Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Am Nat ; 204(2): 121-132, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39008840

RESUMO

AbstractClimate change will alter interactions between parasites and their hosts. Warming may affect patterns of local adaptation, shifting the environment to favor the parasite or host and thus changing the prevalence of disease. We assessed local adaptation to hosts and temperature in the facultative ciliate parasite Lambornella clarki, which infects the western tree hole mosquito Aedes sierrensis. We conducted laboratory infection experiments with mosquito larvae and parasites collected from across a climate gradient, pairing sympatric or allopatric populations across three temperatures that were either matched or mismatched to the source environment. Lambornella clarki parasites were locally adapted to their hosts, with 2.6 times higher infection rates on sympatric populations compared with allopatric populations, but they were not locally adapted to temperature. Infection peaked at the intermediate temperature of 12.5°C, notably lower than the optimum temperature for free-living L. clarki growth, suggesting that the host's immune response can play a significant role in mediating the outcome of infection. Our results highlight the importance of host selective pressure on parasites, despite the impact of temperature on infection success.


Assuntos
Aedes , Interações Hospedeiro-Parasita , Larva , Temperatura , Animais , Aedes/parasitologia , Larva/parasitologia , Larva/crescimento & desenvolvimento , Adaptação Fisiológica , Apicomplexa/fisiologia
2.
Proc Biol Sci ; 291(2015): 20232457, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38264779

RESUMO

How mosquitoes may respond to rapid climate warming remains unknown for most species, but will have major consequences for their future distributions, with cascading impacts on human well-being, biodiversity and ecosystem function. We investigated the adaptive potential of a wide-ranging mosquito species, Aedes sierrensis, across a large climatic gradient by conducting a common garden experiment measuring the thermal limits of mosquito life-history traits. Although field-collected populations originated from vastly different thermal environments that spanned over 1200 km, we found limited variation in upper thermal tolerance between populations. In particular, the upper thermal limits of all life-history traits varied by less than 3°C across the species range and, for most traits, did not differ significantly between populations. For one life-history trait-pupal development rate-we did detect significant variation in upper thermal limits between populations, and this variation was strongly correlated with source temperatures, providing evidence of local thermal adaptation for pupal development. However, we found that maximum environmental temperatures across most of the species' range already regularly exceed the highest upper thermal limits estimated under constant temperatures. This result suggests that strategies for coping with and/or avoiding thermal extremes are likely key components of current and future mosquito thermal tolerance.


Assuntos
Aedes , Ecossistema , Humanos , Animais , Aclimatação , Biodiversidade , Capacidades de Enfrentamento
3.
J Anim Ecol ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39030760

RESUMO

Variation in heat tolerance among populations can determine whether a species is able to cope with ongoing climate change. Such variation may be especially important for ectotherms whose body temperatures, and consequently, physiological processes, are regulated by external conditions. Additionally, differences in body size are often associated with latitudinal clines, thought to be driven by climate gradients. While studies have begun to explore variation in body size and heat tolerance within species, our understanding of these patterns across large spatial scales, particularly regarding the roles of plasticity and genetic differences, remains incomplete. Here, we examine body size, as measured by wing length, and thermal tolerance, as measured by the time to immobilisation at high temperatures ("thermal knockdown"), in populations of the mosquito Aedes sierrensis collected from across a large latitudinal climate gradient spanning 1300 km (34-44° N). We find that mosquitoes collected from lower latitudes and warmer climates were more tolerant of high temperatures than those collected from higher latitudes and colder climates. Moreover, body size increased with latitude and decreased with temperature, a pattern consistent with James' rule, which appears to be a result of plasticity rather than genetic variation. Our results suggest that warmer environments produce smaller and more thermally tolerant populations.

4.
Oecologia ; 204(2): 389-399, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38006450

RESUMO

Parasites play key roles in regulating aquatic ecosystems, yet the impact of climate warming on their ecology and disease transmission remains poorly understood. Isolating the effect of warming is challenging as transmission involves multiple interacting species and potential intraspecific variation in temperature responses of one or more of these species. Here, we leverage a wide-ranging mosquito species and its facultative parasite as a model system to investigate the impact of temperature on host-parasite interactions and disease transmission. We conducted a common garden experiment measuring parasite growth and infection rates at seven temperatures using 12 field-collected parasite populations and a single mosquito population. We find that both free-living growth rates and infection rates varied with temperature, which were highest at 18-24.5 °C and 13 °C, respectively. Further, we find intraspecific variation in peak performance temperature reflecting patterns of local thermal adaptation-parasite populations from warmer source environments typically had higher thermal optima for free-living growth rates. For infection rates, we found a significant interaction between parasite population and nonlinear effects of temperature. These findings underscore the need to consider both host and parasite thermal responses, as well as intraspecific variation in thermal responses, when predicting the impacts of climate change on disease in aquatic ecosystems.


Assuntos
Ecossistema , Interações Hospedeiro-Parasita , Animais , Temperatura , Aclimatação , Mudança Climática
5.
Mol Ecol ; 31(9): 2698-2711, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35231145

RESUMO

A vector's susceptibility and ability to transmit a pathogen-termed vector competency-determines disease outcomes, yet the ecological factors influencing tick vector competency remain largely unknown. Ixodes pacificus, the tick vector of Borrelia burgdorferi (Bb) in the western U.S., feeds on rodents, birds, and lizards. Rodents and birds are reservoirs for Bb and infect juvenile ticks, while lizards are refractory to Bb and cannot infect feeding ticks. Additionally, the lizard bloodmeal contains borreliacidal properties, clearing previously infected feeding ticks of their Bb infection. Despite I. pacificus feeding on a range of hosts, it is undetermined how the host identity of the larval bloodmeal affects future nymphal vector competency. We experimentally evaluate the influence of larval host bloodmeal on Bb acquisition by nymphal I. pacificus. Larval I. pacificus were fed on either lizards or mice and after molting, nymphs were fed on Bb-infected mice. We found that lizard-fed larvae were significantly more likely to become infected with Bb during their next bloodmeal than mouse-fed larvae. We also conducted the first RNA-seq analysis on whole-bodied I. pacificus and found significant upregulation of tick antioxidants and antimicrobial peptides in the lizard-fed group. Our results indicate that the lizard bloodmeal significantly alters vector competency and gene regulation in ticks, highlighting the importance of host bloodmeal identity in vector-borne disease transmission and upends prior notions about the role of lizards in Lyme disease community ecology.


Assuntos
Ixodes , Lagartos , Doença de Lyme , Animais , Aves , Vetores de Doenças , Expressão Gênica , Ixodes/genética , Larva/genética , Lagartos/genética , Doença de Lyme/genética , Camundongos , Ninfa/genética , Roedores
6.
Ecol Lett ; 24(4): 829-846, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33501751

RESUMO

Vector-borne diseases (VBDs) are embedded within complex socio-ecological systems. While research has traditionally focused on the direct effects of VBDs on human morbidity and mortality, it is increasingly clear that their impacts are much more pervasive. VBDs are dynamically linked to feedbacks between environmental conditions, vector ecology, disease burden, and societal responses that drive transmission. As a result, VBDs have had profound influence on human history. Mechanisms include: (1) killing or debilitating large numbers of people, with demographic and population-level impacts; (2) differentially affecting populations based on prior history of disease exposure, immunity, and resistance; (3) being weaponised to promote or justify hierarchies of power, colonialism, racism, classism and sexism; (4) catalysing changes in ideas, institutions, infrastructure, technologies and social practices in efforts to control disease outbreaks; and (5) changing human relationships with the land and environment. We use historical and archaeological evidence interpreted through an ecological lens to illustrate how VBDs have shaped society and culture, focusing on case studies from four pertinent VBDs: plague, malaria, yellow fever and trypanosomiasis. By comparing across diseases, time periods and geographies, we highlight the enormous scope and variety of mechanisms by which VBDs have influenced human history.


Assuntos
Malária , Doenças Transmitidas por Vetores , Vetores de Doenças , Humanos
7.
Proc Biol Sci ; 288(1957): 20210811, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34428971

RESUMO

Mathematical models of epidemics are important tools for predicting epidemic dynamics and evaluating interventions. Yet, because early models are built on limited information, it is unclear how long they will accurately capture epidemic dynamics. Using a stochastic SEIR model of COVID-19 fitted to reported deaths, we estimated transmission parameters at different time points during the first wave of the epidemic (March-June, 2020) in Santa Clara County, California. Although our estimated basic reproduction number ([Formula: see text]) remained stable from early April to late June (with an overall median of 3.76), our estimated effective reproduction number ([Formula: see text]) varied from 0.18 to 1.02 in April before stabilizing at 0.64 on 27 May. Between 22 April and 27 May, our model accurately predicted dynamics through June; however, the model did not predict rising summer cases after shelter-in-place orders were relaxed in June, which, in early July, was reflected in cases but not yet in deaths. While models are critical for informing intervention policy early in an epidemic, their performance will be limited as epidemic dynamics evolve. This paper is one of the first to evaluate the accuracy of an early epidemiological compartment model over time to understand the value and limitations of models during unfolding epidemics.


Assuntos
COVID-19 , Epidemias , Número Básico de Reprodução , Humanos , Modelos Teóricos , SARS-CoV-2
8.
Glob Chang Biol ; 27(4): 738-754, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33150704

RESUMO

Lyme disease is the most common vector-borne disease in temperate zones and a growing public health threat in the United States (US). The life cycles of the tick vectors and spirochete pathogen are highly sensitive to climate, but determining the impact of climate change on Lyme disease burden has been challenging due to the complex ecology of the disease and the presence of multiple, interacting drivers of transmission. Here we incorporated 18 years of annual, county-level Lyme disease case data in a panel data statistical model to investigate prior effects of climate variation on disease incidence while controlling for other putative drivers. We then used these climate-disease relationships to project Lyme disease cases using CMIP5 global climate models and two potential climate scenarios (RCP4.5 and RCP8.5). We find that interannual variation in Lyme disease incidence is associated with climate variation in all US regions encompassing the range of the primary vector species. In all regions, the climate predictors explained less of the variation in Lyme disease incidence than unobserved county-level heterogeneity, but the strongest climate-disease association detected was between warming annual temperatures and increasing incidence in the Northeast. Lyme disease projections indicate that cases in the Northeast will increase significantly by 2050 (23,619 ± 21,607 additional cases), but only under RCP8.5, and with large uncertainty around this projected increase. Significant case changes are not projected for any other region under either climate scenario. The results demonstrate a regionally variable and nuanced relationship between climate change and Lyme disease, indicating possible nonlinear responses of vector ticks and transmission dynamics to projected climate change. Moreover, our results highlight the need for improved preparedness and public health interventions in endemic regions to minimize the impact of further climate change-induced increases in Lyme disease burden.


Assuntos
Ixodes , Doença de Lyme , Animais , Mudança Climática , Previsões , Incidência , Doença de Lyme/epidemiologia , Estados Unidos/epidemiologia
9.
bioRxiv ; 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37131754

RESUMO

Climate change will alter interactions between parasites and their hosts. Warming may affect patterns of local adaptation, shifting the environment to favor the parasite or host and thus changing the prevalence of disease. We assessed local adaptation in the facultative ciliate parasite Lambornella clarki, which infects the western tree hole mosquito Aedes sierrensis. We conducted laboratory infection experiments with mosquito larvae and parasites collected from across a climate gradient, pairing sympatric or allopatric populations across three temperatures that were either matched or mismatched to the source environment. L. clarki parasites were locally adapted to their hosts, with 2.6x higher infection rates on sympatric compared to allopatric populations, but were not locally adapted to temperature. Infection peaked at the intermediate temperature of 13°C. Our results highlight the importance of host selective pressure on parasites, despite the impact of temperature on infection success.

10.
bioRxiv ; 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37662401

RESUMO

Parasites play key roles in regulating aquatic ecosystems, yet the impact of climate warming on their ecology and disease transmission remains poorly understood. Isolating the effect of warming is challenging as transmission involves multiple interacting species and potential intraspecific variation in temperature responses of one or more of these species. Here, we leverage a wide-ranging mosquito species and its facultative parasite as a model system to investigate the impact of temperature on host-parasite interactions and disease transmission. We conducted a common garden experiment measuring parasite growth and infection rates at seven temperatures using 12 field-collected parasite populations and a single mosquito population. We find that both free-living growth rates and infection rates varied with temperature, which were highest at 18-24.5°C and 13°C, respectively. Further, we find intraspecific variation in peak performance temperature reflecting patterns of local thermal adaptation-parasite populations from warmer source environments typically had higher thermal optima for free-living growth rates. For infection rates, we found a significant interaction between parasite population and nonlinear effects of temperature. These findings underscore the need to consider both host and parasite thermal responses, as well as intraspecific variation in thermal responses, when predicting the impacts of climate change on disease in aquatic ecosystems.

11.
bioRxiv ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37961581

RESUMO

How mosquitoes may respond to rapid climate warming remains unknown for most species, but will have major consequences for their future distributions, with cascading impacts on human well-being, biodiversity, and ecosystem function. We investigated the adaptive potential of a wide-ranging mosquito species, Aedes sierrensis, across a large climatic gradient by conducting a common garden experiment measuring the thermal limits of mosquito life history traits. Although field-collected populations originated from vastly different thermal environments that spanned over 1,200 km, we found remarkably limited variation in upper thermal tolerance between populations, with the upper thermal limits of fitness varying by <1°C across the species range. For one life history trait-pupal development rate-we did detect significant variation in upper thermal limits between populations, and this variation was strongly correlated with source temperatures, providing evidence of local thermal adaptation for pupal development. However, we found environmental temperatures already regularly exceed our highest estimated upper thermal limits throughout most of the species range, suggesting limited potential for mosquito thermal tolerance to evolve on pace with warming. Strategies for avoiding high temperatures such as diapause, phenological shifts, and behavioral thermoregulation are likely important for mosquito persistence.

12.
Parasit Vectors ; 15(1): 388, 2022 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-36274157

RESUMO

BACKGROUND: Effectively controlling heartworm disease-a major parasitic disease threatening animal health in the US and globally-requires understanding the local ecology of mosquito vectors involved in transmission. However, the key vector species in a given region are often unknown and challenging to identify. Here we investigate (i) the key vector species associated with transmission of the parasite, Dirofilaria immitis, in California and (ii) the climate and land cover drivers of vector presence. METHODS: To identify key mosquito vectors involved in transmission, we incorporated long-term, finely resolved mosquito surveillance data and dog heartworm case data in a statistical modeling approach (fixed-effects regression) that rigorously controls for other unobserved drivers of heartworm cases. We then used a flexible machine learning approach (gradient boosted machines) to identify the climate and land cover variables associated with the presence of each species. RESULTS: We found significant, regionally specific, positive associations between dog heartworm cases and the abundance of four vector species: Aedes aegypti (Central California), Ae. albopictus (Southern California), Ae. sierrensis (Central California), and Culiseta incidens (Northern and Central California). The proportion of developed land cover was one of the most important ecological variables predicting the presence or absence of the putative vector species. CONCLUSION: Our results implicate three previously under-recognized vectors of dog heartworm transmission in California and indicate the land cover types in which each putative vector species is commonly found. Efforts to target these species could prioritize surveillance in these land cover types (e.g. near human dwellings in less urbanized settings for Ae. albopictus and Cs. incidens) but further investigation on the natural infection prevalence and host-biting rates of these species, as well as the other local vectors, is needed.


Assuntos
Aedes , Dirofilaria immitis , Doenças do Cão , Cães , Animais , Humanos , Insetos Vetores/parasitologia , Doenças do Cão/parasitologia , Aedes/parasitologia , Mosquitos Vetores , California/epidemiologia
13.
Ecology ; 102(10): e03476, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34346070

RESUMO

Invasive species threaten biodiversity, ecosystem function, and human health, but the long-term drivers of invasion dynamics remain poorly understood. We use data from a 28-yr ongoing survey of a Northern California ant community invaded by the Argentine ant (Linepithema humile) to investigate the influence of abiotic and biotic factors on invasion dynamics. We found that the distribution of L. humile retracted following an extreme drought that occurred in the region from 2012 to 2015. The distribution of several native ant species also contracted, but overall native ant diversity was higher after the drought and for some native ant species, distributions expanded over the 28-yr survey period. Using structural equation models, we found the strongest impact on the distribution of L. humile was from direct effects of climate, namely, cumulative precipitation and summer maximum temperatures, with only a negligible role for biotic resistance and indirect effects of climate mediated by native ants. The increasing drought and high temperature extremes projected for northern California because of anthropogenic-driven climate change may limit the spread, and possibly the impact, of L. humile in invaded regions. The outcome will depend on the response of native ant communities to these climatic stressors.


Assuntos
Formigas , Secas , Espécies Introduzidas , Animais , California , Ecossistema , Dinâmica Populacional , Estações do Ano
14.
Elife ; 102021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34402424

RESUMO

The potential for adaptive evolution to enable species persistence under a changing climate is one of the most important questions for understanding impacts of future climate change. Climate adaptation may be particularly likely for short-lived ectotherms, including many pest, pathogen, and vector species. For these taxa, estimating climate adaptive potential is critical for accurate predictive modeling and public health preparedness. Here, we demonstrate how a simple theoretical framework used in conservation biology-evolutionary rescue models-can be used to investigate the potential for climate adaptation in these taxa, using mosquito thermal adaptation as a focal case. Synthesizing current evidence, we find that short mosquito generation times, high population growth rates, and strong temperature-imposed selection favor thermal adaptation. However, knowledge gaps about the extent of phenotypic and genotypic variation in thermal tolerance within mosquito populations, the environmental sensitivity of selection, and the role of phenotypic plasticity constrain our ability to make more precise estimates. We describe how common garden and selection experiments can be used to fill these data gaps. Lastly, we investigate the consequences of mosquito climate adaptation on disease transmission using Aedes aegypti-transmitted dengue virus in Northern Brazil as a case study. The approach outlined here can be applied to any disease vector or pest species and type of environmental change.


Assuntos
Adaptação Fisiológica , Aedes/fisiologia , Mudança Climática , Mosquitos Vetores/fisiologia , Temperatura , Adaptação Fisiológica/genética , Adaptação Fisiológica/fisiologia , Aedes/crescimento & desenvolvimento , Aedes/virologia , Animais , Dengue/transmissão , Mosquitos Vetores/crescimento & desenvolvimento , Mosquitos Vetores/virologia
15.
Parasit Vectors ; 13(1): 29, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937369

RESUMO

BACKGROUND: Understanding the drivers of Lyme disease incidence at broad spatial scales is critical for predicting and mitigating human disease risk. Previous studies have identified vector phenology and behavior, host community composition, and landscape features as drivers of variable Lyme disease risk. However, while the Lyme disease transmission cycles in the eastern and western USA involve different vector species (Ixodes scapularis and Ixodes pacificus, respectively), the role of vector-specific differences in transmission efficiency has not been directly examined. By comparing the performance of traits involved in vector competence between these two species, this study aims to identify how vector competence contributes to variable Lyme disease risk. METHODS: We used a suite of laboratory experiments to compare the performance of traits related to vector competence for the two USA Lyme disease vectors. For each species, we measured the rate of attachment to a common rodent host, the engorgement weight, and the efficiency of pathogen acquisition (host to tick) and pathogen transmission (tick to host) from laboratory mice. In measuring pathogen acquisition and transmission, we used two different pathogen strains, one sympatric with I. scapularis and one sympatric with I. pacificus, to assess the importance of vector-pathogen coevolutionary history in transmission dynamics. RESULTS: We found I. pacificus had significantly higher host attachment success and engorgement weights, but significantly lower pathogen transmission efficiency relative to I. scapularis. Molting success and pathogen acquisition did not differ between these two species. However, pathogen acquisition efficiency was significantly higher for both sympatric vector and pathogen strains than the allopatric pairings. CONCLUSIONS: This study identified species-specific vector traits as a potential driver of broad scale variation in Lyme disease risk in the USA. In particular, the exceedingly low rates of pathogen transmission from tick to host observed for I. pacificus may limit Lyme disease transmission efficiency in the western USA. Further, observed variation in pathogen acquisition between sympatric and allopatric vector-pathogen strains indicate that vector-pathogen coevolutionary history may play a key role in transmission dynamics. These findings underscore the need to consider vector traits and vector-pathogen coevolution as important factors governing regional Lyme disease risk.


Assuntos
Vetores Aracnídeos/fisiologia , Ixodes/fisiologia , Doença de Lyme/transmissão , Animais , Vetores Aracnídeos/microbiologia , Humanos , Incidência , Ixodes/microbiologia , Larva/fisiologia , Doença de Lyme/epidemiologia , Camundongos , Camundongos Endogâmicos C3H , Muda , Peromyscus
16.
Vector Borne Zoonotic Dis ; 20(3): 159-170, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31800374

RESUMO

Vector-borne diseases are emerging at an increasing rate and comprise a disproportionate share of all emerging infectious diseases. Yet, the key ecological and evolutionary dimensions of vector-borne disease that facilitate their emergence have not been thoroughly explored. This study reviews and synthesizes the existing literature to explore global patterns of emerging vector-borne zoonotic diseases (VBZDs) under changing global conditions. We find that the vast majority of emerging VBZDs are transmitted by ticks (Ixodidae) and mosquitoes (Culicidae) and the pathogens transmitted are dominated by Rickettsiaceae bacteria and RNA viruses (Flaviviridae, Bunyaviridae, and Togaviridae). The most common potential driver of these emerging zoonoses is land use change, but for many diseases, the driver is unknown, revealing a critical research gap. While most reported VBZDs are emerging in the northern latitudes, after correcting for sampling bias, Africa is clearly a region with the greatest share of emerging VBZD. We highlight critical gaps in our understanding of VBZD emergence and emphasize the importance of interdisciplinary research and consideration of deeper evolutionary processes to improve our capacity for anticipating where and how such diseases have and will continue to emerge.


Assuntos
Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmitidas por Vetores/epidemiologia , Animais , Saúde Global , Humanos
17.
medRxiv ; 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32511583

RESUMO

Non-pharmaceutical interventions to combat COVID-19 transmission have worked to slow the spread of the epidemic but can have high socio-economic costs. It is critical we understand the efficacy of non-pharmaceutical interventions to choose a safe exit strategy. Many current models are not suitable for assessing exit strategies because they do not account for epidemic resurgence when social distancing ends prematurely (e.g., statistical curve fits) nor permit scenario exploration in specific locations. We developed an SEIR-type mechanistic epidemiological model of COVID-19 dynamics to explore temporally variable non-pharmaceutical interventions. We provide an interactive tool and code to estimate the transmission parameter, ß, and the effective reproduction number, R eff . We fit the model to Santa Clara County, California, where an early epidemic start date and early shelter-in-place orders could provide a model for other regions. As of April 22, 2020, we estimate an R eff of 0.982 (95% CI: 0.849 - 1.107) in Santa Clara County. After June 1 (the end-date for Santa Clara County shelter-in-place as of April 27), we estimate a shift to partial social distancing, combined with rigorous testing and isolation of symptomatic individuals, is a viable alternative to indefinitely maintaining shelter-in-place. We also estimate that if Santa Clara County had waited one week longer before issuing shelter-in-place orders, 95 additional people would have died by April 22 (95% CI: 7 - 283). Given early life-saving shelter-in-place orders in Santa Clara County, longer-term moderate social distancing and testing and isolation of symptomatic individuals have the potential to contain the size and toll of the COVID-19 pandemic in Santa Clara County, and may be effective in other locations.

18.
Ecol Evol ; 9(13): 7768-7779, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31346439

RESUMO

Vector-borne diseases constitute a major global health burden and are increasing in geographic range and prevalence. Mounting evidence has demonstrated that the vector microbiome can impact pathogen dynamics, making the microbiome a focal point in vector-borne disease ecology. However, efforts to generalize preliminary findings across studies and systems and translate these findings into disease control strategies are hindered by a lack of fundamental understanding of the processes shaping the vector microbiome and the interactions therein. Here, we use 16S rRNA sequencing and apply a community ecology framework to analyze microbiome community assembly and interactions in Ixodes pacificus, the Lyme disease vector in the western United States. We find that vertical transmission routes drive population-level patterns in I. pacificus microbial diversity and composition, but that microbial function and overall abundance do not vary over time or between clutches. Further, we find that the I. pacificus microbiome is not strongly structured based on competition but assembles nonrandomly, potentially due to vector-specific filtering processes which largely eliminate all but the dominant endosymbiont, Rickettsia. At the scale of the individual I. pacificus, we find support for a highly limited internal microbial community, and hypothesize that the tick endosymbiont may be the most important component of the vector microbiome in influencing pathogen dynamics.

19.
Insects ; 10(10)2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31635285

RESUMO

Insight into the composition and function of the tick microbiome has expanded considerably in recent years. Thus far, tick microbiome studies have focused on species and life stages that are responsible for transmitting disease. In this study we conducted extensive field sampling of six tick species in the far-western United States to comparatively examine the microbial composition of sympatric tick species: Ixodes pacificus, Ixodes angustus, Dermacentor variabilis, Dermacentor occidentalis, Dermacentor albipictus, and Haemaphysalis leporispalustris. These species represent both common vectors of disease and species that rarely encounter humans, exhibiting a range of host preferences and natural history. We found significant differences in microbial species diversity and composition by tick species and life stage. The microbiome of most species examined were dominated by a few primary endosymbionts. Across all species, the relative abundance of these endosymbionts increased with life stage while species richness and diversity decreased with development. Only one species, I. angustus, did not show the presence of a single dominant microbial species indicating the unique physiology of this species or its interaction with the surrounding environment. Tick species that specialize in a small number of host species or habitat ranges exhibited lower microbiome diversity, suggesting that exposure to environmental conditions or host blood meal diversity can affect the tick microbiome which in turn may affect pathogen transmission. These findings reveal important associations between ticks and their microbial community and improve our understanding of the function of non-pathogenic microbiomes in tick physiology and pathogen transmission.

20.
Int J Parasitol ; 49(2): 95-103, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30367862

RESUMO

Babesiosis is a potentially fatal tick-borne zoonotic disease caused by a species complex of blood parasites that can infect a variety of vertebrates, particularly dogs, cattle, and humans. In the United States, human babesiosis is caused by two distinct parasites, Babesia microti and Babesia duncani. The enzootic cycle of B. microti, endemic in the northeastern and upper midwestern regions, has been well characterised. In the western United States, however, the natural reservoir host and tick vector have not been identified for B. duncani, greatly impeding efforts to understand and manage this zoonotic disease. Two and a half decades after B. duncani was first described in a human patient in Washington State, USA, we provide evidence that the enzootic tick vector is the winter tick, Dermacentor albipictus, and the reservoir host is likely the mule deer, Odocoileus hemionus. The broad, overlapping ranges of these two species covers a large portion of far-western North America, and is consistent with confirmed cases of B. duncani in the far-western United States.


Assuntos
Vetores Aracnídeos/parasitologia , Babesia/isolamento & purificação , Babesiose/transmissão , Cervos/parasitologia , Dermacentor/parasitologia , Reservatórios de Doenças/parasitologia , Zoonoses/transmissão , Animais , Bovinos , Doenças dos Bovinos/transmissão , Transmissão de Doença Infecciosa , Doenças do Cão/transmissão , Cães , Humanos , Washington
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA