Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 20(3): e1011196, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38466721

RESUMO

Hematophagous mosquitoes require vertebrate blood for their reproductive cycles, making them effective vectors for transmitting dangerous human diseases. Thus, high-intensity metabolism is needed to support reproductive events of female mosquitoes. However, the regulatory mechanism linking metabolism and reproduction in mosquitoes remains largely unclear. In this study, we found that the expression of estrogen-related receptor (ERR), a nuclear receptor, is activated by the direct binding of 20-hydroxyecdysone (20E) and ecdysone receptor (EcR) to the ecdysone response element (EcRE) in the ERR promoter region during the gonadotropic cycle of Aedes aegypti (named AaERR). RNA interference (RNAi) of AaERR in female mosquitoes led to delayed development of ovaries. mRNA abundance of genes encoding key enzymes involved in carbohydrate metabolism (CM)-glucose-6-phosphate isomerase (GPI) and pyruvate kinase (PYK)-was significantly decreased in AaERR knockdown mosquitoes, while the levels of metabolites, such as glycogen, glucose, and trehalose, were elevated. The expression of fatty acid synthase (FAS) was notably downregulated, and lipid accumulation was reduced in response to AaERR depletion. Dual luciferase reporter assays and electrophoretic mobility shift assays (EMSA) determined that AaERR directly activated the expression of metabolic genes, such as GPI, PYK, and FAS, by binding to the corresponding AaERR-responsive motif in the promoter region of these genes. Our results have revealed an important role of AaERR in the regulation of metabolism during mosquito reproduction and offer a novel target for mosquito control.


Assuntos
Aedes , Receptores de Esteroides , Animais , Feminino , Humanos , Aedes/genética , Aedes/metabolismo , Ecdisona/metabolismo , Mosquitos Vetores/genética , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Homeostase/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
2.
J Org Chem ; 89(2): 928-938, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38181049

RESUMO

Chiral diarylmethylamides are a privileged skeleton in many bioactive molecules. However, the enantioselective synthesis of such molecules remains a long-standing challenge in organic synthesis. Herein, we report a chiral bifunctional squaramide catalyzed asymmetric aza-Michael addition of amides to in situ generated ortho-quinomethanes, affording enantioenriched diarylmethylamides in good yields with excellent enantioselectivities. This work not only provides a new strategy for the construction of the diarylmethylamides but also represents the practicability of amides as nitrogen-nucleophiles in asymmetric organocatalysis.

3.
J Org Chem ; 89(2): 975-985, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38181067

RESUMO

Enantioselective synthesis of eight-membered N-heterocycles represents a long-standing challenge in organic synthesis. Here, by combining the squaramide and DBU catalysis, a sequential asymmetric conjugate addition/cyclization reaction between benzofuran-derived azadienes and ynones has been well-developed, providing straightforward access to chiral eight-membered N-heterocycles in high yields with stereoselectivities. This protocol features the use of a bifunctional squaramide catalyst for controlling the enantioselectivity of products, while the DBU is utilized to achieve intramolecular cyclization and improve the diastereoselectivity of products.

4.
Org Biomol Chem ; 21(7): 1389-1394, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36655625

RESUMO

We report herein a cationic iridium-catalysed thioether-directed alkyne-azide cycloaddition reaction. Diverse 2-alkynyl phenyl sulfides can undergo cycloaddition with different azides in a regioselective fashion. The reaction features high efficiency, a short reaction time, and a broad substrate scope, providing modular access to complex S-containing triazoles.

5.
Org Biomol Chem ; 21(45): 8979-8983, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37934046

RESUMO

The synthesis of stereo-defined α-trifluoromethyl arylenes is of great importance in medical chemistry, organic chemistry, and materials science. However, despite the recent advances, the Z-selective formation of α-trifluoromethyl arylenes has remained underdeveloped. Here, we describe a facile approach towards Z-α-trifluoromethyl arylenes through Pd-catalysed stereoselective fluoroarylation of 1,1-difluoroallenes in the presence of a bulky monophosphine ligand.

6.
Acta Pharmacol Sin ; 44(5): 1038-1050, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36470978

RESUMO

Renal interstitial fibrosis is the common pathological process of various chronic kidney diseases to end-stage renal disease. Inhibition of fibroblast activation attenuates renal interstitial fibrosis. Our previous studies show that poricoic acid A (PAA) isolated from Poria cocos is a potent anti-fibrotic agent. In the present study we investigated the effects of PAA on renal fibroblast activation and interstitial fibrosis and the underlying mechanisms. Renal interstitial fibrosis was induced in rats or mice by unilateral ureteral obstruction (UUO). UUO rats were administered PAA (10 mg·kg-1·d-1, i.g.) for 1 or 2 weeks. An in vitro model of renal fibrosis was established in normal renal kidney fibroblasts (NRK-49F cells) treated with TGF-ß1. We showed that PAA treatment rescued Sirt3 expression, and significantly attenuated renal fibroblast activation and interstitial fibrosis in both the in vivo and in vitro models. In TGF-ß1-treated NRK-49F cells, we demonstrated that Sirt3 deacetylated ß-catenin (a key transcription factor of fibroblast activation) and then accelerated its ubiquitin-dependent degradation, thus suppressing the protein expression and promoter activity of pro-fibrotic downstream target genes (twist, snail1, MMP-7 and PAI-1) to alleviate fibroblast activation; the lysine-49 (K49) of ß-catenin was responsible for Sirt3-mediated ß-catenin deacetylation. In molecular docking analysis, we found the potential interaction of Sirt3 and PAA. In both in vivo and in vitro models, pharmacological activation of Sirt3 by PAA significantly suppressed renal fibroblast activation via facilitating ß-catenin K49 deacetylation. In UUO mice and NRK-49F cells, Sirt3 overexpression enhanced the anti-fibrotic effect of PAA, whereas Sirt3 knockdown weakened the effect. Taken together, PAA attenuates renal fibroblast activation and interstitial fibrosis by upregulating Sirt3 and inducing ß-catenin K49 deacetylation, highlighting Sirt3 functions as a promising therapeutic target of renal fibroblast activation and interstitial fibrosis.


Assuntos
Nefropatias , Sirtuína 3 , Triterpenos , beta Catenina , Animais , Camundongos , Ratos , beta Catenina/química , beta Catenina/metabolismo , Fibroblastos , Fibrose/tratamento farmacológico , Fibrose/patologia , Rim/patologia , Nefropatias/tratamento farmacológico , Nefropatias/patologia , Simulação de Acoplamento Molecular , Transdução de Sinais , Sirtuína 3/efeitos dos fármacos , Sirtuína 3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/complicações , Obstrução Ureteral/tratamento farmacológico , Obstrução Ureteral/metabolismo , Triterpenos/farmacologia , Triterpenos/uso terapêutico
7.
Med Res Rev ; 42(6): 2067-2101, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35730121

RESUMO

Ischemia/reperfusion (IR) injury contributes to disability and mortality worldwide. Due to the complicated mechanisms and lack of proper therapeutic targets, few interventions are available that specifically target the pathogenesis of IR injury. Regulated cell death (RCD) of endothelial and parenchymal cells is recognized as the promising intervening target. Recent advances in IR injury suggest that small molecules exhibit beneficial effects on various RCD against IR injury, including apoptosis, necroptosis, autophagy, ferroptosis, pyroptosis, and parthanatos. Here, we describe the mechanisms behind these novel promising therapeutic targets and explain the machinery powering the small molecules. These small molecules exert protection by targeting endothelial or parenchymal cells to alleviate IR injury. Therapies of the ideal combination of small molecules targeting multiple cell types have shown potent synergetic therapeutic effects, laying the foundation for novel strategies to attenuate IR injury.


Assuntos
Morte Celular Regulada , Traumatismo por Reperfusão , Apoptose , Humanos , Isquemia/complicações , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Transdução de Sinais
8.
Org Biomol Chem ; 20(20): 4091-4095, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35522070

RESUMO

We describe here a Ni-catalysed deamidative fluorination of diverse amides with electrophilic fluorinating reagents. Different types of amides including aromatic amides and olefinic amides were well compatible, affording the corresponding acyl fluorides in good to excellent yields.


Assuntos
Amidas , Halogenação , Catálise , Fluoretos , Indicadores e Reagentes
9.
Acta Pharmacol Sin ; 43(11): 2929-2945, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35577910

RESUMO

Recent studies have shown that endogenous metabolites act via aryl hydrocarbon receptor (AhR) signalling pathway in tubulointerstitial fibrosis (TIF) pathogenesis. However, the mechanisms underlying endogenous metabolite-mediated AhR activation are poorly characterised. In this study, we conducted untargeted metabolomics analysis to identify the significantly altered intrarenal metabolites in a mouse model of unilateral ureteral obstruction (UUO). We found that the levels of the metabolite 1-methoxypyrene (MP) and the mRNA expression of AhR and its target genes CYP1A1, CYP1A2, CYP1B1 and COX-2 were progressively increased in the obstructed kidney at Weeks 1, 2 and 3. Furthermore, these changes were positively correlated with progressive TIF in UUO mice. In NRK-52E, RAW 264.7 and NRK-49F cells, MP dose-dependently upregulated the mRNA expression of AhR and its four target genes and the protein expression of nuclear AhR, accompanied by the upregulated protein expression of collagen I, α-SMA and fibronectin, as well as downregulated E-cadherin expression. Consistently, oral administration of MP in mice progressively enhanced AhR activity and upregulated profibrotic protein expression in the kidneys; these effects were partially inhibited by AhR knockdown in MP-treated mice and cell lines. In addition, we screened and identified erythro-guaiacylglycerol-ß-ferulic acid ether (GFA), which was isolated from Semen plantaginis, as a new AhR antagonist. GFA significantly attenuated TIF in MP-treated NRK-52E cells and mice by partially antagonising AhR activity. Our results suggest that MP activates AhR signalling, thus mediating TIF through epithelial-mesenchymal transition and macrophage-myofibroblast transition. MP is a crucial metabolite that contributes to TIF via AhR signalling pathway.


Assuntos
Nefropatias , Obstrução Ureteral , Camundongos , Animais , Receptores de Hidrocarboneto Arílico/genética , Fibrose , Nefropatias/tratamento farmacológico , Nefropatias/metabolismo , Obstrução Ureteral/complicações , RNA Mensageiro
10.
Org Biomol Chem ; 19(20): 4478-4482, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33950054

RESUMO

An efficient ruthenium-catalyzed method has been developed for the direct N-alkylation of sulfur-containing amines with alcohols, for the first time, by a step-economical and environmentally friendly hydrogen borrowing strategy. The present methodology features base-free conditions and broad substrate scope, with water being the only by-product. Moreover, this protocol has been applied to the synthesis of the pharmaceutical drug Quetiapine.

11.
Org Biomol Chem ; 19(30): 6588-6592, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34023869

RESUMO

Using visible light as a driving force and molecular oxygen as a green oxidant, we developed bis(oxazoline)-Ni(acac)2 catalyzed asymmetric α-hydroxylation of ß-keto esters under low photosensitizer loading, and the protocol enabled an efficient transformation to provide the desired chiral α-hydroxy-ß-keto esters in high yields (up to 99%) and enantioselectivities (up to 99% ee) at room temperature.

12.
Med Res Rev ; 40(1): 54-78, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31131921

RESUMO

Tissue fibrosis and cancer both lead to high morbidity and mortality worldwide; thus, effective therapeutic strategies are urgently needed. Because drug resistance has been widely reported in fibrotic tissue and cancer, developing a strategy to discover novel targets for targeted drug intervention is necessary for the effective treatment of fibrosis and cancer. Although many factors lead to fibrosis and cancer, pathophysiological analysis has demonstrated that tissue fibrosis and cancer share a common process of epithelial-mesenchymal transition (EMT). EMT is associated with many mediators, including transcription factors (Snail, zinc-finger E-box-binding protein and signal transducer and activator of transcription 3), signaling pathways (transforming growth factor-ß1, RAC-α serine/threonine-protein kinase, Wnt, nuclear factor-kappa B, peroxisome proliferator-activated receptor, Notch, and RAS), RNA-binding proteins (ESRP1 and ESRP2) and microRNAs. Therefore, drugs targeting EMT may be a promising therapy against both fibrosis and tumors. A large number of compounds that are synthesized or derived from natural products and their derivatives suppress the EMT by targeting these mediators in fibrosis and cancer. By targeting EMT, these compounds exhibited anticancer effects in multiple cancer types, and some of them also showed antifibrotic effects. Therefore, drugs targeting EMT not only have both antifibrotic and anticancer effects but also exert effective therapeutic effects on multiorgan fibrosis and cancer, which provides effective therapy against fibrosis and cancer. Taken together, the results highlighted in this review provide new concepts for discovering new antifibrotic and antitumor drugs.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Neoplasias/patologia , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Transição Epitelial-Mesenquimal/genética , Fibrose , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , Transdução de Sinais/efeitos dos fármacos
13.
J Org Chem ; 85(15): 9491-9502, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32692168

RESUMO

The functionalization of indoles in the carbocyclic ring has been achieved via organocatalytic enantioselective Friedel-Crafts benzhydrylation of hydroxyindoles with in situ generated ortho-quinomethanes in oil-water biphases, allowing an efficient access to varied diarylindolylmethanes with a wide substrate scope. The high yields, excellent stereoselectivities, mild conditions, low catalyst loading, and easy scalability also demonstrated the interest of this novel methodology.

14.
Org Biomol Chem ; 18(13): 2398-2404, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32191253

RESUMO

A highly regioselective and enantioselective N-alkylation of isoxazol-5-ones with para-quinone methides promoted by bi-functional squaramide catalysts was developed. This unexpected asymmetric N-addition of isoxazolinones afforded a series of enantioenriched N-diarylmethane substituted isoxazolinones with high yields and enantioselectivities (up to 97 : 3 er). This reaction not only provides a useful approach for intermolecular chiral C-N bond formation but also demonstrates the immense potential of isoxazol-5-ones as N-nucleophiles in catalytic asymmetric reactions.

15.
Org Biomol Chem ; 18(26): 4927-4931, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32573633

RESUMO

A highly enantioselective homogeneous fluorination of cyclic ß-keto esters catalyzed by diphenylamine linked bis(oxazoline)-Cu(OTf)2 complexes has been established in a continuous flow microreactor. The microreactor allowed an efficient transformation with reaction times ranging from 0.5 to 20 min, and the desired products were afforded in high yields (up to 99%) with excellent enantioselectivities (up to 99% ee) at a low catalyst loading of 1 mol%.

16.
Org Biomol Chem ; 18(34): 6732-6737, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32832956

RESUMO

A nitrate-promoted Pd-catalysed mild cross-dehydrogenative C(sp2)-H bond oxidation of oximes or azobenzenes with diverse carboxylic acids has been developed. In contrast to the previous catalytic systems, this protocol features mild conditions (close to room temperature for most cases) and a broad substrate scope (up to 64 examples), thus constituting a versatile method to directly prepare diverse O-aryl esters. Moreover, the superiority of the nitrate additive in this mild transformation was further determined by experimental and computational evidence.

17.
Cell Mol Life Sci ; 76(24): 4961-4978, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31147751

RESUMO

Dysbiosis of the gut microbiome and related metabolites in chronic kidney disease (CKD) have been intimately associated with the prevalence of cardiovascular diseases. Unfortunately, thus far, there is a paucity of sufficient knowledge of gut microbiome and related metabolites on CKD progression partly due to the severely limited investigations. Using a 5/6 nephrectomized (NX) rat model, we carried out 16S rRNA sequence and untargeted metabolomic analyses to explore the relationship between colon's microbiota and serum metabolites. Marked decline in microbial diversity and richness was accompanied by significant changes in 291 serum metabolites, which were mediated by altered enzymatic activities and dysregulations of lipids, amino acids, bile acids and polyamines metabolisms. Interestingly, CCr was directly associated with some microbial genera and polyamine metabolism. However, SBP was directly related to certain microbial genera and glycine-conjugated metabolites in CKD rats. Administration of poricoic acid A (PAA) and Poria cocos (PC) ameliorated microbial dysbiosis as well as attenuated hypertension and renal fibrosis. In addition, treatments with PAA and PC lowered serum levels of microbial-derived products including glycine-conjugated compounds and polyamine metabolites. Collectively, the present study confirmed the CKD-associated gut microbial dysbiosis and identified a novel dietary and therapeutic strategy to improve the gut microbial dysbiosis and the associated metabolomic disorders and retarded the progression of kidney disease in the rat model of CKD.


Assuntos
Disbiose/metabolismo , Microbioma Gastrointestinal/genética , Hipertensão/metabolismo , Insuficiência Renal Crônica/metabolismo , Animais , Modelos Animais de Doenças , Disbiose/genética , Disbiose/patologia , Glicina/metabolismo , Humanos , Hipertensão/genética , Hipertensão/patologia , Masculino , Metaboloma/genética , Metabolômica/métodos , Poliaminas/metabolismo , Ratos , Insuficiência Renal Crônica/microbiologia , Insuficiência Renal Crônica/patologia , Triterpenos/farmacologia , Wolfiporia/metabolismo
18.
J Transl Med ; 17(1): 5, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30602367

RESUMO

Dysbiosis represents changes in composition and structure of the gut microbiome community (microbiome), which may dictate the physiological phenotype (health or disease). Recent technological advances and efforts in metagenomic and metabolomic analyses have led to a dramatical growth in our understanding of microbiome, but still, the mechanisms underlying gut microbiome-host interactions in healthy or diseased state remain elusive and their elucidation is in infancy. Disruption of the normal gut microbiota may lead to intestinal dysbiosis, intestinal barrier dysfunction, and bacterial translocation. Excessive uremic toxins are produced as a result of gut microbiota alteration, including indoxyl sulphate, p-cresyl sulphate, and trimethylamine-N-oxide, all implicated in the variant processes of kidney diseases development. This review focuses on the pathogenic association between gut microbiota and kidney diseases (the gut-kidney axis), covering CKD, IgA nephropathy, nephrolithiasis, hypertension, acute kidney injury, hemodialysis and peritoneal dialysis in clinic. Targeted interventions including probiotic, prebiotic and symbiotic measures are discussed for their potential of re-establishing symbiosis, and more effective strategies for the treatment of kidney diseases patients are suggested. The novel insights into the dysbiosis of the gut microbiota in kidney diseases are helpful to develop novel therapeutic strategies for preventing or attenuating kidney diseases and complications.


Assuntos
Trato Gastrointestinal/microbiologia , Nefropatias/microbiologia , Rim/microbiologia , Metaboloma , Microbiota , Animais , Disbiose/microbiologia , Humanos
19.
Angew Chem Int Ed Engl ; 57(43): 14085-14089, 2018 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-30161283

RESUMO

Selective introduction of fluorine into molecules by the cleavage of inert C-H bonds is of central academic and synthetic interest, yet remains challenging. Given the central role of alcohols in organic chemistry as the most ubiquitous building blocks, a versatile and selective C(sp3 )-H and C(sp2 )-H fluorination of simple alcohols, enabled by novel designed exo-directing groups, is described. C(sp2 )-H bond fluorination was achieved by using a simple acetone oxime as auxiliary, whereas a new, modular and easily accessible bidentate auxiliary was developed for the efficient and site-selective fluorination of various primary methyl, methylene, and benzylic C(sp3 )-H bonds. Fluorinated alcohols can readily be accessed by the removal of auxiliaries, and significantly expands the synthetic prospect of the present procedure.

20.
J Proteome Res ; 16(4): 1566-1578, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28286957

RESUMO

Chronic kidney disease (CKD) results in significant dyslipidemia and profound changes in lipid and lipoprotein metabolism. The associated dyslipidemia, in turn, contributes to progression of CKD and its cardiovascular complications. To gain an in-depth insight into the disorders of lipid metabolism in advanced CKD, we applied UPLC-HDMS-based lipidomics to measure serum lipid metabolites in 180 patients with advanced CKD and 120 age-matched healthy controls. We found significant increases in the levels of total free fatty acids, glycerolipids, and glycerophospholipids in patients with CKD. The levels of free fatty acids, glycerolipids, and glycerophospholipids directly correlated with the level of serum triglyceride and inversely correlated with the levels of total cholesterol and eGFR. A total of 126 lipid species were identified from positive and negative ion modes. Out of 126, 113 identified lipid species were significantly altered in patients with CKD based on the adjusted FDR method. These results pointed to profound disturbance of fatty acid and triglyceride metabolisms in patients with CKD. Logistic regression analysis showed strong correlations between serum methyl hexadecanoic acid, LPC(24:1), 3-oxooctadecanoic acid, and PC(20:2/24:1) levels with eGFR and serum creatinine levels (R > 0.8758). In conclusion, application of UPLC-HDMS-based lipidomic technique revealed profound changes in lipid metabolites in patients with CKD. The observed increases in serum total fatty acids, glycerolipids, and glycerophospholipids levels directly correlated with increased serum triglyceride level and inversely correlated with the eGFR and triglyceride levels.


Assuntos
Dislipidemias/sangue , Metabolismo dos Lipídeos/genética , Insuficiência Renal Crônica/sangue , Triglicerídeos/sangue , Adulto , Idoso , Colesterol/sangue , Dislipidemias/genética , Dislipidemias/patologia , Ácidos Graxos/sangue , Feminino , Glicerofosfolipídeos/sangue , Humanos , Lipídeos/sangue , Lipoproteínas/sangue , Masculino , Pessoa de Meia-Idade , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA