening of clonal cell line samples, underscoring its potential significance as an analytical tool in biosimilar process development.

14.
Mar Drugs ; 11(1): 184-93, 2013 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-23337252

RESUMO

Lipid A is a major constituent of the lipopolysaccharides (or endotoxins), which are complex amphiphilic macromolecules anchored in the outer membrane of Gram-negative bacteria. The glycolipid lipid A is known to possess the minimal chemical structure for LPSs endotoxic activity, able to cause septic shock. Lipid A isolated from extremophiles is interesting, since very few cases of pathogenic bacteria have been found among these microorganisms. In some cases their lipid A has shown to have an antagonist activity, i.e., it is able to interact with the immune system of the host without triggering a proinflammatory response by blocking binding of substances that could elicit such a response. However, the relationship between the structure and the activity of these molecules is far from being completely clear. A deeper knowledge of the lipid A chemical structure can help the understanding of these mechanisms. In this manuscript, we present our work on the complete structural characterization of the lipid A obtained from the lipopolysaccharides (LPS) of the haloalkaliphilic bacterium Salinivibrio sharmensis. Lipid A was obtained from the purified LPS by mild acid hydrolysis. The lipid A, which contains different number of fatty acids residues, and its partially deacylated derivatives were completely characterized by means of electrospray ionization Fourier transform ion cyclotron (ESI FT-ICR) mass spectrometry and chemical analysis.


Assuntos
Bactérias Gram-Negativas/química , Lipídeo A/química , Lipopolissacarídeos/química , Ácidos/química , Ciclotrons , Ácidos Graxos/química , Análise de Fourier , Hidrólise , Íons/química , Espectrometria de Massas por Ionização por Electrospray/métodos
15.
J Pharm Biomed Anal ; 234: 115534, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37343453

RESUMO

Biosimilarity assessment requires extensive characterization and comparability exercises to investigate product quality attributes of an originator product and its potential biosimilar(s) and to highlight any differences between them. Performing a thorough comparison allows a shortened approval path, which also eliminates lengthy and expensive clinical trials, ensuring comparable product quality and efficacy but at lower drug prices. The wide variety of analytical methods available for biosimilar assessment ranges from biological to analytical assays, each providing orthogonal information to fully characterize biosimilar candidates. Intact native mass spectrometry (MS) has been shown to be an excellent tool for detection and monitoring of important quality attributes such as N-glycosylation, deamidation, sequence truncation and higher order structures. When combined with efficient upfront separation methods, simplification of the proteoform heterogeneity and associated complexity prior to MS analysis can be achieved. Native mass spectrometry can provide robust and accurate results within short analysis times and requires minimal sample preparation. In this study we report the use of a monodisperse strong cation exchange chromatography phase hyphenated with Orbitrap mass spectrometry (SCX-MS) to compare the best-selling biopharmaceutical product Humira® with 7 commercially approved biosimilar products. SCX-MS analysis allowed for the identification of previously described as well as so far unreported proteoforms and their relative quantitation across all samples, revealing differences in N-glycosylation and lysine truncation, as well as unique features for some products such as sialylation and N-terminal clipping. SCX-MS analysis, powered by a highly efficient separation column, enabled deep and efficient analytical comparison of biosimilar products.


Assuntos
Medicamentos Biossimilares , Medicamentos Biossimilares/química , Adalimumab/química , Espectrometria de Massas/métodos , Cromatografia , Glicosilação
16.
J Pharm Biomed Anal ; 234: 115543, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37385093

RESUMO

Adalimumab drug product (Humira ®), the first fully human monoclonal antibody (mAb) approved by FDA in 2002, led the top ten list of best-selling mAbs in 2018 and has been the most profitable drug in the world. With the expiration of patent protection in Europe in 2018 and in United States by 2023, the landscape is changing as up to 10 adalimumab biosimilars are expected to enter the market in the US. Biosimilars offer the potential to lower costs on health care systems and increase patient accessibility. The analytical similarity of seven different adalimumab biosimilars was accomplished in the present study using the multi-attribute method (MAM), a LC-MS based peptide mapping technique that allows for primary sequence assessment and evaluation of multiple quality attributes including deamidation, oxidation, succinimide formation, N- and C- terminal composition and detailed N-glycosylation analysis. In the first step, characterization of the most relevant post-translational modifications of a reference product was attained during the discovery phase of MAM. During the second step, as part of the MAM targeted monitoring phase, adalimumab batch-to batch variability was evaluated to define statistical intervals for the establishment of similarity ranges. The third step describes biosimilarity evaluation of predefined quality attributes and new peak detection for the assessment of any new or modified peak compared to the reference product. This study highlights a new perspective of the MAM approach and its underlying power for biotherapeutic comparability exercises in addition to analytical characterization. MAM offers a streamlined comparability assessment workflow based on high-confidence quality attribute analysis using high-resolution accurate mass mass spectrometry (HRAM MS) and the capability to detect any new or modified peak compared to the reference product.


Assuntos
Medicamentos Biossimilares , Humanos , Adalimumab/química , Medicamentos Biossimilares/química , Anticorpos Monoclonais/química , Espectrometria de Massas , Glicosilação
17.
Curr Protoc ; 3(11): e927, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37929772

RESUMO

The multi-attribute method (MAM) has emerged significantly in recent years to support biotherapeutic protein characterization from process development to the QC environment. MAM is a liquid chromatography mass spectrometry (LC-MS) based peptide mapping approach, which combines the benefits from liquid chromatography coupled to high resolution accurate mass mass spectrometry (LC-HRAM MS), enabling direct assessment of protein sequence and product quality attributes with site specificity. These product quality attributes may impact efficacy, safety, stability, and process robustness. MAM is intended to replace conventional analytical approaches as it offers a more streamlined strategy for parallel monitoring of multiple attributes in a single analysis with high sensitivity and confidence, and ultimately supports more robust Quality by Design (QbD) approaches and faster decision cycles for biotherapeutic development. MAM consists of three main stages. The first stage is sample digestion, which typically entails proteolytic digestion of the protein. The second stage is reversed-phase chromatographic separation of the generated peptides and detection by HRAM MS in two phases. During MAM Phase I (discovery phase), data-dependent acquisition (DDA) MS/MS is performed to enable confident identification of peaks and development of a peptide workbook. During MAM Phase II (monitoring phase), full MS acquisition is only carried out for the monitoring of predefined product quality attributes (PQAs). The third stage is data processing, which entails analysis and reporting for each of the two phases including evaluation of sequence coverage, assessment of PQAs and peptide workbook creation during phase I, and targeted monitoring of predefined product attributes and new peak detection (NPD) during phase II. The latter is a comparative analysis that uses a base peak alignment algorithm to determine any non-monitored differences between the LC-MS chromatograms of a test sample and a reference standard. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: In-solution sample digestion Alternate Protocol: Automated sample digestion Basic Protocol 2: Reversed-phase chromatographic separation and detection by HRAM-MS (RPLC-HRAM MS) Basic Protocol 3: Data processing and reporting.


Assuntos
Anticorpos Monoclonais , Espectrometria de Massas em Tandem , Fluxo de Trabalho , Anticorpos Monoclonais/análise , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Cromatografia Líquida/métodos , Peptídeos
18.
Crit Rev Anal Chem ; : 1-18, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37490277

RESUMO

The rapid growth of biotherapeutic industry, with more and more complex molecules entering the market, forces the need for advanced analytical platforms that can quickly and accurately identify and quantify product quality attributes. Mass spectrometry has the potential to provide more detailed information about the quality attributes of complex products, and MS methods are more sensitive than UV methods for detection of impurities. The multi-attribute method (MAM), a liquid chromatography-mass spectrometry based analytical approach is an emerging platform which supports biotherapeutic characterization and cGMP testing. The main advantage lies in the ability to monitor multiple quality attributes in a single assay, both at the peptide and the intact level, facilitating streamlined biopharmaceutical production, from research and development to the QC environment. This review highlights the current landscape of the MAM approach with special attention given to increased analytical throughput, general requirements for QC in terms of instrumentation and software, regulatory requirements, and industry acceptance of the MAM platform.

19.
Nat Protoc ; 18(4): 1056-1089, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36526726

RESUMO

The multi-attribute method (MAM) is a liquid chromatography-mass spectrometry (LC-MS)-based method that is used to directly characterize and monitor numerous product quality attributes (PQAs) at the amino acid level of a biopharmaceutical product. MAM enables identity testing based on primary sequence verification, detection and quantitation of post-translational modifications and impurities. This ability to simultaneously and directly determine PQAs of therapeutic proteins makes MAM a more informative, streamlined and productive workflow than conventional chromatographic and electrophoretic assays. MAM relies on proteolytic digestion of the sample followed by reversed-phase chromatographic separation and high-resolution LC-MS analysis in two phases. First, a discovery study to determine quality attributes for monitoring is followed by the creation of a targeted library based on high-resolution retention time plus accurate mass analysis. The second aspect of MAM is the monitoring phase based on the target peptide library and new peak detection using differential analysis of the data to determine the presence, absence or change of any species that might affect the activity or stability of the biotherapeutic. The sample preparation process takes between 90 and 120 min, whereas the time spent on instrumental and data analyses might vary from one to several days for different sample sizes, depending on the complexity of the molecule, the number of attributes to be monitored and the information to be detailed in the final report. MAM is developed to be used throughout the product life cycle, from process development through upstream and downstream processes to quality control release or under current good manufacturing practices regulations enforced by regulatory agencies.


Assuntos
Anticorpos Monoclonais , Processamento de Proteína Pós-Traducional , Fluxo de Trabalho , Anticorpos Monoclonais/química , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos
20.
J Pharm Biomed Anal ; 234: 115494, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37300951

RESUMO

The IgG2 type monoclonal antibody panitumumab is an anti-epidermal growth factor receptor (EGFR) drug used for the treatment of EGFR-expressing, chemotherapy resistant, metastatic colorectal carcinoma. In this study, panitumumab drug product was first analysed using size exclusion chromatography coupled to mass spectrometry for rapid identity testing. The experimental data led to the identification of two panitumumab isoforms with several prominent forms remaining unidentified, despite apparently low sample complexity. Microchip capillary electrophoresis-mass spectrometry (CE-MS) was subsequently utilised for a more detailed characterization. It was observed that panitumumab is subject to partial N-terminal pyroglutamate formation. Incomplete conversion is uncharacteristic for N-terminally exposed glutamines and in case of panitumumab gives rise to forms which show successive mass offsets of 17 Da, respectively. If not separated before mass spectrometric analysis, e.g. by capillary electrophoresis, such near isobaric species coalesce into single MS peaks, which subsequently hampers or prevents their assignment. With a total of 42 panitumumab isoforms assigned by CE-MS, these observations highlight a potential pitfall of commonly applied rapid identity testing workflows and demonstrate that even low complexity biopharmaceuticals can require separation strategies which offer high separation selectivity for species close in mass.


Assuntos
Anticorpos Monoclonais , Imunoglobulina G , Anticorpos Monoclonais/química , Panitumumabe , Espectrometria de Massas/métodos , Eletroforese Capilar/métodos , Receptores ErbB
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA