Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 37(1): 19-38, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29150432

RESUMO

The innate immune kinase TBK1 initiates inflammatory responses to combat infectious pathogens by driving production of type I interferons. TBK1 also controls metabolic processes and promotes oncogene-induced cell proliferation and survival. Here, we demonstrate that TBK1 activates mTOR complex 1 (mTORC1) directly. In cultured cells, TBK1 associates with and activates mTORC1 through site-specific mTOR phosphorylation (on S2159) in response to certain growth factor receptors (i.e., EGF-receptor but not insulin receptor) and pathogen recognition receptors (PRRs) (i.e., TLR3; TLR4), revealing a stimulus-selective role for TBK1 in mTORC1 regulation. By studying cultured macrophages and those isolated from genome edited mTOR S2159A knock-in mice, we show that mTOR S2159 phosphorylation promotes mTORC1 signaling, IRF3 nuclear translocation, and IFN-ß production. These data demonstrate a direct mechanistic link between TBK1 and mTORC1 function as well as physiologic significance of the TBK1-mTORC1 axis in control of innate immune function. These data unveil TBK1 as a direct mTORC1 activator and suggest unanticipated roles for mTORC1 downstream of TBK1 in control of innate immunity, tumorigenesis, and disorders linked to chronic inflammation.


Assuntos
Imunidade Inata/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Fator Regulador 3 de Interferon/metabolismo , Macrófagos/imunologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Núcleo Celular/metabolismo , Células Cultivadas , Citosol/metabolismo , Humanos , Fator Regulador 3 de Interferon/genética , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética
2.
Aesthetic Plast Surg ; 46(3): 1439-1449, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34676429

RESUMO

BACKGROUND: Most preconditioning techniques before fat grafting require external manipulation. Since nutrition is the main factor maintaining the balance of lipogenesis and lipolysis, we hypothesized that fasting before undergoing autologous fat grafting may increase lipolysis and reduce adipocyte size, thereby improving the fat graft survival rate. METHODS: C57BL/6 mice were divided into 24 h starved or fed groups. Adipose tissue lipolysis, adipogenesis, and angiogenesis-related gene expression, in fat from both groups, were analyzed. The volume and weight of the grafted fat at 4-8 weeks postoperatively were measured using micro-computed tomography. Immunohistochemistry staining and mRNA expression analysis were also performed to evaluate the effect of fasting on fat graft survival. RESULTS: Fasting decreased adipocyte size by inducing adipose tissue lipolysis. Adipogenesis-related genes were remarkably downregulated while lipolysis-related genes and angiogenesis inducer genes were significantly upregulated in the starved adipose tissue. The mice grafted with the fat from the 24 h starved group had approximately 20% larger volumes and considerably heavier weights than those from the fed group. Increased viable adipocytes and vessels, and reduced macrophages in the fat grafts obtained from the 24 h starved group were also observed. CONCLUSIONS: Fasting for 24 h before harvesting fat increased the retention volume of fat graft by increasing angiogenesis via VEGF induction. Therefore, fasting would be a novel and reliable preconditioning strategy to improve graft survival in autologous fat grafting. NO LEVEL ASSIGNED: This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.


Assuntos
Jejum , Sobrevivência de Enxerto , Tecido Adiposo/transplante , Animais , Camundongos , Camundongos Endogâmicos C57BL , Microtomografia por Raio-X
3.
Int J Mol Sci ; 23(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36233141

RESUMO

Cell-assisted lipotransfer (CAL), defined as co-transplantation of aspirated fat with enrichment of adipose-derived stem cells (ASCs), is a novel technique for cosmetic and reconstructive surgery to overcome the low survival rate of traditional fat grafting. However, clinically approved techniques for increasing the potency of ASCs in CAL have not been developed yet. As a more clinically applicable method, we used mechanical stress to reinforce the potency of ASCs. Mechanical stress was applied to the inguinal fat pad by needling . Morphological and cellular changes in adipose tissues were examined by flow cytometric analysis 1, 3, 5, and 7 days after the procedure. The proliferation and adipogenesis potencies of ASCs were evaluated. CAL with ASCs treated with mechanical stress or sham control were performed, and engraftment was determined at 4 weeks post-operation. Flow cytometry analysis revealed that mechanical stress significantly increased the number as well as the frequency of ASC proliferation in fat. Proliferation assays and adipocyte-specific marker gene analysis revealed that mechanical stress promoted proliferation potential but did not affect the differentiation capacity of ASCs. Moreover, CAL with cells derived from mechanical stress-treated fat increased the engraftment. Our results indicate that mechanical stress may be a simple method for improving the efficacy of CAL by enhancing the proliferation potency of ASCs.


Assuntos
Tecido Adiposo , Sobrevivência de Enxerto , Proliferação de Células , Células-Tronco , Estresse Mecânico
4.
Int J Mol Sci ; 22(16)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34445379

RESUMO

Chronic inflammation of the adipose tissue (AT) is a critical component of obesity-induced insulin resistance and type 2 diabetes. Adipose tissue immune cells, including AT macrophages (ATMs), AT dendritic cells (ATDCs), and T cells, are dynamically regulated by obesity and participate in obesity-induced inflammation. Among AT resident immune cells, ATDCs are master immune regulators and engage in crosstalk with various immune cells to initiate and regulate immune responses. However, due to confounding markers and lack of animal models, their exact role and contribution to the initiation and maintenance of AT inflammation and insulin resistance have not been clearly elucidated. This paper reviews the current understanding of ATDCs and their role in obesity-induced AT inflammation. We also provide the potential mechanisms by which ATDCs regulate AT inflammation and insulin resistance in obesity. Finally, this review offers perspectives on ways to better dissect the distinct functions and contributions of ATDCs to obesity.


Assuntos
Tecido Adiposo/citologia , Diabetes Mellitus Tipo 2/etiologia , Resistência à Insulina/imunologia , Obesidade/imunologia , Tecido Adiposo/imunologia , Animais , Apresentação de Antígeno , Células Dendríticas/imunologia , Diabetes Mellitus Tipo 2/imunologia , Humanos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL
5.
Aesthet Surg J ; 41(7): NP875-NP886, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-33784374

RESUMO

BACKGROUND: The longevity of polydioxanone (PDO)-barbed lifting threads remains controversial. OBJECTIVES: The authors sought to assess the longevity extension effect of a crisscross implantation pattern in PDO-barbed thread lifting. METHODS: To acquire the desired outcome in PDO-barbed thread lifting, the authors suggested a paradigm shift to incorporate biochemical factors in enforcing the physico-mechanical lift. A nude mouse model was employed to evaluate their theory to compare the conventional fan-shaped protocols in barbed thread lifting with an architectural construction of intersections of fibrous capsule in a crisscross pattern. Three fragments of monofilament PDO-barbed-lifting threads were implanted in the dorsal skin of 12 nude mice. The pattern of implantation was fan-shaped in the control group and crisscross in the experimental group. Tissue specimens containing tangential areas of threads were harvested, fixed, and paraffin-embedded. Samples were horizontally cut and histologically analyzed employing hematoxylin and eosin, Massons' Trichrome, and Sirius red staining. Fibrotic areas and the width of fibrosis from the thread were also analyzed. RESULTS: Fibrous capsulations around the barbed area of the PDO-barbed lifting threads were threefold greater than those around the barb-free areas of the threads. In the crisscross implantation pattern, width and density of the fibrotic areas were fivefold greater than those of the fan-shaped areas. Induction of fibrous capsules around the PDO-barbed thread was markedly condensed in the crisscross areas. CONCLUSIONS: This study provides the basis for a more logical implantation pattern in PDO-barbed lifting threads for facial rejuvenation. By generating controlled multiple crisscross patterns, we can create more intense fibrogenesis, reduce tension applied on each barbed thread, and, therefore, extend the longevity of the result.


Assuntos
Polidioxanona , Ritidoplastia , Animais , Fibrose , Camundongos , Camundongos Nus , Suturas
6.
Biochem Biophys Res Commun ; 496(3): 826-833, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29378184

RESUMO

Breast cancer is the most frequently diagnosed life-threatening cancer in women. Triple-negative breast cancer (TNBC) has an aggressive clinical behavior, but the treatment of TNBC remains challenging. MicroRNAs (miRNAs) have emerged as a potential target for the diagnosis, therapy and prognosis of breast cancer. However, the precise role of miRNAs and their targets in breast cancer remain to be elucidated. Here we show that miR-218 is downregulated and miR-129 is upregulated in TNBC samples and their expressions confer prognosis to patients. Gain-of-function and loss-of-function analysis reveals that miR-218 has a tumor suppressive activity, while miR-129 acts as an oncomir in breast cancer. Notably, miR-218 and miR-129 directly target Lamin B1 and Lamin A, respectively, which are also found to be deregulated in human breast tumors. Finally, we demonstrate Lamins as the major factors in reliable miR-218 and miR-129 functions for breast cancer progression. Our findings uncover a new miRNA-mediated regulatory network for different Lamins and provide a potential therapeutic target for breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Regulação Neoplásica da Expressão Gênica , Laminas/metabolismo , MicroRNAs/metabolismo , Proliferação de Células , Humanos , Células MCF-7 , Invasividade Neoplásica/patologia
7.
J Immunol ; 197(9): 3650-3661, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27683748

RESUMO

Dynamic changes of adipose tissue leukocytes, including adipose tissue macrophage (ATM) and adipose tissue dendritic cells (ATDCs), contribute to obesity-induced inflammation and metabolic disease. However, clear discrimination between ATDC and ATM in adipose tissue has limited progress in the field of immunometabolism. In this study, we use CD64 to distinguish ATM and ATDC, and investigated the temporal and functional changes in these myeloid populations during obesity. Flow cytometry and immunostaining demonstrated that the definition of ATM as F4/80+CD11b+ cells overlaps with other leukocytes and that CD45+CD64+ is specific for ATM. The expression of core dendritic cell genes was enriched in CD11c+CD64- cells (ATDC), whereas core macrophage genes were enriched in CD45+CD64+ cells (ATM). CD11c+CD64- ATDCs expressed MHC class II and costimulatory receptors, and had similar capacity to stimulate CD4+ T cell proliferation as ATMs. ATDCs were predominantly CD11b+ conventional dendritic cells and made up the bulk of CD11c+ cells in adipose tissue with moderate high-fat diet exposure. Mixed chimeric experiments with Ccr2-/- mice demonstrated that high-fat diet-induced ATM accumulation from monocytes was dependent on CCR2, whereas ATDC accumulation was less CCR2 dependent. ATDC accumulation during obesity was attenuated in Ccr7-/- mice and was associated with decreased adipose tissue inflammation and insulin resistance. CD45+CD64+ ATM and CD45+CD64-CD11c+ ATDCs were identified in human obese adipose tissue and ATDCs were increased in s.c. adipose tissue compared with omental adipose tissue. These results support a revised strategy for unambiguous delineation of ATM and ATDC, and suggest that ATDCs are independent contributors to adipose tissue inflammation during obesity.


Assuntos
Tecido Adiposo/imunologia , Células Dendríticas/imunologia , Inflamação/imunologia , Macrófagos/imunologia , Obesidade/imunologia , Animais , Células Cultivadas , Dieta Hiperlipídica , Perfilação da Expressão Gênica , Humanos , Imunofenotipagem , Resistência à Insulina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores CCR2/genética , Receptores CCR7/genética , Receptores de IgG/metabolismo
8.
Aesthetic Plast Surg ; 42(6): 1681-1688, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30194505

RESUMO

BACKGROUND: Carboxytherapy is the transcutaneous administration of CO2 gas for therapeutic purposes. Although this non-surgical procedure has been widely used for reducing localized adiposity, its effectiveness on fat loss in obese patients and its underlying mechanisms remain unclear. METHODS: C57BL/6 mice were fed with a high-fat diet for 8 weeks to generate obese animal models. Obese mice were randomly assigned to two groups: One group was administered air to both inguinal fat pads (air/air), and the other group was treated with air to the left inguinal fat pad and with CO2 to the right inguinal fat pad (air/CO2). Each group was treated every other day for 2 weeks. Morphological changes and expression levels of genes associated with lipogenesis and vascularization in fat were determined by histological and qRT-PCR analyses. RESULTS: Mice treated with air/CO2 showed lower body weights and blood glucose levels compared to air/air-treated mice. Paired comparison analysis revealed that CO2 administration significantly decreased adipose tissue weights and adipocyte sizes compared to air treatment. Additionally, CO2 treatment markedly increased vessel numbers and expressions of Vegfa and Fgf1 genes in adipose tissues. The expressions of Fasn and Fabp4 genes were also modestly reduced in CO2-treated adipose tissue. Moreover, Ucp1 expression, the target gene of VEGF and a key regulator in energy expenditure, was significantly increased in CO2-treated adipose tissue. CONCLUSIONS: Carboxytherapy is effective in the reduction of localized fat in obese patients which is mechanistically associated with alteration of the vasculature involved in VEGF. NO LEVEL ASSIGNED: This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Assuntos
Tecido Adiposo/metabolismo , Dióxido de Carbono/administração & dosagem , Obesidade/terapia , Proteína Desacopladora 1/genética , Fator A de Crescimento do Endotélio Vascular/genética , Redução de Peso , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Regulação da Expressão Gênica , Injeções Subcutâneas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sensibilidade e Especificidade , Resultado do Tratamento
9.
Biochem Biophys Res Commun ; 491(4): 903-911, 2017 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-28754590

RESUMO

Telmisartan, an angiotensin II type 1 receptor blocker (ARB), attenuates hyperglycemia-aggravated vascular inflammation by decreasing IκB kinase ß (IKKß) expression in endothelial cells. Because glycogen synthase 3ß (GSK3ß) is involved in inflammatory process by regulating nuclear factor-κB (NF-κB) activity, we investigated whether GSK3ß mediates telmisartan-ameliorated vascular inflammation in hyperglycemia-treated endothelial cells and high-fat diet (HFD)-fed mice. Telmisartan remarkably induced GSK3ß-Ser9 phosphorylation in hyperglycemia-treated endothelial cells that accompanied a decrease in hyperglycemia-induced NF-κB p65-Ser536 phosphorylation, vascular cell adhesion molecule-1 (VCAM-1) expression, and THP-1 monocyte adhesion. Ectopic expression of GSK3ß-S9A, a constitutively active mutant of GSK3ß, significantly restored complete telmisartan-inhibited NF-κB p65-Ser536 phosphorylation, VCAM-1 expression, and THP-1 monocyte adhesion. In addition, it reversed telmisartan-repressed IKKß expression. Among the ARB, including losartan and fimasartan, only telmisartan increased GSK3ß-Ser9 phosphorylation, and telmisartan-induced GSK3ß-Ser9 phosphorylation remained unchanged by pretreatment with GW9662, a specific and irreversible peroxisome proliferator-activated receptor γ (PPARγ) antagonist. Finally, in the aortas of HFD-fed mice, telmisartan treatment significantly attenuated HFD-induced upregulation of NF-κB p65-Ser536 phosphorylation, VCAM-1 expression, and IKKß expression and downregulation of GSK3ß-Ser9 phosphorylation. Taken together, our findings demonstrated that telmisartan ameliorates hyperglycemia-exacerbated vascular inflammation, at least in part, by inducing GSK3ß-Ser9 phosphorylation, which consequently inhibits IKKß expression, NF-κB p65-Ser536 phosphorylation, and VCAM-1 expression in a PPARγ-independent manner.


Assuntos
Aorta/efeitos dos fármacos , Benzimidazóis/farmacologia , Benzoatos/farmacologia , Células Endoteliais/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/metabolismo , Hiperglicemia/tratamento farmacológico , Inflamação/tratamento farmacológico , Fosfosserina/metabolismo , Vasculite/tratamento farmacológico , Animais , Aorta/metabolismo , Benzimidazóis/administração & dosagem , Benzoatos/administração & dosagem , Bovinos , Células Cultivadas , Relação Dose-Resposta a Droga , Células Endoteliais/metabolismo , Hiperglicemia/metabolismo , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos , Relação Estrutura-Atividade , Telmisartan , Vasculite/metabolismo
10.
J Biol Chem ; 290(21): 13250-62, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25869128

RESUMO

Women of reproductive age are protected from metabolic disease relative to postmenopausal women and men. Most preclinical rodent studies are skewed toward the use of male mice to study obesity-induced metabolic dysfunction because of a similar protection observed in female mice. How sex differences in obesity-induced inflammatory responses contribute to these observations is unknown. We have compared and contrasted the effects of high fat diet-induced obesity on glucose metabolism and leukocyte activation in multiple depots in male and female C57Bl/6 mice. With both short term and long term high fat diet, male mice demonstrated increased weight gain and CD11c(+) adipose tissue macrophage content compared with female mice despite similar degrees of adipocyte hypertrophy. Competitive bone marrow transplant studies demonstrated that obesity induced a preferential contribution of male hematopoietic cells to circulating leukocytes and adipose tissue macrophages compared with female cells independent of the sex of the recipient. Sex differences in macrophage and hematopoietic cell in vitro activation in response to obesogenic cues were observed to explain these results. In summary, this report demonstrates that male and female leukocytes and hematopoietic stem cells have cell-autonomous differences in their response to obesity that contribute to an amplified response in males compared with females.


Assuntos
Glicemia/metabolismo , Dieta Hiperlipídica/efeitos adversos , Células-Tronco Hematopoéticas/citologia , Inflamação/imunologia , Obesidade/etiologia , Tecido Adiposo/citologia , Tecido Adiposo/imunologia , Tecido Adiposo/metabolismo , Animais , Biomarcadores/análise , Células Cultivadas , Ensaio de Unidades Formadoras de Colônias , Feminino , Citometria de Fluxo , Teste de Tolerância a Glucose , Células-Tronco Hematopoéticas/metabolismo , Imuno-Histoquímica , Inflamação/complicações , Inflamação/patologia , Lipídeos/análise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mielopoese/fisiologia , Obesidade/metabolismo , Obesidade/patologia , Fatores Sexuais , Aumento de Peso
11.
Front Immunol ; 15: 1335651, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38566998

RESUMO

Regulatory T cells (Tregs) residing in visceral adipose tissue (VAT) play a pivotal role in regulating tissue inflammation and metabolic dysfunction associated with obesity. However, the specific phenotypic and functional characteristics of Tregs in obese VAT, as well as the regulatory mechanisms shaping them, remain elusive. This study demonstrates that obesity selectively reduces Tregs in VAT, characterized by restrained proliferation, heightened PD-1 expression, and diminished ST2 expression. Additionally, obese VAT displays distinctive maturation of dendritic cells (DCs), marked by elevated expressions of MHC-II, CD86, and PD-L1, which are inversely correlated with VAT Tregs. In an in vitro co-culture experiment, only obese VAT DCs, not macrophages or DCs from subcutaneous adipose tissue (SAT) and spleen, result in decreased Treg differentiation and proliferation. Furthermore, Tregs differentiated by obese VAT DCs exhibit distinct characteristics resembling those of Tregs in obese VAT, such as reduced ST2 and IL-10 expression. Mechanistically, obesity lowers IL-33 production in VAT DCs, contributing to the diminished Treg differentiation. These findings collectively underscore the critical role of VAT DCs in modulating Treg generation and shaping Treg phenotype and function during obesity, potentially contributing to the regulation of VAT Treg populations.


Assuntos
Interleucina-33 , Linfócitos T Reguladores , Humanos , Linfócitos T Reguladores/metabolismo , Interleucina-33/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Obesidade/metabolismo , Células Dendríticas/metabolismo
12.
Metabolism ; 142: 155527, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36870601

RESUMO

BACKGROUND AND AIMS: Obesity is a state of chronic low-grade systemic inflammation. Recent studies showed that NLRP3 inflammasome initiates metabolic dysregulation in adipose tissues, primarily through activation of adipose tissue infiltrated macrophages. However, the mechanism of NLRP3 activation and its role in adipocytes remains elusive. Therefore, we aimed to examine the activation of TNFα-induced NLRP3 inflammasome in adipocytes and its role on adipocyte metabolism and crosstalk with macrophages. METHODS: The effect of TNFα on adipocyte NLRP3 inflammasome activation was measured. Caspase-1 inhibitor (Ac-YVAD-cmk) and primary adipocytes from NLRP3 and caspase-1 knockout mice were utilized to block NLRP3 inflammasome activation. Biomarkers were measured by using real-time PCR, western blotting, immunofluorescence staining, and enzyme assay kits. Conditioned media from TNFα-stimulated adipocytes was used to establish the adipocyte-macrophage crosstalk. Chromatin immunoprecipitation assay was used to identify the role of NLRP3 as a transcription factor. Mouse and human adipose tissues were collected for correlation analysis. RESULTS: TNFα treatment induced NLRP3 expression and caspase-1 activity in adipocytes, partly through autophagy dysregulation. The activated adipocyte NLRP3 inflammasome participated in mitochondrial dysfunction and insulin resistance, as evidenced by the amelioration of these effects in Ac-YVAD-cmk treated 3T3-L1 cells or primary adipocytes isolated from NLRP3 and caspase-1 knockout mice. Particularly, the adipocyte NLRP3 inflammasome was involved in glucose uptake regulation. Also, TNFα induced expression and secretion of lipocalin 2 (Lcn2) in a NLRP3-dependent manner. NLRP3 could bind to the promoter and transcriptionally regulate Lcn2 in adipocytes. Treatment with adipocyte conditioned media revealed that adipocyte-derived Lcn2 was responsible for macrophage NLRP3 inflammasome activation, working as a second signal. Adipocytes isolated from high-fat diet mice and adipose tissue from obese individuals showed a positive correlation between NLRP3 and Lcn2 gene expression. CONCLUSIONS: This study highlights the importance of adipocyte NLRP3 inflammasome activation and novel role of TNFα-NLRP3-Lcn2 axis in adipose tissue. It adds rational for the current development of NLRP3 inhibitors for treating obesity-induced metabolic diseases.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Camundongos , Animais , Lipocalina-2/genética , Lipocalina-2/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Meios de Cultivo Condicionados/farmacologia , Adipócitos/metabolismo , Macrófagos/metabolismo , Obesidade/metabolismo , Camundongos Knockout , Caspases/metabolismo , Caspases/farmacologia
13.
J Adv Res ; 45: 1-13, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35659922

RESUMO

INTRODUCTION: Sterol regulatory element binding protein (SREBP) cleavage-associating protein (SCAP) is a sterol-regulated escort protein that translocates SREBPs from the endoplasmic reticulum to the Golgi apparatus, thereby activating lipid metabolism and cholesterol synthesis. Although SCAP regulates lipid metabolism in metabolic tissues, such as the liver and muscle, the effect of macrophage-specific SCAP deficiency in adipose tissue macrophages (ATMs) of patients with metabolic diseases is not completely understood. OBJECTIVES: Here, we examined the function of SCAP in high-fat/high-sucrose diet (HFHS)-fed mice and investigated its role in the polarization of classical activated macrophages in adipose tissue. METHODS: Macrophage-specific SCAP knockout (mKO) mice were generated through crossbreeding lysozyme 2-cre mice with SCAP floxed mice which were then fed HFHS for 12 weeks. Primary macrophages were derived from bone marrow cells and analyzed further. RESULTS: We found that fat accumulation and the appearance of proinflammatory M1 macrophages were both higher in HFHS-fed SCAP mKO mice relative to floxed control mice. We traced the effect to a defect in the lipopolysaccharide-mediated increase in SREBP-1a that occurs in control but not SCAP mKO mice. Mechanistically, SREBP-1a increased expression of cholesterol 25-hydroxylase transcription, resulting in an increase in the production of 25-hydroxycholesterol (25-HC), an endogenous agonist of liver X receptor alpha (LXRα) which increased expression of cholesterol efflux to limit cholesterol accumulation and M1 polarization. In the absence of SCAP mediated activation of SREBP-1a, increased M1 macrophage polarization resulted in reduced cholesterol efflux downstream from 25-HC-dependent LXRα activation. CONCLUSION: Overall, the activation of the SCAP-SREBP-1a pathway in macrophages may provide a novel therapeutic strategy that ameliorates obesity by controlling cholesterol homeostasis in ATMs.


Assuntos
Resistência à Insulina , Camundongos , Animais , Proteína de Ligação a Elemento Regulador de Esterol 1 , Peptídeos e Proteínas de Sinalização Intracelular , Colesterol , Obesidade
14.
J Biol Chem ; 286(44): 38128-38135, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-21908604

RESUMO

Obesity is associated with hepatic steatosis, partially due to increased lipogenesis and decreased fatty acid ß-oxidation in the liver; however, the underlying mechanism of abnormal lipid metabolism is not fully understood. We reported previously that obesity is associated with LCN13 (lipocalin 13) deficiency. LCN13 is a lipocalin family member involved in glucose metabolism, and LCN13 deficiency appears to contribute to hyperglycemia in obese mice. Here, we show that LCN13 is also an important regulator of lipogenesis and ß-oxidation in the liver. In primary hepatocytes, recombinant LCN13 directly suppressed lipogenesis and increased fatty acid ß-oxidation, whereas neutralization of endogenous LCN13 had an opposite effect. Transgenic overexpression of LCN13 protected against hepatic steatosis in mice with either dietary or genetic (ob/ob) obesity. LCN13 transgenic overexpression also improved hyperglycemia, glucose intolerance, and insulin resistance in ob/ob mice. Short-term LCN13 overexpression via an adenovirus-mediated gene transfer similarly attenuated hepatic steatosis in db/db mice. LCN13 inhibited the expression of important lipogenic genes and stimulated the genes that promote ß-oxidation. These results suggest that LCN13 decreases liver lipid levels by both inhibiting hepatic lipogenesis and stimulating ß-oxidation. LCN13 deficiency is likely to contribute to fatty liver disease in obese mice.


Assuntos
Ácidos Graxos/química , Fígado Gorduroso/metabolismo , Lipocalinas/metabolismo , Animais , Meios de Cultivo Condicionados/farmacologia , Modelos Animais de Doenças , Fígado Gorduroso/patologia , Resistência à Insulina , Lipídeos/química , Luciferases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Camundongos Transgênicos , Proteínas Recombinantes/química , Transgenes
15.
Am J Physiol Endocrinol Metab ; 302(8): E932-40, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22297305

RESUMO

The prevalence of insulin resistance and type 2 diabetes increases rapidly; however, treatments are limited. Various herbal extracts have been reported to reduce blood glucose in animals with either genetic or dietary type 2 diabetes; however, plant extracts are extremely complex, and leading compounds remain largely unknown. Here we show that 5-O-methyl-myo-inositol (also called sequoyitol), a herbal constituent, exerts antidiabetic effects in mice. Sequoyitol was chronically administrated into ob/ob mice either orally or subcutaneously. Both oral and subcutaneous administrations of sequoyitol decreased blood glucose, improved glucose intolerance, and enhanced insulin signaling in ob/ob mice. Sequoyitol directly enhanced insulin signaling, including phosphorylation of insulin receptor substrate-1 and Akt, in both HepG2 cells (derived from human hepatocytes) and 3T3-L1 adipocytes. In agreement, sequoyitol increased the ability of insulin to suppress glucose production in primary hepatocytes and to stimulate glucose uptake into primary adipocytes. Furthermore, sequoyitol improved insulin signaling in INS-1 cells (a rat ß-cell line) and protected INS-1 cells from streptozotocin- or H2O2-induced injury. In mice with streptozotocin-induced ß-cell deficiency, sequoyitol treatments increased plasma insulin levels and decreased hyperglycemia and glucose intolerance. These results indicate that sequoyitol, a natural, water-soluble small molecule, ameliorates hyperglycemia and glucose intolerance by increasing both insulin sensitivity and insulin secretion. Sequoyitol appears to directly target hepatocytes, adipocytes, and ß-cells. Therefore, sequoyitol may serve as a new oral diabetes medication.


Assuntos
Adipócitos Brancos/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Intolerância à Glucose/prevenção & controle , Hepatócitos/efeitos dos fármacos , Hiperglicemia/prevenção & controle , Inositol/análogos & derivados , Células Secretoras de Insulina/efeitos dos fármacos , Adipócitos Brancos/citologia , Adipócitos Brancos/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/metabolismo , Feminino , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Inositol/farmacologia , Inositol/uso terapêutico , Insulina/sangue , Insulina/metabolismo , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Substâncias Protetoras/farmacologia , Substâncias Protetoras/uso terapêutico , Ratos , Transdução de Sinais/efeitos dos fármacos
16.
Tissue Eng Regen Med ; 19(5): 1051-1061, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35852724

RESUMO

BACKGROUND: Angiogenesis plays an important role in determining the fat graft survival. However, clinical preconditioning techniques that target angiogenesis during fat grafting have not been established so far. Adenosine has emerged as a regulator of angiogenesis under hypoxic conditions; therefore, the aim of this study was to investigate the effects and underlying mechanisms of adenosine prefabrication on fat graft survival. METHODS: In the first animal study, a total of 32 mice were transplanted with fat prefabricated with vehicle (Control, N = 16) or adenosine (Adenosine, N = 16). In the second animal study, 24 mice were divided into three groups based on the type of fat graft: Control (N = 8), Adenosine (N = 8), and Axitinib (cotreatment of adenosine with axitinib, N = 8). At 1- and 4-weeks post-transplantation, grafts were evaluated by histopathological and biochemical assessment. Adenosine-induced vascular endothelial growth factor (VEGF) production and angiogenesis were determined using cell cultures. RESULTS: The retention volumes of fat grafts in the adenosine group were significantly increased until 4 weeks. Fat grafts from the adenosine group exhibited greater structural integrity, reduced fibrosis, and increased blood vessels. The expression levels of angiogenesis-related genes, Vegfa, Vegfr1, Vegfr2, and Vwf, were elevated in the adenosine group. Furthermore, adenosine upregulated VEGF production in preadipocytes, thereby enhancing the migration of endothelial cells. Treatment with the axitinib, VEGF receptor inhibitor, abrogated the adenosine-induced angiogenesis in the fat grafts. CONCLUSION: Adenosine prefabrication in fat improved the graft survival by enhancing angiogenesis through the VEGF/VEGFR axis in the preadipocytes and endothelial cells. Therefore, this method may be used as a novel strategy to increase the retention rate in fat grafts.


Assuntos
Sobrevivência de Enxerto , Fator A de Crescimento do Endotélio Vascular , Adenosina/metabolismo , Adenosina/farmacologia , Tecido Adiposo/metabolismo , Animais , Axitinibe/farmacologia , Células Endoteliais/metabolismo , Camundongos , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular/farmacologia , Fator de von Willebrand/metabolismo , Fator de von Willebrand/farmacologia
17.
JCI Insight ; 7(3)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34990410

RESUMO

Increased adipose tissue macrophages (ATMs) correlate with metabolic dysfunction in humans and are causal in development of insulin resistance in mice. Recent bulk and single-cell transcriptomics studies reveal a wide spectrum of gene expression signatures possible for macrophages that depends on context, but the signatures of human ATM subtypes are not well defined in obesity and diabetes. We profiled 3 prominent ATM subtypes from human adipose tissue in obesity and determined their relationship to type 2 diabetes. Visceral adipose tissue (VAT) and s.c. adipose tissue (SAT) samples were collected from diabetic and nondiabetic obese participants to evaluate cellular content and gene expression. VAT CD206+CD11c- ATMs were increased in diabetic participants, were scavenger receptor-rich with low intracellular lipids, secreted proinflammatory cytokines, and diverged significantly from 2 CD11c+ ATM subtypes, which were lipid-laden, were lipid antigen presenting, and overlapped with monocyte signatures. Furthermore, diabetic VAT was enriched for CD206+CD11c- ATM and inflammatory signatures, scavenger receptors, and MHC II antigen presentation genes. VAT immunostaining found CD206+CD11c- ATMs concentrated in vascularized lymphoid clusters adjacent to CD206-CD11c+ ATMs, while CD206+CD11c+ were distributed between adipocytes. Our results show ATM subtype-specific profiles that uniquely contribute to the phenotypic variation in obesity.


Assuntos
Tecido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/genética , Regulação da Expressão Gênica , Resistência à Insulina/genética , Macrófagos/metabolismo , Glicoproteínas de Membrana/genética , Obesidade/genética , Receptores Imunológicos/genética , Adipócitos/metabolismo , Tecido Adiposo/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , DNA/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Feminino , Seguimentos , Humanos , Macrófagos/patologia , Masculino , Glicoproteínas de Membrana/biossíntese , Pessoa de Meia-Idade , Obesidade/metabolismo , Obesidade/patologia , Receptores Imunológicos/biossíntese , Fatores de Tempo , Adulto Jovem
18.
Diabetes ; 71(11): 2297-2312, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35983955

RESUMO

The innate immune kinase TBK1 (TANK-binding kinase 1) responds to microbial-derived signals to initiate responses against viral and bacterial pathogens. More recent work implicates TBK1 in metabolism and tumorigenesis. The kinase mTOR (mechanistic target of rapamycin) integrates diverse environmental cues to control fundamental cellular processes. Our prior work demonstrated in cells that TBK1 phosphorylates mTOR (on S2159) to increase mTORC1 and mTORC2 catalytic activity and signaling. Here we investigate a role for TBK1-mTOR signaling in control of glucose metabolism in vivo. We find that mice with diet-induced obesity (DIO) but not lean mice bearing a whole-body "TBK1-resistant" Mtor S2159A knock-in allele (MtorA/A) display exacerbated hyperglycemia and systemic insulin resistance with no change in energy balance. Mechanistically, Mtor S2159A knock-in in DIO mice reduces mTORC1 and mTORC2 signaling in response to insulin and innate immune agonists, reduces anti-inflammatory gene expression in adipose tissue, and blunts anti-inflammatory macrophage M2 polarization, phenotypes shared by mice with tissue-specific inactivation of TBK1 or mTOR complexes. Tissues from DIO mice display elevated TBK1 activity and mTOR S2159 phosphorylation relative to lean mice. We propose a model whereby obesity-associated signals increase TBK1 activity and mTOR phosphorylation, which boost mTORC1 and mTORC2 signaling in parallel to the insulin pathway, thereby attenuating insulin resistance to improve glycemic control during diet-induced obesity.


Assuntos
Hiperglicemia , Resistência à Insulina , Camundongos , Animais , Resistência à Insulina/genética , Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina , Sirolimo/farmacologia , Insulina/metabolismo , Obesidade/genética , Camundongos Obesos , Hiperglicemia/genética , Glucose , Proteínas Serina-Treonina Quinases/genética
19.
J Nutr Biochem ; 110: 109127, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35977667

RESUMO

Fatty acid esters of hydroxyl fatty acids (FAHFAs) are a new family of endogenous lipids that exert anti-inflammatory action. Among the various FAHFA isomers, the dietary source of oleic acid-hydroxy stearic acid (OAHSA) and its anti-inflammatory functions are poorly understood. This study investigated the composition of OAHSA isomers in dietary oils and the impact of 12-OAHSA on obesity-induced inflammation. Liquid chromatography with tandem mass spectrometry analysis revealed that various dietary oils, including fish oil, corn oil, palm oil, soybean oil, and olive oil, present a wide variation in OAHSA profiles and amounts. The highest amounts of total OAHSAs are present in olive oil including 12-OAHSA. Compared to vehicle-treated obese mice, administration of 12-OAHSA significantly improved glucose homeostasis, independent of body weight. 12-OAHSA-treated mice displayed significantly reduced accumulation of CD11c+ adipose tissue macrophages, and CD4+/CD8+ adipose tissue T lymphocytes. Concomitantly, the expression of pro-inflammatory cytokine genes and the nuclear factor kappa-light-chain-enhancer of activated B cells signaling pathway were significantly decreased in the 12-OAHSA-treated adipose tissue, while the expression of the anti-inflammatory gene Il10 was markedly increased. Moreover, in vitro cell culture experiments showed that 12-OAHSA significantly inhibited the lipopolysaccharides-induced inflammatory response in macrophages by suppressing the nuclear factor kappa-light-chain-enhancer of activated B cells signaling pathway. Collectively, these results indicated that 12-OAHSA, as a component of olive oil, mitigates obesity-induced insulin resistance by regulating AT inflammation. Therefore, 12-OAHSA could be used as a novel nutritional intervention against obesity-associated metabolic dysregulation.


Assuntos
Obesidade , Ácido Oleico , Camundongos , Animais , Azeite de Oliva/farmacologia , Obesidade/metabolismo , Inflamação/prevenção & controle , Inflamação/metabolismo , Ácidos Graxos/metabolismo , Ácidos Esteáricos , Óleo de Milho , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
20.
J Cachexia Sarcopenia Muscle ; 13(6): 3149-3162, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36127129

RESUMO

BACKGROUND: The effects of some drugs, aging, cancers, and other diseases can cause muscle wasting. Currently, there are no effective drugs for treating muscle wasting. In this study, the effects of ginsenoside Rd (GRd) on muscle wasting were studied. METHODS: Tumour necrosis factor-alpha (TNF-α)/interferon-gamma (IFN-γ)-induced myotube atrophy in mouse C2C12 and human skeletal myoblasts (HSkM) was evaluated based on cell thickness. Atrophy-related signalling, reactive oxygen species (ROS) level, mitochondrial membrane potential, and mitochondrial number were assessed. GRd (10 mg/kg body weight) was orally administered to aged mice (23-24 months old) and tumour-bearing (Lewis lung carcinoma [LLC1] or CT26) mice for 5 weeks and 16 days, respectively. Body weight, grip strength, inverted hanging time, and muscle weight were assessed. Histological analysis was also performed to assess the effects of GRd. The evolutionary chemical binding similarity (ECBS) approach, molecular docking, Biacore assay, and signal transducer and activator of transcription (STAT) 3 reporter assay were used to identify targets of GRd. RESULTS: GRd significantly induced hypertrophy in the C2C12 and HSkM myotubes (average diameter 50.8 ± 2.6% and 49.9% ± 3.7% higher at 100 nM, vs. control, P ≤ 0.001). GRd treatment ameliorated aging- and cancer-induced (LLC1 or CT26) muscle atrophy in mice, which was evidenced by significant increases in grip strength, hanging time, muscle mass, and muscle tissue cross-sectional area (1.3-fold to 4.6-fold, vs. vehicle, P ≤ 0.05; P ≤ 0.01; P ≤ 0.001). STAT3 was found to be a possible target of GRd by the ECBS approach and molecular docking assay. Validation of direct interaction between GRd and STAT3 was confirmed through Biacore analysis. GRd also inhibited STAT3 phosphorylation and STAT3 reporter activity, which led to the inhibition of STAT3 nuclear translocation and the suppression of downstream targets of STAT3, such as atrogin-1, muscle-specific RING finger protein (MuRF-1), and myostatin (MSTN) (29.0 ± 11.2% to 84.3 ± 30.5%, vs. vehicle, P ≤ 0.05; P ≤ 0.01; P ≤ 0.001). Additionally, GRd scavenged ROS (91.7 ± 1.4% reduction at 1 nM, vs. vehicle, P ≤ 0.001), inhibited TNF-α-induced dysregulation of ROS level, and improved mitochondrial integrity (P ≤ 0.05; P ≤ 0.01; P ≤ 0.001). CONCLUSIONS: GRd ameliorates aging- and cancer-induced muscle wasting. Our findings suggest that GRd may be a novel therapeutic agent or adjuvant for reversing muscle wasting.


Assuntos
Carcinoma Pulmonar de Lewis , Mioblastos Esqueléticos , Fator de Transcrição STAT3 , Animais , Humanos , Camundongos , Caquexia/etiologia , Carcinoma Pulmonar de Lewis/complicações , Simulação de Acoplamento Molecular , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/farmacologia , Fator de Necrose Tumoral alfa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA