Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
NMR Biomed ; 37(3): e5063, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37871617

RESUMO

Recently, intravoxel incoherent motion (IVIM) diffusion-weighted imaging (DWI) has also been demonstrated as an imaging tool for applications in neurological and neurovascular diseases. However, the use of single-shot diffusion-weighted echo-planar imaging for IVIM DWI acquisition leads to suboptimal data quality: for instance, geometric distortion and deteriorated image quality at high spatial resolution. Although the recently commercialized multi-shot acquisition methods, such as multiplexed sensitivity encoding (MUSE), can attain high-resolution and high-quality DWI with signal-to-noise ratio (SNR) performance superior to that of the conventional parallel imaging method, the prolonged scan time associated with multi-shot acquisition is impractical for routine IVIM DWI. This study proposes an acquisition and reconstruction framework based on parametric-POCSMUSE to accelerate the four-shot IVIM DWI with 70% reduction of total scan time (13 min 8 s versus 4 min 8 s). First, the four-shot IVIM DWI scan with 17 b values was accelerated by acquiring only one segment per b value except for b values of 0 and 600 s/mm2 . Second, an IVIM-estimation scheme was integrated into the parametric-POCSMUSE to enable joint reconstruction of multi-b images from under-sampled four-shot IVIM DWI data. In vivo experiments on both healthy subjects and patients show that the proposed framework successfully produced multi-b DW images with significantly higher SNRs and lower reconstruction errors than did the conventional acceleration method based on parallel imaging. In addition, the IVIM quantitative maps estimated from the data produced by the proposed framework showed quality comparable to that of fully sampled MUSE-reconstructed images, suggesting that the proposed framework can enable highly accelerated multi-shot IVIM DWI without sacrificing data quality. In summary, the proposed framework can make multi-shot IVIM DWI feasible in a routine MRI examination, with reasonable scan time and improved geometric fidelity.


Assuntos
Alprostadil , Encéfalo , Humanos , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Cabeça , Imageamento por Ressonância Magnética , Imagem Ecoplanar/métodos , Movimento (Física)
2.
J Magn Reson Imaging ; 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38156600

RESUMO

BACKGROUND: Diffusion imaging holds great potential for the non-invasive assessment of the glymphatic system in humans. One technique, diffusion tensor imaging along the perivascular space (DTI-ALPS), has introduced the ALPS-index, a novel metric for evaluating diffusivity within the perivascular space. However, it still needs to be established whether the observed reduction in the ALPS-index reflects axonal changes, a common occurrence in neurodegenerative diseases. PURPOSE: To determine whether axonal alterations can influence change in the ALPS-index. STUDY TYPE: Retrospective. POPULATION: 100 participants (78 cognitively normal and 22 with mild cognitive impairments) aged 50-90 years old. FIELD STRENGTH/SEQUENCE: 3T; diffusion-weighted single-shot spin-echo echo-planar imaging sequence, T1-weighted images (MP-RAGE). ASSESSMENT: The ratio of two radial diffusivities of the diffusion tensor (i.e., λ2/λ3) across major white matter tracts with distinct venous/perivenous anatomy that fulfill (ALPS-tracts) and do not fulfill (control tracts) ALPS-index anatomical assumptions were analyzed. STATISTICAL TESTS: To investigate the correlation between λ2/λ3 and age/cognitive function (RAVLT) while accounting for the effect of age, linear regression was implemented to remove the age effect from each variable. Pearson correlation analysis was conducted on the residuals obtained from the linear regression. Statistical significance was set at p < 0.05. RESULTS: λ2 was ~50% higher than λ3 and demonstrated a consistent pattern across both ALPS and control tracts. Additionally, in both ALPS and control tracts a reduction in the λ2/λ3 ratio was observed with advancing age (r = -0.39, r = -0.29, association and forceps tract, respectively) and decreased memory function (r = 0.24, r = 0.27, association and forceps tract, respectively). DATA CONCLUSIONS: The results unveil a widespread radial asymmetry of white matter tracts that changes with aging and neurodegeration. These findings highlight that the ALPS-index may not solely reflect changes in the diffusivity of the perivascular space but may also incorporate axonal contributions. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.

3.
Sensors (Basel) ; 23(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37836847

RESUMO

This pilot feasibility study aimed to evaluate the effects of transcranial magnetic stimulation (TMS) on chemotherapy-related cognitive impairment (CRCI), and we report here on the first patient. BACKGROUND: Deleterious cognitive changes due to chemotherapy or CRCI are commonly referred to as "chemo brain". With the increasing survival of cancer patients, this poorly understood and inadequately treated condition will likewise have an increasing toll on individuals and society. Since there is no approved treatment for chemo brain, we have initiated a therapeutic trial using transcranial magnetic stimulation (TMS), a non-invasive brain stimulation technique approved in many countries for the treatment of neurologic and psychiatric conditions like migraine and depression. CASE PRESENTATION: A 58-year-old woman, diagnosed 7 years prior with left breast cancer, underwent partial mastectomy with sentinel lymph node biopsy. She then received four cycles of adjuvant chemotherapy followed by radiation therapy. Afterwards, she was on tamoxifen for 4 years and then switched to aromatase inhibitors. The patient's CRCI started during chemotherapy and severely impaired her quality of life for an additional two years. In the third year after chemotherapy, the CRCI partially cleared to stabilize to the level at the time of presentation for this trial. The patient continues to have memory difficulties and decreased concentration, which makes multi-tasking very difficult to impossible. She is reliant on memory aids at work and at home. The participant underwent 10 consecutive sessions of TMS during weekdays for 2 weeks. Stimulation was directed to the left dorsolateral prefrontal cortex. After TMS, the participant significantly improved in memory function on neuropsychological testing. While she reported no subjective differences in concentration or memory, she did report an improvement in her sleep. Functional magnetic resonance imaging of the brain before and after TMS showed increased resting-state functional connectivity between the stimulation site and several brain regions. Remarkably, after 6 years of chemo brain and remaining in the same position at work due to her inability to concentrate and multi-task, she applied for and received a promotion 5-6 months after her TMS treatments. CONCLUSIONS: This first patient in the phase 1 clinical trial testing of TMS for the treatment of "chemo brain" provided important lessons for feasibility and insights into mechanisms of potential benefit.


Assuntos
Neoplasias da Mama , Estimulação Magnética Transcraniana , Feminino , Humanos , Pessoa de Meia-Idade , Encéfalo/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Imageamento por Ressonância Magnética , Mastectomia , Qualidade de Vida , Estimulação Magnética Transcraniana/métodos
4.
Hum Brain Mapp ; 43(3): 1047-1060, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34854172

RESUMO

Brain iron dyshomeostasis disrupts various critical cellular functions, and age-related iron accumulation may contribute to deficient neurotransmission and cell death. While recent studies have linked excessive brain iron to cognitive function in the context of neurodegenerative disease, little is known regarding the role of brain iron accumulation in cognitive aging in healthy adults. Further, previous studies have focused primarily on deep gray matter regions, where the level of iron deposition is highest. However, recent evidence suggests that cortical iron may also contribute to cognitive deficit and neurodegenerative disease. Here, we used quantitative susceptibility mapping (QSM) to measure brain iron in 67 healthy participants 18-78 years of age. Speed-dependent (fluid) cognition was assessed from a battery of 12 psychometric and computer-based tests. From voxelwise QSM analyses, we found that QSM susceptibility values were negatively associated with fluid cognition in the right inferior temporal gyrus, bilateral putamen, posterior cingulate gyrus, motor, and premotor cortices. Mediation analysis indicated that susceptibility in the right inferior temporal gyrus was a significant mediator of the relation between age and fluid cognition, and similar effects were evident for the left inferior temporal gyrus at a lower statistical threshold. Additionally, age and right inferior temporal gyrus susceptibility interacted to predict fluid cognition, such that brain iron was negatively associated with a cognitive decline for adults over 45 years of age. These findings suggest that iron may have a mediating role in cognitive decline and may be an early biomarker of neurodegenerative disease.


Assuntos
Envelhecimento/fisiologia , Córtex Cerebral/fisiologia , Disfunção Cognitiva , Inteligência/fisiologia , Ferro/metabolismo , Putamen/fisiologia , Adolescente , Adulto , Idoso , Envelhecimento/metabolismo , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Putamen/diagnóstico por imagem , Putamen/metabolismo , Putamen/fisiopatologia , Adulto Jovem
5.
Clin Infect Dis ; 73(7): e2287-e2293, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32948879

RESUMO

BACKGROUND: Human immunodeficiency virus (HIV)-associated neurocognitive impairment remains a prevalent comorbidity that impacts daily functioning and increases morbidity. While HIV infection is known to cause widespread disruptions in the brain, different magnetic resonance imaging (MRI) modalities have not been effectively integrated. In this study, we applied 3-way supervised fusion to investigate how structural and functional coalterations affect cognitive function. METHODS: Participants (59 people living with HIV and 58 without HIV) completed comprehensive neuropsychological testing and multimodal MRI scanning to acquire high-resolution anatomical, diffusion-weighted, and resting-state functional images. Preprocessed data were reduced using voxel-based morphometry, probabilistic tractography, and regional homogeneity, respectively. We applied multimodal canonical correlation analysis with reference plus joint independent component analysis using global cognitive functioning as the reference. RESULTS: Compared with controls, participants living with HIV had lower global cognitive functioning. One joint component was both group discriminating and correlated with cognitive function. This component included the following covarying regions: fractional anisotropy in the corpus callosum, short and long association fiber tracts, and corticopontine fibers; gray matter volume in the thalamus, prefrontal cortex, precuneus, posterior parietal regions, and occipital lobe; and functional connectivity in frontoparietal and visual processing regions. Component loadings for fractional anisotropy also correlated with immunosuppression. CONCLUSIONS: These results suggest that coalterations in brain structure and function can distinguish people with and without HIV and may drive cognitive impairment. As MRI becomes more commonplace in HIV care, multimodal fusion may provide neural biomarkers to support diagnosis and treatment of cognitive impairment.


Assuntos
Infecções por HIV , Substância Branca , Encéfalo/diagnóstico por imagem , Cognição , HIV , Infecções por HIV/complicações , Humanos , Imageamento por Ressonância Magnética
6.
Neuroimage ; 237: 118207, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34048901

RESUMO

Real-time fMRI neurofeedback is an increasingly popular neuroimaging technique that allows an individual to gain control over his/her own brain signals, which can lead to improvements in behavior in healthy participants as well as to improvements of clinical symptoms in patient populations. However, a considerably large ratio of participants undergoing neurofeedback training do not learn to control their own brain signals and, consequently, do not benefit from neurofeedback interventions, which limits clinical efficacy of neurofeedback interventions. As neurofeedback success varies between studies and participants, it is important to identify factors that might influence neurofeedback success. Here, for the first time, we employed a big data machine learning approach to investigate the influence of 20 different design-specific (e.g. activity vs. connectivity feedback), region of interest-specific (e.g. cortical vs. subcortical) and subject-specific factors (e.g. age) on neurofeedback performance and improvement in 608 participants from 28 independent experiments. With a classification accuracy of 60% (considerably different from chance level), we identified two factors that significantly influenced neurofeedback performance: Both the inclusion of a pre-training no-feedback run before neurofeedback training and neurofeedback training of patients as compared to healthy participants were associated with better neurofeedback performance. The positive effect of pre-training no-feedback runs on neurofeedback performance might be due to the familiarization of participants with the neurofeedback setup and the mental imagery task before neurofeedback training runs. Better performance of patients as compared to healthy participants might be driven by higher motivation of patients, higher ranges for the regulation of dysfunctional brain signals, or a more extensive piloting of clinical experimental paradigms. Due to the large heterogeneity of our dataset, these findings likely generalize across neurofeedback studies, thus providing guidance for designing more efficient neurofeedback studies specifically for improving clinical neurofeedback-based interventions. To facilitate the development of data-driven recommendations for specific design details and subpopulations the field would benefit from stronger engagement in open science research practices and data sharing.


Assuntos
Neuroimagem Funcional , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Neurorretroalimentação , Adulto , Humanos
7.
Hum Brain Mapp ; 41(14): 3839-3854, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32729652

RESUMO

Neurofeedback training has been shown to influence behavior in healthy participants as well as to alleviate clinical symptoms in neurological, psychosomatic, and psychiatric patient populations. However, many real-time fMRI neurofeedback studies report large inter-individual differences in learning success. The factors that cause this vast variability between participants remain unknown and their identification could enhance treatment success. Thus, here we employed a meta-analytic approach including data from 24 different neurofeedback studies with a total of 401 participants, including 140 patients, to determine whether levels of activity in target brain regions during pretraining functional localizer or no-feedback runs (i.e., self-regulation in the absence of neurofeedback) could predict neurofeedback learning success. We observed a slightly positive correlation between pretraining activity levels during a functional localizer run and neurofeedback learning success, but we were not able to identify common brain-based success predictors across our diverse cohort of studies. Therefore, advances need to be made in finding robust models and measures of general neurofeedback learning, and in increasing the current study database to allow for investigating further factors that might influence neurofeedback learning.


Assuntos
Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Imageamento por Ressonância Magnética , Neurorretroalimentação/fisiologia , Prática Psicológica , Adulto , Humanos , Prognóstico
8.
Magn Reson Med ; 82(1): 356-366, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30859614

RESUMO

PURPOSE: We report a new postprocessing procedure that uses Fourier-domain data analyses to improve the accuracy and reliability of phase unwrapping for MRI data of low SNR. METHODS: The developed method first identifies the Fourier-domain energy peak locations corresponding to different image-domain areas from which a robust measurement of image-domain phase gradients can be obtained even for MRI data of low SNR. The phase-gradient information measured from critical brain regions using the above-mentioned Fourier-domain analysis is then combined with the conventional temporal-domain or spatial-domain phase-unwrapping procedure to remove phase wraps. The developed method was tested with MRI data obtained from 30 healthy adult volunteers, and its performance was quantitatively evaluated. RESULTS: The developed Fourier-domain analysis could robustly quantify image-domain phase gradients even for MRI data with low SNR (e.g., SNR ≃ 2). Experimental results show that the Fourier-domain analyses could further reduce phase wrap artifact in data produced by the conventional temporal-domain or spatial-domain phase-unwrapping procedures. CONCLUSION: Our results demonstrate that the developed phase-unwrapping method can reduce residual phase wraps resulting from conventional procedures in critical brain regions (e.g., near the air-tissue interfaces) and should prove valuable for studies that require accurate measurements of MRI phase values, such as QSM, B0 field mapping, and temperature mapping.


Assuntos
Análise de Fourier , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Artefatos , Encéfalo/diagnóstico por imagem , Humanos , Imagens de Fantasmas , Razão Sinal-Ruído
9.
Magn Reson Med ; 82(5): 1796-1803, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31155758

RESUMO

PURPOSE: To directly compare diffusion metrics derived from multiband (MB) imaging sequences to those derived using a single-band acquisition. METHODS: In this work, diffusion metrics from DTI and mean apparent propagator MRI derived from a commercial MB sequence with an acceleration factor of 3 are compared with those derived from a conventional diffusion MRI sequence using a novel bootstrapping analysis scheme on oversampled diffusion MRI data. The average parameter values for fractional anisotropy and mean diffusivity derived from DTI, as well as propagator anisotropy and return to origin probability derived from mean apparent propagator MRI, are compared. RESULTS: Fractional anisotropy and propagator anisotropy are very similar when computed from data collected with and without MB, but show minor differences at low and high values of fractional anisotropy/propagator anisotropy. Mean diffusivity values are generally lower in the MB-derived maps, and return to origin probability is generally higher. The coefficient of variation of each parameter is shown to be slightly higher on average from the maps derived from MB versus single band when the TR is short, and slightly lower when the TR of the MB and single-band experiments is equal. CONCLUSION: These results demonstrate that the MB sequence tested in this work provides very similar results to a conventional diffusion MRI sequence. The MB sequence is affected minimally by the slight decrease in SNR associated with the parallel reconstruction and reduced TR, and there are relaxation effects associated with the reduced TR.


Assuntos
Mapeamento Encefálico/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Anisotropia , Voluntários Saudáveis , Humanos , Aumento da Imagem/métodos
10.
Addict Biol ; 24(6): 1235-1244, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30239074

RESUMO

Marijuana use, which is disproportionately prevalent among human immunodeficiency virus (HIV)-infected persons, can alter activity in fronto-parietal regions during cognitively demanding tasks. While HIV is also associated with altered neural activation, it is not known how marijuana may further affect brain function in this population. Our study examined the independent and additive effects of HIV infection and regular marijuana use on neural activation during a cognitive interference task. The sample included 93 adults who differed on marijuana (MJ) and HIV statuses (20 MJ+/HIV+, 19 MJ+/HIV-, 29 MJ-/HIV+, 25 MJ-/HIV-). Participants completed a counting Stroop task during a functional magnetic resonance imaging scan. Main and interactive effects on neural activation during interference versus neutral blocks were examined using a mixed-effects analysis. The sample showed the expected Stroop effect for both speed and accuracy. There were main effects of MJ in the right and left inferior parietal lobules, with the left cluster extending into the posterior middle temporal gyrus and a main effect of HIV in the dorsal anterior cingulate cortex. There was an interaction in the left fronto-insular cortex, such that the MJ+/HIV+ group had the largest increase in activation compared with other groups. Among MJ+, signal change in this cluster correlated positively with cumulative years of regular marijuana use. These results suggest that comorbid HIV and marijuana use is associated with complex neural alterations in multiple brain regions during cognitive interference. Follow-up research is needed to determine how marijuana-related characteristics may moderate HIV neurologic disease and impact real-world functioning.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Infecções por HIV/diagnóstico por imagem , Abuso de Maconha/diagnóstico por imagem , Adulto , Estudos de Casos e Controles , Córtex Cerebral/fisiopatologia , Cognição , Feminino , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/fisiopatologia , Neuroimagem Funcional , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/fisiopatologia , Infecções por HIV/fisiopatologia , Infecções por HIV/psicologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Abuso de Maconha/fisiopatologia , Abuso de Maconha/psicologia , Pessoa de Meia-Idade , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/fisiopatologia , Teste de Stroop , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiopatologia , Adulto Jovem
11.
Magn Reson Med ; 79(1): 383-393, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28480603

RESUMO

PURPOSE: To develop a high-speed T2 mapping protocol that is capable of accurately measuring T2 relaxation time constants from a single-shot acquisition. THEORY: A new echo-split single-shot gradient-spin-echo (GRASE) pulse sequence is developed to acquire multicontrast data while suppressing signals from most nonprimary echo pathways in Carr-Purcell-Meiboom-Gill (CPMG) echoes. Residual nonprimary pathway signals are taken into consideration when performing T2 mapping using a parametric multiplexed sensitivity encoding based on projection onto convex sets (parametric-POCSMUSE) reconstruction method that incorporates extended phase graph modeling of GRASE signals. METHODS: The single-shot echo-split GRASE-based T2 mapping procedure was evaluated in human studies at 3 Tesla. The acquired data were compared with reference data obtained with a more time-consuming interleaved spin-echo echo planar imaging protocol. T2 maps derived from conventional single-shot GRASE scans, in which nonprimary echo pathways were not appropriately addressed, were also evaluated. RESULTS: Using the developed single-shot T2 mapping protocol, quantitatively accurate T2 maps can be obtained with a short scan time (<0.2 seconds per slice). CONCLUSION: Accurate T2 mapping with minimal signal contamination from CPMG high-order echo pathways can be achieved by the developed method that integrates single-shot echo-split GRASE acquisition and parametric-POCSMUSE reconstruction. Magn Reson Med 79:383-393, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Imagem Ecoplanar , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Algoritmos , Análise de Fourier , Voluntários Saudáveis , Humanos , Processamento de Imagem Assistida por Computador , Movimento (Física) , Imagens de Fantasmas , Ondas de Rádio , Reprodutibilidade dos Testes , Software
12.
Magn Reson Med ; 79(5): 2702-2712, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28940484

RESUMO

PURPOSE: Three-dimensional (3D) multiplexed sensitivity encoding and reconstruction (3D-MUSER) algorithm is proposed to reduce aliasing artifacts and signal corruption caused by inter-shot 3D phase variations in 3D diffusion-weighted echo planar imaging (DW-EPI). THEORY AND METHODS: 3D-MUSER extends the original framework of multiplexed sensitivity encoding (MUSE) to a hybrid k-space-based reconstruction, thereby enabling the correction of inter-shot 3D phase variations. A 3D single-shot EPI navigator echo was used to measure inter-shot 3D phase variations. The performance of 3D-MUSER was evaluated by analyses of point-spread function (PSF), signal-to-noise ratio (SNR), and artifact levels. The efficacy of phase correction using 3D-MUSER for different slab thicknesses and b-values were investigated. RESULTS: Simulations showed that 3D-MUSER could eliminate artifacts because of through-slab phase variation and reduce noise amplification because of SENSE reconstruction. All aliasing artifacts and signal corruption in 3D interleaved DW-EPI acquired with different slab thicknesses and b-values were reduced by our new algorithm. A near-whole brain single-slab 3D DTI with 1.3-mm isotropic voxel acquired at 1.5T was successfully demonstrated. CONCLUSION: 3D phase correction for 3D interleaved DW-EPI data is made possible by 3D-MUSER, thereby improving feasible slab thickness and maximum feasible b-value. Magn Reson Med 79:2702-2712, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Imagem Ecoplanar/métodos , Imageamento Tridimensional/métodos , Algoritmos , Encéfalo/diagnóstico por imagem , Humanos , Imagens de Fantasmas
13.
J Neurovirol ; 24(4): 454-463, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29687404

RESUMO

This study investigated structural brain organization using diffusion tensor imaging (DTI) in 35 HIV-positive and 35 HIV-negative individuals. We used global and nodal graph theory metrics to investigate whether HIV was associated with differences in brain network organization based on fractional anisotropy (FA) and mean diffusivity (MD). Participants also completed a comprehensive neuropsychological testing battery. For global network metrics, HIV-positive individuals displayed a lower FA clustering coefficient relative to HIV-negative individuals. For nodal network metrics, HIV-positive individuals had less MD nodal degree in the left thalamus. Within HIV-positive individuals, the FA global clustering coefficient was positively correlated with nadir CD4 cell count. Across the sample, cognitive performance was negatively correlated with characteristic path length and positively correlated with global efficiency for FA. These results suggest that, despite management with combination antiretroviral therapy, HIV infection is associated with altered structural brain network segregation and thalamic centrality and that low nadir CD4 cell count may be a risk factor. These graph theory metrics may serve as neural biomarkers to identify individuals at risk for HIV-related neurological complications.


Assuntos
Encéfalo/patologia , Contagem de Linfócito CD4 , Conectoma , Infecções por HIV/imunologia , Infecções por HIV/patologia , Adulto , Imagem de Tensor de Difusão , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Vias Neurais/patologia
14.
Addict Biol ; 23(2): 796-809, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28682013

RESUMO

Stimulant abuse is disproportionately common in HIV-positive persons. Both HIV and stimulants are independently associated with deficits in reward-based decision making, but their interactive and/or additive effects are poorly understood despite their prevalent co-morbidity. Here, we examined the effects of cocaine dependence and HIV infection in 69 adults who underwent functional magnetic resonance imaging while completing an economic loss aversion task. We identified two neural networks that correlated with the evaluation of the favorable characteristics of the gamble (i.e. higher gains/lower losses: ventromedial prefrontal cortex, anterior cingulate, anterior and posterior precuneus and visual cortex) versus unfavorable characteristics of the gamble (i.e. lower gains/higher losses: dorsal prefrontal, lateral orbitofrontal, posterior parietal cortex, anterior insula and dorsal caudate). Behaviorally, cocaine and HIV had additive effects on loss aversion scores, with HIV-positive cocaine users being the least loss averse. Cocaine users had greater activation in brain regions that tracked the favorability of gamble characteristics (i.e. increased activation to gains, but decreased activation to losses). In contrast, HIV infection was independently associated with lesser activation in regions that tracked the unfavorability of gamble characteristics. These results suggest that cocaine is associated with an overactive reward-seeking system, while HIV is associated with an underactive cognitive control system. Together, these alterations may leave HIV-positive cocaine users particularly vulnerable to making unfavorable decisions when outcomes are uncertain.


Assuntos
Encéfalo/diagnóstico por imagem , Transtornos Relacionados ao Uso de Cocaína/diagnóstico por imagem , Tomada de Decisões , Infecções por HIV/diagnóstico por imagem , Adulto , Encéfalo/fisiopatologia , Estudos de Casos e Controles , Núcleo Caudado/diagnóstico por imagem , Núcleo Caudado/fisiopatologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiopatologia , Comportamento de Escolha , Transtornos Relacionados ao Uso de Cocaína/epidemiologia , Transtornos Relacionados ao Uso de Cocaína/psicologia , Comorbidade , Feminino , Neuroimagem Funcional , Jogo de Azar , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/fisiopatologia , Infecções por HIV/epidemiologia , Infecções por HIV/psicologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/fisiopatologia , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiopatologia , Recompensa , Assunção de Riscos , Córtex Visual/diagnóstico por imagem , Córtex Visual/fisiopatologia , Adulto Jovem
15.
Yale J Biol Med ; 91(3): 207-214, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30258307

RESUMO

MRI parametric mapping, including T2 mapping, can quantitatively characterize tissue properties and is an important MRI procedure in biomedical research and studies of diseases [1-3]. However, the accuracy, quality, and signal-to-noise ratio (SNR) of MRI parametric mapping may be negatively impacted by Rician noise in multi-contrast MRI data [4]. As such, it is important to develop a post-processing method to minimize the negative impact of Rician noise. In this study, we report a new parametric-contrast-matched principal component analysis (PCM-PCA) denoising method that involves 1) identifying voxels with similar T2 decay characteristics and 2) using the principal component analysis (PCA) to denoise multi-contrast MRI data along the echo time (TE) dimension. We additionally evaluated the effects of integrating Rician bias correction and the new PCM-PCA method. In this study, we mathematically added Rician noise at various levels to human brain MRI data and performed different combinations of denoising and Rician bias correction on the magnitude-valued images. We found that MRI denoising using the PCM-PCA method resulted in improved image quality, SNR, and accuracy of the measured T2 relaxation time constants. Additionally, we found that for data with low SNR (e.g., 1.5 or lower), Rician bias correction further improved image quality and T2 mapping accuracy. In summary, our experimental results demonstrated that the new PCM-PCA denoising method and Rician bias correction adequately improve multi-contrast MRI quality and T2 parametric mapping accuracy.


Assuntos
Imageamento por Ressonância Magnética/métodos , Análise de Componente Principal/métodos , Algoritmos , Razão Sinal-Ruído
16.
Neuroimage ; 159: 46-56, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28732674

RESUMO

Recent advances in achieving ultrahigh spatial resolution (e.g. sub-millimeter) diffusion MRI (dMRI) data have proven highly beneficial in characterizing tissue microstructures in organs such as the brain. However, the routine acquisition of in-vivo dMRI data at such high spatial resolutions has been largely prohibited by factors that include prolonged acquisition times, motion induced artifacts, and low SNR. To overcome these limitations, we present here a framework for acquiring and reconstructing 3D multi-slab, multi-band and interleaved multi-shot EPI data, termed 3D-MB-MUSE. Through multi-band excitations, the simultaneous acquisition of multiple 3D slabs enables whole brain dMRI volumes to be acquired in-vivo on a 3 T clinical MRI scanner at high spatial resolution within a reasonably short amount of time. Representing a true 3D model, 3D-MB-MUSE reconstructs an entire 3D multi-band, multi-shot dMRI slab at once while simultaneously accounting for coil sensitivity variations across the slab as well as motion induced artifacts commonly associated with both 3D and multi-shot diffusion imaging. Such a reconstruction fully preserves the SNR advantages of both 3D and multi-shot acquisitions in high resolution dMRI images by removing both motion and aliasing artifacts across multiple dimensions. By enabling ultrahigh resolution dMRI for routine use, the 3D-MB-MUSE framework presented here may prove highly valuable in both clinical and research applications.


Assuntos
Encéfalo/anatomia & histologia , Imagem de Difusão por Ressonância Magnética/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Neuroimagem/métodos , Algoritmos , Humanos
17.
Hum Brain Mapp ; 38(4): 2128-2149, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28052456

RESUMO

We conducted functional magnetic resonance imaging (fMRI) with a visual search paradigm to test the hypothesis that aging is associated with increased frontoparietal involvement in both target detection and bottom-up attentional guidance (featural salience). Participants were 68 healthy adults, distributed continuously across 19 to 78 years of age. Frontoparietal regions of interest (ROIs) were defined from resting-state scans obtained prior to task-related fMRI. The search target was defined by a conjunction of color and orientation. Each display contained one item that was larger than the others (i.e., a size singleton) but was not informative regarding target identity. Analyses of search reaction time (RT) indicated that bottom-up attentional guidance from the size singleton (when coincident with the target) was relatively constant as a function of age. Frontoparietal fMRI activation related to target detection was constant as a function of age, as was the reduction in activation associated with salient targets. However, for individuals 35 years of age and older, engagement of the left frontal eye field (FEF) in bottom-up guidance was more prominent than for younger individuals. Further, the age-related differences in left FEF activation were a consequence of decreasing resting-state functional connectivity in visual sensory regions. These findings indicate that age-related compensatory effects may be expressed in the relation between activation and behavior, rather than in the magnitude of activation, and that relevant changes in the activation-RT relation may begin at a relatively early point in adulthood. Hum Brain Mapp 38:2128-2149, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Envelhecimento , Atenção/fisiologia , Lobo Frontal/fisiologia , Rede Nervosa/fisiologia , Lobo Parietal/fisiologia , Vias Visuais/fisiologia , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Mapeamento Encefálico , Feminino , Lobo Frontal/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Oxigênio/sangue , Lobo Parietal/diagnóstico por imagem , Estimulação Luminosa , Tempo de Reação/fisiologia , Vias Visuais/diagnóstico por imagem , Percepção Visual , Adulto Jovem
18.
J Neurovirol ; 23(3): 441-450, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28251596

RESUMO

This study investigated the association of HIV infection and cocaine dependence with cerebral white matter integrity using diffusion tensor imaging (DTI). One hundred thirty-five participants stratified by HIV and cocaine status (26 HIV+/COC+, 37 HIV+/COC-, 37 HIV-/COC+, and 35 HIV-/COC-) completed a comprehensive substance abuse assessment, neuropsychological testing, and MRI with DTI. Among HIV+ participants, all were receiving HIV care and 46% had an AIDS diagnosis. All COC+ participants were current users and met criteria for cocaine use disorder. We used tract-based spatial statistics (TBSS) to assess the relation of HIV and cocaine to fractional anisotropy (FA) and mean diffusivity (MD). In whole-brain analyses, HIV+ participants had significantly reduced FA and increased MD compared to HIV- participants. The relation of HIV and FA was widespread throughout the brain, whereas the HIV-related MD effects were restricted to the corpus callosum and thalamus. There were no significant cocaine or HIV-by-cocaine effects. These DTI metrics correlated significantly with duration of HIV disease, nadir CD4+ cell count, and AIDS diagnosis, as well as some measures of neuropsychological functioning. These results suggest that HIV is related to white matter integrity throughout the brain, and that HIV-related effects are more pronounced with increasing duration of infection and greater immune compromise. We found no evidence for independent effects of cocaine dependence on white matter integrity, and cocaine dependence did not appear to exacerbate the effects of HIV.


Assuntos
Córtex Cerebral/patologia , Transtornos Relacionados ao Uso de Cocaína/patologia , Corpo Caloso/patologia , Infecções por HIV/patologia , Tálamo/patologia , Substância Branca/patologia , Adulto , Anisotropia , Contagem de Linfócito CD4 , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Estudos de Casos e Controles , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/virologia , Transtornos Relacionados ao Uso de Cocaína/complicações , Transtornos Relacionados ao Uso de Cocaína/diagnóstico por imagem , Transtornos Relacionados ao Uso de Cocaína/imunologia , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/virologia , Imagem de Tensor de Difusão , Feminino , Infecções por HIV/complicações , Infecções por HIV/diagnóstico por imagem , Infecções por HIV/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Tálamo/diagnóstico por imagem , Tálamo/virologia , Substância Branca/diagnóstico por imagem , Substância Branca/virologia
19.
NMR Biomed ; 30(4)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26887812

RESUMO

Quantitative susceptibility mapping (QSM) measures tissue magnetic susceptibility and typically relies on time-consuming three-dimensional (3D) gradient-echo (GRE) MRI. Recent studies have shown that two-dimensional (2D) multi-slice gradient-echo echo-planar imaging (GRE-EPI), which is commonly used in functional MRI (fMRI) and other dynamic imaging techniques, can also be used to produce data suitable for QSM with much shorter scan times. However, the production of high-quality QSM maps is difficult because data obtained by 2D multi-slice scans often have phase inconsistencies across adjacent slices and strong susceptibility field gradients near air-tissue interfaces. To address these challenges in 2D EPI-based QSM studies, we present a new data processing procedure that integrates 2D and 3D phase processing. First, 2D Laplacian-based phase unwrapping and 2D background phase removal are performed to reduce phase inconsistencies between slices and remove in-plane harmonic components of the background phase. This is followed by 3D background phase removal for the through-plane harmonic components. The proposed phase processing was evaluated with 2D EPI data obtained from healthy volunteers, and compared against conventional 3D phase processing using the same 2D EPI datasets. Our QSM results were also compared with QSM values from time-consuming 3D GRE data, which were taken as ground truth. The experimental results show that this new 2D EPI-based QSM technique can produce quantitative susceptibility measures that are comparable with those of 3D GRE-based QSM across different brain regions (e.g. subcortical iron-rich gray matter, cortical gray and white matter). This new 2D EPI QSM reconstruction method is implemented within STI Suite, which is a comprehensive shareware for susceptibility imaging and quantification. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Imagem Ecoplanar/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imagem Molecular/métodos , Processamento de Sinais Assistido por Computador , Adulto , Algoritmos , Feminino , Humanos , Aumento da Imagem/métodos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
Brain Behav Immun ; 66: 31-44, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28526435

RESUMO

As head injuries and their sequelae have become an increasingly salient matter of public health, experts in the field have made great progress elucidating the biological processes occurring within the brain at the moment of injury and throughout the recovery thereafter. Given the extraordinary rate at which our collective knowledge of neurotrauma has grown, new insights may be revealed by examining the existing literature across disciplines with a new perspective. This article will aim to expand the scope of this rapidly evolving field of research beyond the confines of the central nervous system (CNS). Specifically, we will examine the extent to which the bidirectional influence of the gut-brain axis modulates the complex biological processes occurring at the time of traumatic brain injury (TBI) and over the days, months, and years that follow. In addition to local enteric signals originating in the gut, it is well accepted that gastrointestinal (GI) physiology is highly regulated by innervation from the CNS. Conversely, emerging data suggests that the function and health of the CNS is modulated by the interaction between 1) neurotransmitters, immune signaling, hormones, and neuropeptides produced in the gut, 2) the composition of the gut microbiota, and 3) integrity of the intestinal wall serving as a barrier to the external environment. Specific to TBI, existing pre-clinical data indicates that head injuries can cause structural and functional damage to the GI tract, but research directly investigating the neuronal consequences of this intestinal damage is lacking. Despite this void, the proposed mechanisms emanating from a damaged gut are closely implicated in the inflammatory processes known to promote neuropathology in the brain following TBI, which suggests the gut-brain axis may be a therapeutic target to reduce the risk of Chronic Traumatic Encephalopathy and other neurodegenerative diseases following TBI. To better appreciate how various peripheral influences are implicated in the health of the CNS following TBI, this paper will also review the secondary biological injury mechanisms and the dynamic pathophysiological response to neurotrauma. Together, this review article will attempt to connect the dots to reveal novel insights into the bidirectional influence of the gut-brain axis and propose a conceptual model relevant to the recovery from TBI and subsequent risk for future neurological conditions.


Assuntos
Lesões Encefálicas Traumáticas/fisiopatologia , Encéfalo/fisiopatologia , Encefalite/fisiopatologia , Microbioma Gastrointestinal , Animais , Encéfalo/imunologia , Encefalopatias/imunologia , Encefalopatias/microbiologia , Encefalopatias/fisiopatologia , Lesões Encefálicas Traumáticas/imunologia , Lesões Encefálicas Traumáticas/microbiologia , Encefalite/imunologia , Encefalite/microbiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA