Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
EMBO J ; 39(17): e104671, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32757223

RESUMO

Phosphorylation of the N-terminal domain of the huntingtin (HTT) protein has emerged as an important regulator of its localization, structure, aggregation, clearance and toxicity. However, validation of the effect of bona fide phosphorylation in vivo and assessing the therapeutic potential of targeting phosphorylation for the treatment of Huntington's disease (HD) require the identification of the enzymes that regulate HTT phosphorylation. Herein, we report the discovery and validation of a kinase, TANK-binding kinase 1 (TBK1), that efficiently phosphorylates full-length and N-terminal HTT fragments in vitro (at S13/S16), in cells (at S13) and in vivo. TBK1 expression in HD models (cells, primary neurons, and Caenorhabditis elegans) increases mutant HTT exon 1 phosphorylation and reduces its aggregation and cytotoxicity. We demonstrate that the TBK1-mediated neuroprotective effects are due to phosphorylation-dependent inhibition of mutant HTT exon 1 aggregation and an increase in autophagic clearance of mutant HTT. These findings suggest that upregulation and/or activation of TBK1 represents a viable strategy for the treatment of HD by simultaneously lowering mutant HTT levels and blocking its aggregation.


Assuntos
Caenorhabditis elegans/metabolismo , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Mutação , Agregados Proteicos , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Modelos Animais de Doenças , Células HEK293 , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Ratos
2.
Proc Natl Acad Sci U S A ; 117(12): 6866-6874, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32161130

RESUMO

Increasing evidence suggests that amyloid polymorphism gives rise to different strains of amyloids with distinct toxicities and pathology-spreading properties. Validating this hypothesis is challenging due to a lack of tools and methods that allow for the direct characterization of amyloid polymorphism in hydrated and complex biological samples. Here, we report on the development of 11-mercapto-1-undecanesulfonate-coated gold nanoparticles (NPs) that efficiently label the edges of synthetic, recombinant, and native amyloid fibrils derived from different amyloidogenic proteins. We demonstrate that these NPs represent powerful tools for assessing amyloid morphological polymorphism, using cryogenic transmission electron microscopy (cryo-EM). The NPs allowed for the visualization of morphological features that are not directly observed using standard imaging techniques, including transmission electron microscopy with use of the negative stain or cryo-EM imaging. The use of these NPs to label native paired helical filaments (PHFs) from the postmortem brain of a patient with Alzheimer's disease, as well as amyloid fibrils extracted from the heart tissue of a patient suffering from systemic amyloid light-chain amyloidosis, revealed a high degree of homogeneity across the fibrils derived from human tissue in comparison with fibrils aggregated in vitro. These findings are consistent with, and strongly support, the emerging view that the physiologic milieu is a key determinant of amyloid fibril strains. Together, these advances should not only facilitate the profiling and characterization of amyloids for structural studies by cryo-EM, but also pave the way to elucidate the structural basis of amyloid strains and toxicity, and possibly the correlation between the pathological and clinical heterogeneity of amyloid diseases.


Assuntos
Amiloide/genética , Amiloide/metabolismo , Encéfalo/metabolismo , Microscopia Crioeletrônica/métodos , Ouro/química , Nanopartículas Metálicas/química , Polimorfismo Genético , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Amiloide/química , Humanos , Amiloidose de Cadeia Leve de Imunoglobulina/genética , Amiloidose de Cadeia Leve de Imunoglobulina/metabolismo , Amiloidose de Cadeia Leve de Imunoglobulina/patologia , Emaranhados Neurofibrilares
3.
J Am Chem Soc ; 144(24): 10723-10735, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35679155

RESUMO

The lack of detailed insight into the structure of aggregates formed by the huntingtin protein (HTT) has hampered the efforts to develop therapeutics and diagnostics targeting pathology formation in the brain of patients with Huntington's disease. To address this knowledge gap, we investigated the structural properties of in vitro-generated fibrils from exon1 of the huntingtin protein by cryogenic electron microscopy and single-particle analyses. We show that wildtype and mutant exon1 of the huntingtin protein form nonhelical fibrils with a polyglutamine amyloid core composed of ß-hairpins with unique characteristics that have not been previously observed with other amyloid filaments. The stacks of ß-hairpins form long planar ß-sheets (protofilaments) which combine inter- and intra-molecular interactions, with variable stacking angles and occasional out-of-register states of individual ß-hairpins. These features and the propensity of protofilaments to undergo lateral association result in a high degree of fibril polymorphisms, including fibrils composed of varying numbers of protofilaments. Our results allow us to speculate on how the flanking domains are organized around the polyglutamine core of the fibril and provide insight into how they might affect the huntingtin fibril structure and polymorphism. The removal of the first 17 amino acids at the N-terminus resulted in surprising intra-fibril structural heterogeneity and reduced fibril's propensity to lateral associations. Overall, this work provides valuable insights that could help guide future mechanistic studies to elucidate the sequence and structural determinants of huntingtin aggregation, as well as for cryo-EM and structural studies of fibrils derived from huntingtin protein and other disease-associated polyglutamine-containing proteins.


Assuntos
Amiloide , Doença de Huntington , Amiloide/química , Microscopia Crioeletrônica , Éxons/genética , Humanos , Proteína Huntingtina/química , Doença de Huntington/genética
4.
J Biol Chem ; 295(23): 7905-7922, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32341125

RESUMO

The microtubule-associated protein Tau is implicated in the pathogenesis of several neurodegenerative disorders, including Alzheimer's disease. Increasing evidence suggests that post-translational modifications play critical roles in regulating Tau's normal functions and its pathogenic properties in tauopathies. Very little is known about how phosphorylation of tyrosine residues influences the structure, aggregation, and microtubule- and lipid-binding properties of Tau. Here, we sought to determine the relative contributions of phosphorylation of one or several of the five tyrosine residues in Tau (Tyr-18, -29, -197, -310, and -394) to the regulation of its biophysical, aggregation, and functional properties. We used a combination of site-specific mutagenesis and in vitro phosphorylation by c-Abl kinase to generate Tau species phosphorylated at all five tyrosine residues, all tyrosine residues except Tyr-310 or Tyr-394 (pTau-Y310F and pTau-Y394F, respectively) and Tau phosphorylated only at Tyr-310 or Tyr-394 (4F/pTyr-310 or 4F/pTyr-394). We observed that phosphorylation of all five tyrosine residues, multiple N-terminal tyrosine residues (Tyr-18, -29, and -197), or specific phosphorylation only at residue Tyr-310 abolishes Tau aggregation and inhibits its microtubule- and lipid-binding properties. NMR experiments indicated that these effects are mediated by a local decrease in ß-sheet propensity of Tau's PHF6 domain. Our findings underscore Tyr-310 phosphorylation has a unique role in the regulation of Tau aggregation, microtubule, and lipid interactions. These results also highlight the importance of conducting further studies to elucidate the role of Tyr-310 in the regulation of Tau's normal functions and pathogenic properties.


Assuntos
Lipídeos/química , Microtúbulos/metabolismo , Tirosina/metabolismo , Proteínas tau/metabolismo , Sítios de Ligação , Humanos , Microtúbulos/química , Fosforilação , Tirosina/química , Proteínas tau/química
5.
Chembiochem ; 22(1): 217-231, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-32805086

RESUMO

Post-translational modifications (PTMs) within the first 17 amino acids (Nt17) of exon 1 of the Huntingtin protein (Httex1) play important roles in modulating its cellular properties and functions in health and disease. In particular, phosphorylation of threonine and serine residues (T3, S13, and/or S16) has been shown to inhibit Htt aggregation in vitro and inclusion formation in cellular and animal models of Huntington's disease (HD). In this paper, we describe a new and simple methodology for producing milligram quantities of highly pure wild-type or mutant Httex1 proteins that are site-specifically phosphorylated at T3 or at both S13 and S16. This advance was enabled by 1) the discovery and validation of novel kinases that efficiently phosphorylate Httex1 at S13 and S16 (TBK1), at T3 (GCK) or T3 and S13 (TNIK and HGK), and 2) the development of an efficient methodology for producing recombinant native Httex1 proteins by using a SUMO-fusion expression and purification strategy.[26] As a proof of concept, we demonstrate how this method can be applied to produce Httex1 proteins that are both site-specifically phosphorylated and fluorescently or isotopically labeled. Together, these advances should increase access to these valuable tools and expand the range of methods and experimental approaches that can be used to elucidate the mechanisms by which phosphorylation influences Httex1 or HTT structure, aggregation, interactome, and function(s) in health and disease.


Assuntos
Proteína Huntingtina/metabolismo , Fosfotransferases/metabolismo , Éxons , Humanos , Proteína Huntingtina/química , Proteína Huntingtina/genética , Mutação , Fosforilação , Fosfotransferases/química , Agregados Proteicos , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
6.
J Neurochem ; 153(1): 103-119, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31925956

RESUMO

Increasing evidence suggests that the process of alpha-synuclein (α-syn) aggregation from monomers into amyloid fibrils and Lewy bodies, via oligomeric intermediates plays an essential role in the pathogenesis of different synucleinopathies, including Parkinson's disease (PD), multiple system atrophy and dementia with Lewy bodies (DLB). However, the nature of the toxic species and the mechanisms by which they contribute to neurotoxicity and disease progression remain elusive. Over the past two decades, significant efforts and resources have been invested in studies aimed at identifying and targeting toxic species along the pathway of α-syn fibrillization. Although this approach has helped to advance the field and provide insights into the biological properties and toxicity of different α-syn species, many of the fundamental questions regarding the role of α-syn aggregation in PD remain unanswered, and no therapeutic compounds targeting α-syn aggregates have passed clinical trials. Several factors have contributed to this slow progress, including the complexity of the aggregation pathways and the heterogeneity and dynamic nature of α-syn aggregates. In the majority of experiment, the α-syn samples used contain mixtures of α-syn species that exist in equilibrium and their ratio changes upon modifying experimental conditions. The failure to quantitatively account for the distribution of different α-syn species in different studies has contributed not only to experimental irreproducibility but also to misinterpretation of results and misdirection of valuable resources. Towards addressing these challenges and improving experimental reproducibility in Parkinson's research, we describe here a simple centrifugation-based filtration protocol for the isolation, quantification and assessment of the distribution of α-syn monomers, oligomers and fibrils, in heterogeneous α-syn samples of increasing complexity. The protocol is simple, does not require any special instrumentation and can be performed rapidly on multiple samples using small volumes. Here, we present and discuss several examples that illustrate the applications of this protocol and how it could contribute to improving the reproducibility of experiments aimed at elucidating the structural basis of α-syn aggregation, seeding activity, toxicity and pathology spreading. This protocol is applicable, with slight modifications, to other amyloid-forming proteins.


Assuntos
Centrifugação/métodos , Filtração/métodos , alfa-Sinucleína/análise , alfa-Sinucleína/isolamento & purificação , Amiloide/química , Pesquisa Biomédica/métodos , Liofilização , Humanos , Corpos de Lewy/química , Doença de Parkinson , Agregação Patológica de Proteínas , Reprodutibilidade dos Testes , alfa-Sinucleína/química
7.
Proc Natl Acad Sci U S A ; 114(50): E10809-E10818, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29162692

RESUMO

Posttranslational modifications can have profound effects on the biological and biophysical properties of proteins associated with misfolding and aggregation. However, their detection and quantification in clinical samples and an understanding of the mechanisms underlying the pathological properties of misfolding- and aggregation-prone proteins remain a challenge for diagnostics and therapeutics development. We have applied an ultrasensitive immunoassay platform to develop and validate a quantitative assay for detecting a posttranslational modification (phosphorylation at residue T3) of a protein associated with polyglutamine repeat expansion, namely Huntingtin, and characterized its presence in a variety of preclinical and clinical samples. We find that T3 phosphorylation is greatly reduced in samples from Huntington's disease models and in Huntington's disease patients, and we provide evidence that bona-fide T3 phosphorylation alters Huntingtin exon 1 protein conformation and aggregation properties. These findings have significant implications for both mechanisms of disease pathogenesis and the development of therapeutics and diagnostics for Huntington's disease.


Assuntos
Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Imunoensaio/métodos , Animais , Células Cultivadas , Éxons , Células HEK293 , Humanos , Proteína Huntingtina/química , Proteína Huntingtina/genética , Camundongos , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fosforilação , Conformação Proteica , Processamento de Proteína Pós-Traducional , Sensibilidade e Especificidade
8.
J Biol Chem ; 293(48): 18540-18558, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30185623

RESUMO

Huntington's disease is a fatal neurodegenerative disorder resulting from a CAG repeat expansion in the first exon of the gene encoding the Huntingtin protein (Htt). Phosphorylation of this protein region (Httex1) has been shown to play important roles in regulating the structure, toxicity, and cellular properties of N-terminal fragments and full-length Htt. However, increasing evidence suggests that phosphomimetic substitutions in Htt result in inconsistent findings and do not reproduce all aspects of true phosphorylation. Here, we investigated the effects of bona fide phosphorylation at Ser-13 or Ser-16 on the structure, aggregation, membrane binding, and subcellular properties of the Httex1-Q18A variant and compared these effects with those of phosphomimetic substitutions. We show that phosphorylation at either Ser-13 and/or Ser-16 or phosphomimetic substitutions at both these residues inhibit the aggregation of mutant Httex1, but that only phosphorylation strongly disrupts the amphipathic α-helix of the N terminus and prompts the internalization and nuclear targeting of preformed Httex1 aggregates. In synthetic peptides, phosphorylation at Ser-13, Ser-16, or both residues strongly disrupted the amphipathic α-helix of the N-terminal 17 residues (Nt17) of Httex1 and Nt17 membrane binding. Experiments with peptides bearing different combinations of phosphorylation sites within Nt17 revealed a phosphorylation-dependent switch that regulates the Httex1 structure, involving cross-talk between phosphorylation at Thr-3 and Ser-13 or Ser-16. Our results provide crucial insights into the role of phosphorylation in regulating Httex1 structure and function, and underscore the critical importance of identifying the enzymes responsible for regulating Htt phosphorylation, and their potential as therapeutic targets for managing Huntington's disease.


Assuntos
Núcleo Celular/metabolismo , Proteína Huntingtina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Agregados Proteicos , Animais , Células Cultivadas , Dicroísmo Circular , Proteína Huntingtina/química , Mimetismo Molecular , Mutação , Proteínas do Tecido Nervoso/química , Neurônios/metabolismo , Proteínas Nucleares/química , Fosfoproteínas/metabolismo , Fosforilação , Conformação Proteica , Estrutura Secundária de Proteína , Transporte Proteico , Ratos Sprague-Dawley , Serina/metabolismo , Frações Subcelulares/metabolismo
9.
Angew Chem Int Ed Engl ; 56(19): 5202-5207, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28334491

RESUMO

Herein, we used protein semisynthesis to investigate, for the first time, the effect of lysine acetylation and phosphorylation, as well as the crosstalk between these modifications on the structure and aggregation of mutant huntingtin exon1 (Httex1). Our results demonstrate that phosphorylation at T3 stabilizes the α-helical conformation of the N-terminal 17 amino acids (Nt17) and significantly inhibits the aggregation of mutant Httex1. Acetylation of single lysine residues, K6, K9 or K15, had no effect on Httex1 aggregation. Interestingly, acetylation at K6, but not at K9 or K15, reversed the inhibitory effect of T3 phosphorylation. Together, our results provide novel insight into the role of Nt17 post-translational modifications in regulating the structure and aggregation of Httex1 and suggest that its aggregation and possibly its function(s) are controlled by regulatory mechanisms involving crosstalk between different PTMs.


Assuntos
Proteína Huntingtina/metabolismo , Acetilação , Éxons/genética , Humanos , Proteína Huntingtina/genética , Mutação , Fosforilação , Agregados Proteicos , Conformação Proteica , Processamento de Proteína Pós-Traducional
10.
J Am Chem Soc ; 137(15): 5041-52, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25768729

RESUMO

Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra and the presence of intraneuronal inclusions consisting of aggregated and post-translationally modified α-synuclein (α-syn). Despite advances in the chemical synthesis of α-syn and other proteins, the generation of site-specifically nitrated synthetic proteins has not been reported. Consequently, it has not been possible to determine the roles of nitration at specific residues in regulating the physiological and pathogenic properties of α-syn. Here we report, for the first time, the site-specific incorporation of 3-nitrotyrosine at different regions of α-syn using native chemical ligation combined with a novel desulfurization strategy. This strategy enabled us to investigate the role of nitration at single or multiple tyrosine residues in regulating α-syn structure, membrane binding, oligomerization, and fibrils formation. We demonstrate that different site-specifically nitrated α-syn species exhibit distinct structural and aggregation properties and exhibit reduced affinity to negatively charged vesicle membranes. We provide evidence that intermolecular interactions between the N- and C-terminal regions of α-syn play critical roles in mediating nitration-induced α-syn oligomerization. For example, when Y39 is not available for nitration (Y39F and Y39/125F), the extent of cross-linking is limited mostly to dimer formation, whereas mutants in which Y39 along with one or multiple C-terminal tyrosines (Y125F, Y133F, Y136F and Y133/136F) can still undergo nitration readily to form higher-order oligomers. Our semisynthetic strategy for generating site-specifically nitrated proteins opens up new possibilities for investigating the role of nitration in regulating protein structure and function in health and disease.


Assuntos
Mutagênese , Nitratos/metabolismo , Doença de Parkinson/genética , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Humanos , Estrutura Molecular , Nitratos/química , Doença de Parkinson/metabolismo , Processamento de Proteína Pós-Traducional , alfa-Sinucleína/química
11.
ACS Nano ; 18(2): 1504-1515, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38112538

RESUMO

Protein post-translational modifications (PTMs) play a crucial role in countless biological processes, profoundly modulating protein properties on both spatial and temporal scales. Protein PTMs have also emerged as reliable biomarkers for several diseases. However, only a handful of techniques are available to accurately measure their levels, capture their complexity at a single molecule level, and characterize their multifaceted roles in health and disease. Nanopore sensing provides high sensitivity for the detection of low-abundance proteins, holding the potential to impact single-molecule proteomics and PTM detection, in particular. Here, we demonstrate the ability of a biological nanopore, the pore-forming toxin aerolysin, to detect and distinguish α-synuclein-derived peptides bearing single or multiple PTMs, namely, phosphorylation, nitration, and oxidation occurring at different positions and in various combinations. The characteristic current signatures of the α-synuclein peptide and its PTM variants could be confidently identified by using a deep learning model for signal processing. We further demonstrate that this framework can quantify α-synuclein peptides at picomolar concentrations and detect the C-terminal peptides generated by digestion of full-length α-synuclein. Collectively, our work highlights the advantage of using nanopores as a tool for simultaneous detection of multiple PTMs and facilitates their use in biomarker discovery and diagnostics.


Assuntos
Aprendizado Profundo , Nanoporos , alfa-Sinucleína/química , Processamento de Proteína Pós-Traducional , Peptídeos/química
12.
NPJ Parkinsons Dis ; 8(1): 136, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36266318

RESUMO

Antibodies against phosphorylated alpha-synuclein (aSyn) at S129 have emerged as the primary tools to investigate, monitor, and quantify aSyn pathology in the brain and peripheral tissues of patients with Parkinson's disease and other neurodegenerative diseases. Herein, we demonstrate that the co-occurrence of multiple pathology-associated C-terminal post-translational modifications (PTMs) (e.g., phosphorylation at Tyrosine 125 or truncation at residue 133 or 135) differentially influences the detection of pS129-aSyn species by pS129-aSyn antibodies. These observations prompted us to systematically reassess the specificity of the most commonly used pS129 antibodies against monomeric and aggregated forms of pS129-aSyn in mouse brain slices, primary neurons, mammalian cells and seeding models of aSyn pathology formation. We identified two antibodies that are insensitive to pS129 neighboring PTMs. Although most pS129 antibodies showed good performance in detecting aSyn aggregates in cells, neurons and mouse brain tissue containing abundant aSyn pathology, they also showed cross-reactivity towards other proteins and often detected non-specific low and high molecular weight bands in aSyn knock-out samples that could be easily mistaken for monomeric or high molecular weight aSyn species. Our observations suggest that not all pS129 antibodies capture the biochemical and morphological diversity of aSyn pathology, and all should be used with the appropriate protein standards and controls when investigating aSyn under physiological conditions. Finally, our work underscores the need for more pS129 antibodies that are not sensitive to neighboring PTMs and more thorough characterization and validation of existing and new antibodies.

13.
Front Mol Biosci ; 8: 686086, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34381813

RESUMO

Post-translational modifications (PTMs) within the first 17 amino acids (Nt17) of the Huntingtin protein (Htt) have been shown to inhibit the aggregation and attenuate the toxicity of mutant Htt proteins in vitro and in various models of Huntington's disease. Here, we expand on these studies by investigating the effect of methionine eight oxidation (oxM8) and its crosstalk with lysine 6 acetylation (AcK6) or threonine 3 phosphorylation (pT3) on the aggregation of mutant Httex1 (mHttex1). We show that M8 oxidation delays but does not inhibit the aggregation and has no effect on the final morphologies of mHttex1aggregates. The presence of both oxM8 and AcK6 resulted in dramatic inhibition of Httex1 fibrillization. Circular dichroism spectroscopy and molecular dynamics simulation studies show that PTMs that lower the mHttex1 aggregation rate (oxM8, AcK6/oxM8, pT3, pT3/oxM8, and pS13) result in increased population of a short N-terminal helix (first eight residues) in Nt17 or decreased abundance of other helical forms, including long helix and short C-terminal helix. PTMs that did not alter the aggregation rate (AcK6) of mHttex1 exhibit a similar distribution of helical conformation as the unmodified peptides. These results show that the relative abundance of N- vs. C-terminal helical conformations and long helices, rather than the overall helicity of Nt17, better explains the effect of different Nt17 PTMs on mHttex1; thus, explaining the lack of correlation between the effect of PTMs on the overall helicity of Nt17 and mHttex1 aggregation in vitro. Taken together, our results provide novel structural insight into the differential effects of single PTMs and crosstalk between different PTMs in regulating mHttex1 aggregation.

14.
J Mol Biol ; 433(21): 167222, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492254

RESUMO

Converging evidence points to the N-terminal domain comprising the first 17 amino acids of the Huntingtin protein (Nt17) as a key regulator of its aggregation, cellular properties and toxicity. In this study, we further investigated the interplay between Nt17 and the polyQ domain repeat length in regulating the aggregation and inclusion formation of exon 1 of the Huntingtin protein (Httex1). In addition, we investigated the effect of removing Nt17 or modulating its local structure on the membrane interactions, neuronal uptake, and toxicity of monomeric or fibrillar Httex1. Our results show that the polyQ and Nt17 domains synergistically modulate the aggregation propensity of Httex1 and that the Nt17 domain plays important roles in shaping the surface properties of mutant Httex1 fibrils and regulating their poly-Q-dependent growth, lateral association and neuronal uptake. Removal of Nt17 or disruption of its transient helical conformations slowed the aggregation of monomeric Httex1 in vitro, reduced inclusion formation in cells, enhanced the neuronal uptake and nuclear accumulation of monomeric Httex1 proteins, and was sufficient to prevent cell death induced by Httex1 72Q overexpression. Finally, we demonstrate that the uptake of Httex1 fibrils into primary neurons and the resulting toxicity are strongly influenced by mutations and phosphorylation events that influence the local helical propensity of Nt17. Altogether, our results demonstrate that the Nt17 domain serves as one of the key master regulators of Htt aggregation, internalization, and toxicity and represents an attractive target for inhibiting Htt aggregate formation, inclusion formation, and neuronal toxicity.


Assuntos
Éxons , Proteína Huntingtina/química , Mutação , Neurônios/metabolismo , Agregados Proteicos , Animais , Clonagem Molecular , Corpo Estriado/citologia , Corpo Estriado/metabolismo , Microscopia Crioeletrônica , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Células HEK293 , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Microscopia de Força Atômica , Neurônios/citologia , Fosforilação , Cultura Primária de Células , Conformação Proteica em alfa-Hélice , Engenharia de Proteínas/métodos , Dobramento de Proteína , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
15.
Sci Rep ; 11(1): 17977, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504195

RESUMO

Huntington's disease (HD) is caused by a CAG trinucleotide repeat expansion in the first exon of the huntingtin (HTT) gene coding for the huntingtin (HTT) protein. The misfolding and consequential aggregation of CAG-expanded mutant HTT (mHTT) underpin HD pathology. Our interest in the life cycle of HTT led us to consider the development of high-affinity small-molecule binders of HTT oligomerized/amyloid-containing species that could serve as either cellular and in vivo imaging tools or potential therapeutic agents. We recently reported the development of PET tracers CHDI-180 and CHDI-626 as suitable for imaging mHTT aggregates, and here we present an in-depth pharmacological investigation of their binding characteristics. We have implemented an array of in vitro and ex vivo radiometric binding assays using recombinant HTT, brain homogenate-derived HTT aggregates, and brain sections from mouse HD models and humans post-mortem to investigate binding affinities and selectivity against other pathological proteins from indications such as Alzheimer's disease and spinocerebellar ataxia 1. Radioligand binding assays and autoradiography studies using brain homogenates and tissue sections from HD mouse models showed that CHDI-180 and CHDI-626 specifically bind mHTT aggregates that accumulate with age and disease progression. Finally, we characterized CHDI-180 and CHDI-626 regarding their off-target selectivity and binding affinity to beta amyloid plaques in brain sections and homogenates from Alzheimer's disease patients.


Assuntos
Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Agregados Proteicos/genética , Agregação Patológica de Proteínas/diagnóstico por imagem , Compostos Radiofarmacêuticos/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Autorradiografia/métodos , Encéfalo/metabolismo , Modelos Animais de Doenças , Humanos , Proteína Huntingtina/genética , Doença de Huntington/patologia , Imuno-Histoquímica/métodos , Camundongos , Camundongos Transgênicos , Radioisótopos de Nitrogênio/metabolismo , Traçadores Radioativos , Ensaio Radioligante/métodos , Proteínas Recombinantes/metabolismo
16.
Nat Commun ; 11(1): 2820, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32499486

RESUMO

As an intrinsically disordered protein, monomeric alpha-synuclein (aSyn) occupies a large conformational space. Certain conformations lead to aggregation prone and non-aggregation prone intermediates, but identifying these within the dynamic ensemble of monomeric conformations is difficult. Herein, we used the biologically relevant calcium ion to investigate the conformation of monomeric aSyn in relation to its aggregation propensity. We observe that the more exposed the N-terminus and the beginning of the NAC region of aSyn are, the more aggregation prone monomeric aSyn conformations become. Solvent exposure of the N-terminus of aSyn occurs upon release of C-terminus interactions when calcium binds, but the level of exposure and aSyn's aggregation propensity is sequence and post translational modification dependent. Identifying aggregation prone conformations of monomeric aSyn and the environmental conditions they form under will allow us to design new therapeutics targeted to the monomeric protein.


Assuntos
Agregados Proteicos , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Benzotiazóis/metabolismo , Cálcio/metabolismo , Humanos , Cinética , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação/genética , Fosforilação , Conformação Proteica , Espectroscopia de Prótons por Ressonância Magnética , Relação Estrutura-Atividade
17.
Neurobiol Aging ; 83: 11-20, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31585362

RESUMO

Debilitating, yet underinvestigated nonmotor symptoms related to mood/emotion, such as depression, are common in Parkinson's disease. Here, we explore the role of depression and of the amygdala, a brain region robustly linked to mood/emotion, in synucleinopathy. We hypothesized that mood/emotional deficits might accelerate Parkinson's disease-linked symptomatology, including the formation of α-synuclein pathology. We combined elevated corticosterone treatment, modeling chronic stress and depression, with a model of seeded α-synuclein pathology in mouse striatum and assessed behavioral parameters with a focus on mood/emotion, and neuropathology. We report behavioral resilience against α-synuclein proteinopathy in the absence of additional insults, potentially based on hormesis/conditioning mechanisms. Elevated corticosterone, however, reversed α-synuclein pathology-induced behavioral adaptations and was associated with increased dopaminergic cell loss as well as aggravated α-synuclein pathology in specific brain regions, such as the entorhinal cortex. These findings point to elevated glucocorticoids as a risk factor for Parkinson's disease progression and highlight the potential of glucocorticoid level reducing strategies to slow down disease progression in synucleinopathy.


Assuntos
Comportamento Animal/efeitos dos fármacos , Corticosterona/farmacocinética , Doença de Parkinson/patologia , Sinucleinopatias/tratamento farmacológico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Corticosterona/administração & dosagem , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Masculino , Camundongos Endogâmicos C57BL , Doença de Parkinson/tratamento farmacológico , alfa-Sinucleína/metabolismo
18.
J Vis Exp ; (136)2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-30010666

RESUMO

Huntington's Disease (HD) is an inherited fatal neurodegenerative disease caused by a CAG expansion (≥36) in the first exon of the HD gene, resulting in the expression of the Huntingtin protein (Htt) or N-terminal fragments thereof with an expanded polyglutamine (polyQ) stretch. The exon1 of the Huntingtin protein (Httex1) is the smallest Htt fragment that recapitulates many of the features of HD in cellular and animal models and is one of the most widely studied fragments of Htt. The small size of Httex1 makes it experimentally more amenable to biophysical characterization using standard and high-resolution techniques in comparison to longer fragments or full-length Htt. However, the high aggregation propensity of mutant Httex1 (mHttex1) with increased polyQ content (≥42) has made it difficult to develop efficient expression and purification systems to produce these proteins in sufficient quantities and make them accessible to scientists from different disciplines without the use of fusion proteins or other strategies that alter the native sequence of the protein. We present here a robust and optimized method for the production of milligram quantities of native, tag-free Httex1 based on the transient fusion of small ubiquitin related modifier (SUMO). The simplicity and efficiency of the strategy will eliminate the need to use non-native sequences of Httex1, thus making this protein more accessible to researchers and improving the reproducibility of experiments across different laboratories. We believe that these advances will also facilitate future studies aimed at elucidating the structure-function relationship of Htt as well as developing novel diagnostic tools and therapies to treat or slow the progression of HD.


Assuntos
Éxons/genética , Proteína Huntingtina/genética , Doença de Huntington/genética , Ubiquitina/genética , Humanos , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo
19.
Protein Sci ; 27(7): 1262-1274, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29603451

RESUMO

Intracellular deposits of α-synuclein in the form of Lewy bodies are major hallmarks of Parkinson's disease (PD) and a range of related neurodegenerative disorders. Post-translational modifications (PTMs) of α-synuclein are increasingly thought to be major modulators of its structure, function, degradation and toxicity. Among these PTMs, phosphorylation near the C-terminus at S129 has emerged as a dominant pathogenic modification as it is consistently observed to occur within the brain and cerebrospinal fluid (CSF) of post-mortem PD patients, and its level appears to correlate with disease progression. Phosphorylation at the neighboring tyrosine residue Y125 has also been shown to protect against α-synuclein toxicity in a Drosophila model of PD. In the present study we address the potential roles of C-terminal phosphorylation in modulating the interaction of α-synuclein with other protein partners, using a single domain antibody fragment (NbSyn87) that binds to the C-terminal region of α-synuclein with nanomolar affinity. The results reveal that phosphorylation at S129 has negligible effect on the binding affinity of NbSyn87 to α-synuclein while phosphorylation at Y125, only four residues away, decreases the binding affinity by a factor of 400. These findings show that, despite the fact that α-synuclein is intrinsically disordered in solution, selective phosphorylation can modulate significantly its interactions with other molecules and suggest how this particular form of modification could play a key role in regulating the normal and aberrant function of α-synuclein.


Assuntos
Processamento de Proteína Pós-Traducional , Anticorpos de Domínio Único/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Autopsia , Sítios de Ligação , Encéfalo/metabolismo , Humanos , Doença de Parkinson/metabolismo , Fosforilação , Ligação Proteica , Serina/metabolismo , Tirosina/metabolismo , alfa-Sinucleína/líquido cefalorraquidiano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA