Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 626(7999): 574-582, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086421

RESUMO

The intrinsic mechanisms that regulate neurotoxic versus neuroprotective astrocyte phenotypes and their effects on central nervous system degeneration and repair remain poorly understood. Here we show that injured white matter astrocytes differentiate into two distinct C3-positive and C3-negative reactive populations, previously simplified as neurotoxic (A1) and neuroprotective (A2)1,2, which can be further subdivided into unique subpopulations defined by proliferation and differential gene expression signatures. We find the balance of neurotoxic versus neuroprotective astrocytes is regulated by discrete pools of compartmented cyclic adenosine monophosphate derived from soluble adenylyl cyclase and show that proliferating neuroprotective astrocytes inhibit microglial activation and downstream neurotoxic astrocyte differentiation to promote retinal ganglion cell survival. Finally, we report a new, therapeutically tractable viral vector to specifically target optic nerve head astrocytes and show that raising nuclear or depleting cytoplasmic cyclic AMP in reactive astrocytes inhibits deleterious microglial or macrophage cell activation and promotes retinal ganglion cell survival after optic nerve injury. Thus, soluble adenylyl cyclase and compartmented, nuclear- and cytoplasmic-localized cyclic adenosine monophosphate in reactive astrocytes act as a molecular switch for neuroprotective astrocyte reactivity that can be targeted to inhibit microglial activation and neurotoxic astrocyte differentiation to therapeutic effect. These data expand on and define new reactive astrocyte subtypes and represent a step towards the development of gliotherapeutics for the treatment of glaucoma and other optic neuropathies.


Assuntos
Astrócitos , Neuroproteção , Adenilil Ciclases/metabolismo , Astrócitos/citologia , Astrócitos/enzimologia , Astrócitos/metabolismo , Diferenciação Celular , Núcleo Celular/metabolismo , Sobrevivência Celular , AMP Cíclico/metabolismo , Citoplasma/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Microglia/metabolismo , Microglia/patologia , Traumatismos do Nervo Óptico/metabolismo , Traumatismos do Nervo Óptico/patologia , Traumatismos do Nervo Óptico/terapia , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Substância Branca/metabolismo , Substância Branca/patologia , Glaucoma/patologia , Glaucoma/terapia
2.
Nature ; 594(7862): 277-282, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34040258

RESUMO

Neurons have recently emerged as essential cellular constituents of the tumour microenvironment, and their activity has been shown to increase the growth of a diverse number of solid tumours1. Although the role of neurons in tumour progression has previously been demonstrated2, the importance of neuronal activity to tumour initiation is less clear-particularly in the setting of cancer predisposition syndromes. Fifteen per cent of individuals with the neurofibromatosis 1 (NF1) cancer predisposition syndrome (in which tumours arise in close association with nerves) develop low-grade neoplasms of the optic pathway (known as optic pathway gliomas (OPGs)) during early childhood3,4, raising  the possibility that postnatal light-induced activity of the optic nerve drives tumour initiation. Here we use an authenticated mouse model of OPG driven by mutations in the neurofibromatosis 1 tumour suppressor gene (Nf1)5 to demonstrate that stimulation of optic nerve activity increases optic glioma growth, and that decreasing visual experience via light deprivation prevents tumour formation and maintenance. We show that the initiation of Nf1-driven OPGs (Nf1-OPGs) depends on visual experience during a developmental period in which Nf1-mutant mice are susceptible to tumorigenesis. Germline Nf1 mutation in retinal neurons results in aberrantly increased shedding of neuroligin 3 (NLGN3) within the optic nerve in response to retinal neuronal activity. Moreover, genetic Nlgn3 loss or pharmacological inhibition of NLGN3 shedding blocks the formation and progression of Nf1-OPGs. Collectively, our studies establish an obligate role for neuronal activity in the development of some types of brain tumours, elucidate a therapeutic strategy to reduce OPG incidence or mitigate tumour progression, and underscore the role of Nf1mutation-mediated dysregulation of neuronal signalling pathways in mouse models of the NF1 cancer predisposition syndrome.


Assuntos
Transformação Celular Neoplásica/genética , Genes da Neurofibromatose 1 , Mutação , Neurofibromina 1/genética , Neurônios/metabolismo , Glioma do Nervo Óptico/genética , Glioma do Nervo Óptico/patologia , Animais , Astrocitoma/genética , Astrocitoma/patologia , Moléculas de Adesão Celular Neuronais/deficiência , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Transformação Celular Neoplásica/efeitos da radiação , Feminino , Mutação em Linhagem Germinativa , Humanos , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos da radiação , Nervo Óptico/citologia , Nervo Óptico/efeitos da radiação , Estimulação Luminosa , Retina/citologia , Retina/efeitos da radiação
3.
Mol Biol Rep ; 51(1): 637, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727927

RESUMO

BACKGROUND: Retinal pigment epithelial cells (RPECs) are a type of retinal cells that structurally and physiologically support photoreceptors. However, hyperglycemia has been shown to play a critical role in the progression of diabetic retinopathy (DR), which is one of the leading causes of vision impairment. In the diabetic eye, the high glucose environment damages RPECs via the induction of oxidative stress, leading to the release of excess reactive oxygen species (ROS) and triggering apoptosis. In this study, we aim to investigate the antioxidant mechanism of Vitamin C in reducing hyperglycemia-induced stress and whether this mechanism can preserve the function of RPECs. METHODS AND RESULTS: ARPE-19 cells were treated with high glucose in the presence or absence of Vitamin C. Cell viability was measured by MTT assay. Cleaved poly ADP-ribose polymerase (PARP) was used to identify apoptosis in the cells. ROS were detected by the DCFH-DA reaction. The accumulation of sorbitol in the aldose reductase (AR) polyol pathway was determined using the sorbitol detection assay. Primary mouse RPECs were isolated from adult mice and identified by Rpe65 expression. The mitochondrial damage was measured by mitochondrial membrane depolarization. Our results showed that high glucose conditions reduce cell viability in RPECs while Vitamin C can restore cell viability, compared to the vehicle treatment. We also demonstrated that Vitamin C reduces hyperglycemia-induced ROS production and prevents cell apoptosis in RPECs in an AR-independent pathway. CONCLUSIONS: These results suggest that Vitamin C is not only a nutritional necessity but also an adjuvant that can be combined with AR inhibitors for alleviating hyperglycemic stress in RPECs.


Assuntos
Apoptose , Ácido Ascórbico , Sobrevivência Celular , Glucose , Hiperglicemia , Estresse Oxidativo , Espécies Reativas de Oxigênio , Epitélio Pigmentado da Retina , Ácido Ascórbico/farmacologia , Ácido Ascórbico/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Hiperglicemia/metabolismo , Hiperglicemia/tratamento farmacológico , Hiperglicemia/complicações , Animais , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Glucose/metabolismo , Humanos , Linhagem Celular , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Retinopatia Diabética/metabolismo , Retinopatia Diabética/tratamento farmacológico , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos
4.
Curr Issues Mol Biol ; 45(4): 3391-3405, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37185746

RESUMO

This study aimed to investigate the regulatory role of Aldo-keto reductase family 1 member B1 (AKR1B1) in glioma cell proliferation through p38 MAPK activation to control Bcl-2/BAX/caspase-3 apoptosis signaling. AKR1B1 expression was quantified in normal human astrocytes, glioblastoma multiforme (GBM) cell lines, and normal tissues by using quantitative real-time polymerase chain reaction. The effects of AKR1B1 overexpression or knockdown and those of AKR1B1-induced p38 MAPK phosphorylation and a p38 MAPK inhibitor (SB203580) on glioma cell proliferation were determined using an MTT assay and Western blot, respectively. Furthermore, the AKR1B1 effect on BAX and Bcl-2 expression was examined in real-time by Western blot. A luminescence detection reagent was also utilized to identify the effect of AKR1B1 on caspase-3/7 activity. The early and late stages of AKR1B1-induced apoptosis were assessed by performing Annexin V-FITC/PI double-staining assays. AKR1B1 expression was significantly downregulated in glioma tissues and GBM cell lines (T98G and 8401). Glioma cell proliferation was inhibited by AKR1B1 overexpression but was slightly increased by AKR1B1 knockdown. Additionally, AKR1B1-induced p38 MAPK phosphorylation and SB203580 reversed AKR1B1's inhibitory effect on glioma cell proliferation. AKR1B1 overexpression also inhibited Bcl-2 expression but increased BAX expression, whereas treatment with SB203580 reversed this phenomenon. Furthermore, AKR1B1 induced caspase-3/7 activity. The induction of early and late apoptosis by AKR1B1 was confirmed using an Annexin V-FITC/PI double-staining assay. In conclusion, AKR1B1 regulated glioma cell proliferation through the involvement of p38 MAPK-induced BAX/Bcl-2/caspase-3 apoptosis signaling. Therefore, AKR1B1 may serve as a new therapeutic target for glioma therapy development.

5.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37108458

RESUMO

Microglia-associated neuroinflammation is recognized as a critical factor in the pathogenesis of neurodegenerative diseases; however, there is no effective treatment for the blockage of neurodegenerative disease progression. In this study, the effect of nordalbergin, a coumarin isolated from the wood bark of Dalbergia sissoo, on lipopolysaccharide (LPS)-induced inflammatory responses was investigated using murine microglial BV2 cells. Cell viability was assessed using the MTT assay, whereas nitric oxide (NO) production was analyzed using the Griess reagent. Secretion of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) was detected by the ELISA. The expression of inducible NO synthase (iNOS), cyclooxygenase (COX)-2, mitogen-activated protein kinases (MAPKs) and NLRP3 inflammasome-related proteins was assessed by Western blot. The production of mitochondrial reactive oxygen species (ROS) and intracellular ROS was detected using flow cytometry. Our experimental results indicated that nordalbergin ≤20 µM suppressed NO, IL-6, TNF-α and IL-1ß production; decreased iNOS and COX-2 expression; inhibited MAPKs activation; attenuated NLRP3 inflammasome activation; and reduced both intracellular and mitochondrial ROS production by LPS-stimulated BV2 cells in a dose-dependent manner. These results demonstrate that nordalbergin exhibits anti-inflammatory and anti-oxidative activities through inhibiting MAPK signaling pathway, NLRP3 inflammasome activation and ROS production, suggesting that nordalbergin might have the potential to inhibit neurodegenerative disease progression.


Assuntos
Lipopolissacarídeos , Doenças Neurodegenerativas , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Microglia/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Doenças Neuroinflamatórias , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Doenças Neurodegenerativas/metabolismo , Transdução de Sinais , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo
6.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36499422

RESUMO

The occurrence of Alzheimer's disease has been associated with the accumulation of beta-amyloid (ß-amyloid) plaques. These plaques activate microglia to secrete inflammatory molecules, which damage neurons in the brain. Thus, understanding the underlying mechanism of microglia activation can provide a therapeutic strategy for alleviating microglia-induced neuroinflammation. The aldose reductase (AR) enzyme catalyzes the reduction of glucose to sorbitol in the polyol pathway. In addition to mediating diabetic complications in hyperglycemic environments, AR also helps regulate inflammation in microglia. However, little is known about the role of AR in ß-amyloid-induced inflammation in microglia and subsequent neuronal death. In this study, we confirmed that AR inhibition attenuates increased ß-amyloid-induced reactive oxygen species and tumor necrosis factor α secretion by suppressing ERK signaling in BV2 cells. In addition, we are the first to report that AR inhibition reduced the phagocytotic capability and cell migration of BV2 cells in response to ß-amyloid. To further investigate the protective role of the AR inhibitor sorbinil in neurons, we co-cultured ß-amyloid-induced microglia with stem cell-induced neurons. sorbinil ameliorated neuronal damage in both cells in the co-culture system. In summary, our findings reveal AR regulation of microglia activation as a novel therapeutic target for Alzheimer's disease.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Peptídeos beta-Amiloides/metabolismo , Aldeído Redutase/metabolismo , Doença de Alzheimer/metabolismo , Células Cultivadas , Microglia/metabolismo , Placa Amiloide/metabolismo , Inflamação/patologia
7.
J Neurosci ; 40(20): 3896-3914, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32300046

RESUMO

Optic neuropathies are a group of optic nerve (ON) diseases caused by various insults including glaucoma, inflammation, ischemia, trauma, and genetic deficits, which are characterized by retinal ganglion cell (RGC) death and ON degeneration. An increasing number of genes involved in RGC intrinsic signaling have been found to be promising neural repair targets that can potentially be modulated directly by gene therapy, if we can achieve RGC specific gene targeting. To address this challenge, we first used adeno-associated virus (AAV)-mediated gene transfer to perform a low-throughput in vivo screening in both male and female mouse eyes and identified the mouse γ-synuclein (mSncg) promoter, which specifically and potently sustained transgene expression in mouse RGCs and also works in human RGCs. We further demonstrated that gene therapy that combines AAV-mSncg promoter with clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing can knock down pro-degenerative genes in RGCs and provide effective neuroprotection in optic neuropathies.SIGNIFICANCE STATEMENT Here, we present an RGC-specific promoter, mouse γ-synuclein (mSncg) promoter, and perform extensive characterization and proof-of-concept studies of mSncg promoter-mediated gene expression and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing in RGCs in vivo To our knowledge, this is the first report demonstrating in vivo neuroprotection of injured RGCs and optic nerve (ON) by AAV-mediated CRISPR/Cas9 inhibition of genes that are critical for neurodegeneration. It represents a powerful tool to achieve RGC-specific gene modulation, and also opens up a promising gene therapy strategy for optic neuropathies, the most common form of eye diseases that cause irreversible blindness.


Assuntos
Regulação da Expressão Gênica/genética , Edição de RNA/genética , Células Ganglionares da Retina/metabolismo , gama-Sinucleína/genética , Animais , Sistemas CRISPR-Cas , Dependovirus/genética , Feminino , Deleção de Genes , Terapia Genética , Humanos , Células-Tronco Pluripotentes Induzidas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nervo Óptico/patologia , Doenças do Nervo Óptico/genética , Doenças do Nervo Óptico/terapia , Células Ganglionares da Retina/patologia , Transgenes/genética
8.
Cell Mol Life Sci ; 77(14): 2701-2722, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32008085

RESUMO

Epithelial to mesenchymal transition (EMT) is a complex plastic and reversible cellular process that has critical roles in diverse physiological and pathological phenomena. EMT is involved in embryonic development, organogenesis and tissue repair, as well as in fibrosis, cancer metastasis and drug resistance. In recent years, the ability to edit the genome using the clustered regularly interspaced palindromic repeats (CRISPR) and associated protein (Cas) system has greatly contributed to identify or validate critical genes in pathway signaling. This review delineates the complex EMT networks and discusses recent studies that have used CRISPR/Cas technology to further advance our understanding of the EMT process.


Assuntos
Sistemas CRISPR-Cas/genética , Transição Epitelial-Mesenquimal/genética , Edição de Genes/métodos , Desenvolvimento Embrionário/genética , Humanos , Organogênese/genética , Transdução de Sinais/genética
9.
J Neurosci ; 37(19): 4967-4981, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28411269

RESUMO

What pathways specify retinal ganglion cell (RGC) fate in the developing retina? Here we report on mechanisms by which a molecular pathway involving Sox4/Sox11 is required for RGC differentiation and for optic nerve formation in mice in vivo, and is sufficient to differentiate human induced pluripotent stem cells into electrophysiologically active RGCs. These data place Sox4 downstream of RE1 silencing transcription factor in regulating RGC fate, and further describe a newly identified, Sox4-regulated site for post-translational modification with small ubiquitin-related modifier (SUMOylation) in Sox11, which suppresses Sox11's nuclear localization and its ability to promote RGC differentiation, providing a mechanism for the SoxC familial compensation observed here and elsewhere in the nervous system. These data define novel regulatory mechanisms for this SoxC molecular network, and suggest pro-RGC molecular approaches for cell replacement-based therapies for glaucoma and other optic neuropathies.SIGNIFICANCE STATEMENT Glaucoma is the most common cause of blindness worldwide and, along with other optic neuropathies, is characterized by loss of retinal ganglion cells (RGCs). Unfortunately, vision and RGC loss are irreversible, and lead to bilateral blindness in ∼14% of all diagnosed patients. Differentiated and transplanted RGC-like cells derived from stem cells have the potential to replace neurons that have already been lost and thereby to restore visual function. These data uncover new mechanisms of retinal progenitor cell (RPC)-to-RGC and human stem cell-to-RGC fate specification, and take a significant step toward understanding neuronal and retinal development and ultimately cell-transplant therapy.


Assuntos
Envelhecimento/fisiologia , Redes Reguladoras de Genes/fisiologia , Células Ganglionares da Retina/fisiologia , Fatores de Transcrição SOXC/metabolismo , Ativação Transcricional/fisiologia , Vias Visuais/fisiologia , Animais , Células Cultivadas , Retroalimentação Fisiológica/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Masculino , Camundongos , Ratos Sprague-Dawley
10.
Adv Exp Med Biol ; 1032: 173-202, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30362099

RESUMO

Aldose reductase (AR) is an NADPH-dependent aldo-keto reductase that has been shown to be involved in the pathogenesis of several blinding diseases such as uveitis, diabetic retinopathy (DR) and cataract. However, possible mechanisms linking the action of AR to these diseases are not well understood. As DR and cataract are among the leading causes of blindness in the world, there is an urgent need to explore therapeutic strategies to prevent or delay their onset. Studies with AR inhibitors and gene-targeted mice have demonstrated that the action of AR is also linked to cancer onset and progression. In this review we examine possible mechanisms that relate AR to molecular signaling cascades and thus explain why AR inhibition is an effective strategy against colon cancer as well as diseases of the eye such as uveitis, cataract, and retinopathy.


Assuntos
Aldeído Redutase/metabolismo , Catarata/enzimologia , Retinopatia Diabética/enzimologia , Inflamação/enzimologia , Uveíte/enzimologia , Aldeído Redutase/antagonistas & inibidores , Animais , Inibidores Enzimáticos/uso terapêutico , Camundongos , Transdução de Sinais
11.
Biochem Biophys Res Commun ; 473(2): 565-71, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-27033597

RESUMO

Retinal microglia (RMG) are one of the major immune cells in charge of surveillance of inflammatory responses in the eye. In the absence of an inflammatory stimulus, RMG reside predominately in the ganglion layer and inner or outer plexiform layers. However, under stress RMG become activated and migrate into the inner nuclear layer (INL) or outer nuclear layer (ONL). Activated RMG in cell culture secrete pro-inflammatory cytokines in a manner sensitive to downregulation by aldose reductase inhibitors. In this study, we utilized CX3CR1(GFP) mice carrying AR mutant alleles to evaluate the role of AR on RMG activation and migration in vivo. When tested on an AR(WT) background, IP injection of LPS induced RMG activation and migration into the INL and ONL. However, this phenomenon was largely prevented by AR inhibitors or in AR null mice, or was exacerbated in transgenic mice that over-express AR. LPS-induced increases in ocular levels of TNF-α and CX3CL-1 in WT mice were substantially lower in AR null mice or were reduced by AR inhibitor treatment. These studies demonstrate that AR expression in RMG may contribute to the proinflammatory phenotypes common to various eye diseases such as uveitis and diabetic retinopathy.


Assuntos
Aldeído Redutase/imunologia , Inflamação/imunologia , Microglia/imunologia , Retina/imunologia , Aldeído Redutase/genética , Animais , Células Cultivadas , Citocinas/imunologia , Deleção de Genes , Inflamação/genética , Lipopolissacarídeos/imunologia , Camundongos Endogâmicos C57BL , Microglia/citologia , Microglia/metabolismo , Retina/citologia , Retina/metabolismo , Salmonella typhimurium/imunologia , Regulação para Cima
12.
J Nat Prod ; 79(5): 1439-44, 2016 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-27140653

RESUMO

Aldose reductase (AR) in the lens plays an important role in the pathogenesis of diabetic cataract (DC) by contributing to osmotic and oxidative stress associated with accelerated glucose metabolism through the polyol pathway. Therefore, inhibition of AR in the lens may hold the key to prevent DC formation. Emodin, a bioactive compound isolated from plants, has been implicated as a therapy for diabetes. However, its inhibitory activity against AR remains unclear. Our results showed that emodin has good selectively inhibitory activity against AR (IC50 = 2.69 ± 0.90 µM) but not other aldo-keto reductases and is stable at 37 °C for at least 7 days. Enzyme kinetic studies demonstrated an uncompetitive inhibition against AR with a corresponding inhibition constant of 2.113 ± 0.095 µM. In in vivo studies, oral administration of emodin reduced the incidence and severity of morphological markers of cataract in lenses of AR transgenic mice. Computational modeling of the AR-NADP(+)-emodin ternary complex indicated that the 3-hydroxy group of emodin plays an essential role by interacting with Ser302 through hydrogen bonding in the specificity pocket of AR. All the findings above provide encouraging evidence for emodin as a potential therapeutic agent to prevent cataract in diabetic patients.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Catarata/tratamento farmacológico , Complicações do Diabetes/tratamento farmacológico , Diabetes Mellitus Experimental/tratamento farmacológico , Emodina/farmacologia , Aldeído Redutase/metabolismo , Aldo-Ceto Redutases , Animais , Catarata/prevenção & controle , Humanos , Cristalino/enzimologia , Camundongos Transgênicos , Estrutura Molecular , Estresse Oxidativo , Relação Estrutura-Atividade
13.
Chem Biol Interact ; 389: 110856, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38185272

RESUMO

Neurodegeneration is a complex process involving various inflammatory mediators and cellular responses. Aldose reductase (AR) is a key enzyme in the polyol pathway, which converts glucose to sorbitol. Beyond its metabolic role, AR has also been found to play a significant role in modulating neuroinflammation. This review aims to provide an overview of the current knowledge regarding the involvement of AR inhibition in attenuating neuroinflammation and complications from diabetic neuropathies. Here, we review the literature regarding AR and neuropathy/neurodegeneration. We discuss the mechanisms underlying the influence of AR inhibitors on ocular inflammation, beta-amyloid-induced neurodegeneration, and optic nerve degeneration. Furthermore, potential therapeutic strategies targeting AR in neurodegeneration are explored. The understanding of AR's role in neurodegeneration may lead to the development of novel therapeutic interventions for other neuroinflammatory disorders.


Assuntos
Aldeído Redutase , Neuropatias Diabéticas , Humanos , Aldeído Redutase/metabolismo , Doenças Neuroinflamatórias , Neuropatias Diabéticas/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Inflamação/tratamento farmacológico
14.
iScience ; 27(6): 110100, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38947520

RESUMO

Retinal ganglion cell (RGC) differentiation is tightly controlled by extrinsic and intrinsic factors. Growth and differentiation factor 15 (GDF-15) promotes RGC differentiation, opposite to GDF-11 which inhibits RGC differentiation, both in the mouse retina and in human stem cells. To deepen our understanding of how these two closely related molecules confer opposing effects on retinal development, here we assess the transcriptional profiles of mouse retinal progenitors exposed to exogenous GDF-11 or -15. We find a dichotomous effect of GDF-15 on RGC differentiation, decreasing RGCs expressing residual pro-proliferative genes and increasing RGCs expressing non-proliferative genes, suggestive of greater RGC maturation. Furthermore, GDF-11 promoted the differentiation of photoreceptors and amacrine cells. These data enhance our understanding of the mechanisms underlying the differentiation of RGCs and photoreceptors from retinal progenitors and suggest new approaches to the optimization of protocols for the differentiation of these cell types.

15.
Transl Vis Sci Technol ; 13(7): 2, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949633

RESUMO

Purpose: We sought to evaluate the efficacy of growth differentiation factor (GDF)-15 treatment for suppressing epithelial-mesenchymal transition (EMT) and alleviating transforming growth factor ß2 (TGFß2)-induced lens opacity. Methods: To test whether GDF-15 is a molecule that prevents EMT, we pretreated the culture with GDF-15 in neural progenitor cells, retinal pigment epithelial cells, and lens epithelial cells and then treated with factors that promote EMT, GDF-11, and TGFß2, respectively. To further investigate the efficacy of GDF-15 on alleviating lens opacity, we used mouse lens explant culture to mimic secondary cataracts. We pretreated the lens culture with GDF-15 and then added TGFß2 to develop lens opacity (n = 3 for each group). Western blot and quantitative reverse transcription polymerase chain reaction (qRT-PCR) were used to measure EMT protein and gene expression, respectively. Results: In cell culture, GDF-15 pretreatment significantly attenuated EMT marker expression in cultured cells induced by treatment with GDF-11 or TGFß2. In the lens explant culture, GDF-15 pretreatment also reduced mouse lens opacity induced by exposure to TGFß2. Conclusions: Our results indicate that GDF-15 could alleviate TGFß2-induced EMT and is a potential therapeutic agent to slow or prevent posterior capsular opacification (PCO) progression after cataract surgery. Translational Relevance: Cataracts are the leading cause of blindness worldwide, with the only current treatment involving surgical removal of the lens and replacement with an artificial lens. However, PCO, also known as secondary cataract, is a common complication after cataract surgery. The development of an adjuvant that slows the progression of PCO will be beneficial to the field of anterior complications.


Assuntos
Catarata , Transição Epitelial-Mesenquimal , Fator 15 de Diferenciação de Crescimento , Cristalino , Fator de Crescimento Transformador beta2 , Animais , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Fator de Crescimento Transformador beta2/metabolismo , Fator de Crescimento Transformador beta2/farmacologia , Fator 15 de Diferenciação de Crescimento/metabolismo , Fator 15 de Diferenciação de Crescimento/genética , Catarata/patologia , Catarata/metabolismo , Catarata/prevenção & controle , Camundongos , Cristalino/metabolismo , Cristalino/patologia , Cristalino/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Células Cultivadas , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Western Blotting , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/patologia , Epitélio Pigmentado da Retina/metabolismo
16.
Brain Sci ; 13(10)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37891793

RESUMO

Optic pathway glioma (OPG) is one of the causes of pediatric visual impairment. Unfortunately, there is as yet no cure for such a disease. Understanding the underlying mechanisms and the potential therapeutic strategies may help to delay the progression of OPG and rescue the visual morbidities. Here, we provide an overview of preclinical OPG studies and the regulatory pathways controlling OPG pathophysiology. We next discuss the role of microenvironmental cells (neurons, T cells, and tumor-associated microglia and macrophages) in OPG development. Last, we provide insight into potential therapeutic strategies for treating OPG and promoting axon regeneration.

17.
Mol Aspects Med ; 94: 101219, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37839232

RESUMO

Glaucoma is a neurodegenerative eye disease that causes permanent vision impairment. The main pathological characteristics of glaucoma are retinal ganglion cell (RGC) loss and optic nerve degeneration. Glaucoma can be caused by elevated intraocular pressure (IOP), although some cases are congenital or occur in patients with normal IOP. Current glaucoma treatments rely on medicine and surgery to lower IOP, which only delays disease progression. First-line glaucoma medicines are supported by pharmacotherapy advancements such as Rho kinase inhibitors and innovative drug delivery systems. Glaucoma surgery has shifted to safer minimally invasive (or microinvasive) glaucoma surgery, but further trials are needed to validate long-term efficacy. Further, growing evidence shows that adeno-associated virus gene transduction and stem cell-based RGC replacement therapy hold potential to treat optic nerve fiber degeneration and glaucoma. However, better understanding of the regulatory mechanisms of RGC development is needed to provide insight into RGC differentiation from stem cells and help choose target genes for viral therapy. In this review, we overview current progress in RGC development research, optic nerve fiber regeneration, and human stem cell-derived RGC differentiation and transplantation. We also provide an outlook on perspectives and challenges in the field.


Assuntos
Glaucoma , Doenças Neurodegenerativas , Doenças do Nervo Óptico , Humanos , Animais , Glaucoma/tratamento farmacológico , Glaucoma/patologia , Células Ganglionares da Retina/patologia , Doenças do Nervo Óptico/terapia , Doenças do Nervo Óptico/patologia , Progressão da Doença , Doenças Neurodegenerativas/patologia , Modelos Animais de Doenças
18.
Life Sci ; 330: 121855, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37419413

RESUMO

Brain cancer is a deadly disease with low survival rates for over 70 % of patients. Therefore, there is a critical need to develop better treatment methods and strategies to improve patient outcomes. In this study, we explored the tumor microenvironment and discovered unique characteristics of microglia to interact with astrocytoma cells and promote proliferation and migration of collisions. The conditioned medium from the collisions expressed cell chemoattraction and anti-inflammatory responses. To further understand the interactions between microglia and astrocytoma cells, we used flow sorting and protein analysis found that the protein alterations were related to biogenesis in the astrocytoma cells and metabolic processes in the microglia. Both types of cells were involved in binding and activity in cell-cell interactions. Using STRING to demonstrate the protein cross-interaction between the cells. Furthermore, PHB and RDX interact with oncogenic proteins, which were significantly expressed in patients with Glioblastoma Multiforme (GBM) and low-grade glioma (LGG) according to GEPIA. To study the role of RDX in chemoattraction, the inhibitor-NSC668394 suppressed collision formation and migration in BV2 cells in vitro by down-regulating F-actin. Additionally, it suppressed macrophage infiltration in infiltrating islands in vivo of intracranial tumor-bearing mice. These findings provide evidence for the role of resident cells in mediating tumor development and invasiveness and suggest that potential interacting molecules may be a strategy for controlling tumor growth by regulating the infiltration of tumor-associated microglia in the brain tumor microenvironment.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Glioma , Camundongos , Animais , Microglia/metabolismo , Multiômica , Astrocitoma/metabolismo , Astrocitoma/patologia , Glioma/patologia , Glioblastoma/patologia , Encéfalo/metabolismo , Neoplasias Encefálicas/patologia , Microambiente Tumoral , Linhagem Celular Tumoral
19.
Sci Rep ; 13(1): 8205, 2023 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-37211572

RESUMO

Primary cilia are conserved organelles that integrate extracellular cues into intracellular signals and are critical for diverse processes, including cellular development and repair responses. Deficits in ciliary function cause multisystemic human diseases known as ciliopathies. In the eye, atrophy of the retinal pigment epithelium (RPE) is a common feature of many ciliopathies. However, the roles of RPE cilia in vivo remain poorly understood. In this study, we first found that mouse RPE cells only transiently form primary cilia. We then examined the RPE in the mouse model of Bardet-Biedl Syndrome 4 (BBS4), a ciliopathy associated with retinal degeneration in humans, and found that ciliation in BBS4 mutant RPE cells is disrupted early during development. Next, using a laser-induced injury model in vivo, we found that primary cilia in RPE reassemble in response to laser injury during RPE wound healing and then rapidly disassemble after the repair is completed. Finally, we demonstrated that RPE-specific depletion of primary cilia in a conditional mouse model of cilia loss promoted wound healing and enhanced cell proliferation. In summary, our data suggest that RPE cilia contribute to both retinal development and repair and provide insights into potential therapeutic targets for more common RPE degenerative diseases.


Assuntos
Ciliopatias , Degeneração Retiniana , Camundongos , Humanos , Animais , Epitélio Pigmentado da Retina , Cílios/fisiologia , Modelos Animais de Doenças , Proteínas Supressoras de Tumor , Proteínas Associadas aos Microtúbulos
20.
Sci Rep ; 13(1): 5592, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37019993

RESUMO

As part of the central nervous system (CNS), retinal ganglion cells (RGCs) and their axons are the only neurons in the retina that transmit visual signals from the eye to the brain via the optic nerve (ON). Unfortunately, they do not regenerate upon injury in mammals. In ON trauma, retinal microglia (RMG) become activated, inducing inflammatory responses and resulting in axon degeneration and RGC loss. Since aldose reductase (AR) is an inflammatory response mediator highly expressed in RMG, we investigated if pharmacological inhibition of AR can attenuate ocular inflammation and thereby promote RGC survival and axon regeneration after ON crush (ONC). In vitro, we discovered that Sorbinil, an AR inhibitor, attenuates BV2 microglia activation and migration in the lipopolysaccharide (LPS) and monocyte chemoattractant protein-1 (MCP-1) treatments. In vivo, Sorbinil suppressed ONC-induced Iba1 + microglia/macrophage infiltration in the retina and ON and promoted RGC survival. Moreover, Sorbinil restored RGC function and delayed axon degeneration one week after ONC. RNA sequencing data revealed that Sorbinil protects the retina from ONC-induced degeneration by suppressing inflammatory signaling. In summary, we report the first study demonstrating that AR inhibition transiently protects RGC and axon from degeneration, providing a potential therapeutic strategy for optic neuropathies.


Assuntos
Atrofia Óptica , Traumatismos do Nervo Óptico , Animais , Microglia , Axônios/fisiologia , Aldeído Redutase , Regeneração Nervosa , Retina , Traumatismos do Nervo Óptico/patologia , Atrofia Óptica/patologia , Degeneração Neural/patologia , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA