Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Biochim Biophys Acta ; 1862(6): 1055-62, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26854734

RESUMO

The hereditary kidney stone disease primary hyperoxaluria type 1 (PH1) is caused by a functional deficiency of the liver-specific, peroxisomal, pyridoxal-phosphate-dependent enzyme, alanine:glyoxylate aminotransferase (AGT). One third of PH1 patients, particularly those expressing the p.[(Pro11Leu; Gly170Arg; Ile340Met)] mutant allele, respond clinically to pharmacological doses of pyridoxine. To gain further insight into the metabolic effects of AGT dysfunction in PH1 and the effect of pyridoxine, we established an "indirect" glycolate cytotoxicity assay using CHO cells expressing glycolate oxidase (GO) and various normal and mutant forms of AGT. In cells expressing GO the great majority of glycolate was converted to oxalate and glyoxylate, with the latter causing the greater decrease in cell survival. Co-expression of normal AGTs and some, but not all, mutant AGT variants partially counteracted this cytotoxicity and led to decreased synthesis of oxalate and glyoxylate. Increasing the extracellular pyridoxine up to 0.3µM led to an increased metabolic effectiveness of normal AGTs and the AGT-Gly170Arg variant. The increased survival seen with AGT-Gly170Arg was paralleled by a 40% decrease in oxalate and glyoxylate levels. These data support the suggestion that the effectiveness of pharmacological doses of pyridoxine results from an improved metabolic effectiveness of AGT; that is the increased rate of transamination of glyoxylate to glycine. The indirect glycolate toxicity assay used in the present study has potential to be used in cell-based drug screening protocols to identify chemotherapeutics that might enhance or decrease the activity and metabolic effectiveness of AGT and GO, respectively, and be useful in the treatment of PH1.


Assuntos
Hiperoxalúria Primária/metabolismo , Oxalatos/metabolismo , Piridoxina/metabolismo , Transaminases/metabolismo , Animais , Células CHO , Sobrevivência Celular , Cricetulus , Glicolatos/metabolismo , Humanos , Hiperoxalúria Primária/genética , Mutação , Espécies Reativas de Oxigênio/metabolismo , Transaminases/genética
2.
Hum Mol Genet ; 24(19): 5500-11, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26199318

RESUMO

Vitamin B6 in the form of pyridoxine (PN) is one of the most widespread pharmacological therapies for inherited diseases involving pyridoxal phosphate (PLP)-dependent enzymes, including primary hyperoxaluria type I (PH1). PH1 is caused by a deficiency of liver-peroxisomal alanine: glyoxylate aminotransferase (AGT), which allows glyoxylate oxidation to oxalate leading to the deposition of insoluble calcium oxalate in the kidney. Only a minority of PH1 patients, mostly bearing the F152I and G170R mutations, respond to PN, the only pharmacological treatment currently available. Moreover, excessive doses of PN reduce the specific activity of AGT in a PH1 cellular model. Nevertheless, the possible effect(s) of other B6 vitamers has not been investigated previously. Here, we compared the ability of PN in rescuing the effects of the F152I and G170R mutations with that of pyridoxamine (PM) and PL. We found that supplementation with PN raises the intracellular concentration of PN phosphate (PNP), which competes with PLP for apoenzyme binding leading to the formation of an inactive AGT-PNP complex. In contrast, PNP does not accumulate in the cell upon PM or PL supplementation, but higher levels of PLP and PM phosphate (PMP), the two active forms of the AGT coenzyme, are found. This leads to an increased ability of PM and PL to rescue the effects of the F152I and G170R mutations compared with PN. A similar effect was also observed for other folding-defective AGT variants. Thus, PM and PL should be investigated as matter of importance as therapeutics for PH1 patients bearing folding mutations.


Assuntos
Hiperoxalúria Primária/genética , Piridoxal/farmacologia , Piridoxamina/farmacologia , Piridoxina/farmacologia , Transaminases/química , Complexo Vitamínico B/farmacologia , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Hiperoxalúria Primária/tratamento farmacológico , Mutação/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Transaminases/genética
3.
Proc Natl Acad Sci U S A ; 111(40): 14406-11, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25237136

RESUMO

Primary hyperoxaluria 1 (PH1; Online Mendelian Inheritance in Man no. 259900), a typically lethal biochemical disorder, may be caused by the AGT(P11LG170R) allele in which the alanine:glyoxylate aminotransferase (AGT) enzyme is mistargeted from peroxisomes to mitochondria. AGT contains a C-terminal peroxisomal targeting sequence, but mutations generate an N-terminal mitochondrial targeting sequence that directs AGT from peroxisomes to mitochondria. Although AGT(P11LG170R) is functional, the enzyme must be in the peroxisome to detoxify glyoxylate by conversion to alanine; in disease, amassed glyoxylate in the peroxisome is transported to the cytosol and converted to oxalate by lactate dehydrogenase, leading to kidney failure. From a chemical genetic screen, we have identified small molecules that inhibit mitochondrial protein import. We tested whether one promising candidate, Food and Drug Administration (FDA)-approved dequalinium chloride (DECA), could restore proper peroxisomal trafficking of AGT(P11LG170R). Indeed, treatment with DECA inhibited AGT(P11LG170R) translocation into mitochondria and subsequently restored trafficking to peroxisomes. Previous studies have suggested that a mitochondrial uncoupler might work in a similar manner. Although the uncoupler carbonyl cyanide m-chlorophenyl hydrazone inhibited AGT(P11LG170R) import into mitochondria, AGT(P11LG170R) aggregated in the cytosol, and cells subsequently died. In a cellular model system that recapitulated oxalate accumulation, exposure to DECA reduced oxalate accumulation, similar to pyridoxine treatment that works in a small subset of PH1 patients. Moreover, treatment with both DECA and pyridoxine was additive in reducing oxalate levels. Thus, repurposing the FDA-approved DECA may be a pharmacologic strategy to treat PH1 patients with mutations in AGT because an additional 75 missense mutations in AGT may also result in mistrafficking.


Assuntos
Dequalínio/farmacologia , Hiperoxalúria Primária/metabolismo , Transaminases/metabolismo , Animais , Anti-Infecciosos Locais/farmacologia , Células CHO , Cricetinae , Cricetulus , Avaliação Pré-Clínica de Medicamentos/métodos , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/embriologia , Humanos , Hiperoxalúria Primária/genética , Hiperoxalúria Primária/prevenção & controle , Immunoblotting , Microscopia de Fluorescência , Mitocôndrias/metabolismo , Mutação , Oxalatos/metabolismo , Peroxissomos/metabolismo , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Piridoxina/farmacologia , Transaminases/genética , Peixe-Zebra/embriologia
4.
J Biol Chem ; 288(4): 2475-84, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23229545

RESUMO

The gene encoding the liver-specific peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT, EC. 2.6.1.44) exists as two common polymorphic variants termed the "major" and "minor" alleles. The P11L amino acid replacement encoded by the minor allele creates a hidden N-terminal mitochondrial targeting sequence, the unmasking of which occurs in the hereditary calcium oxalate kidney stone disease primary hyperoxaluria type 1 (PH1). This unmasking is due to the additional presence of a common disease-specific G170R mutation, which is encoded by about one third of PH1 alleles. The P11L and G170R replacements interact synergistically to reroute AGT to the mitochondria where it cannot fulfill its metabolic role (i.e. glyoxylate detoxification) effectively. In the present study, we have reinvestigated the consequences of the interaction between P11L and G170R in stably transformed CHO cells and have studied for the first time whether a similar synergism exists between P11L and three other mutations that segregate with the minor allele (i.e. I244T, F152I, and G41R). Our investigations show that the latter three mutants are all able to unmask the cryptic P11L-generated mitochondrial targeting sequence and, as a result, all are mistargeted to the mitochondria. However, whereas the G170R, I244T, and F152I mutants are able to form dimers and are catalytically active, the G41R mutant aggregates and is inactive. These studies open up the possibility that all PH1 mutations, which segregate with the minor allele, might also lead to the peroxisome-to-mitochondrion mistargeting of AGT, a suggestion that has important implications for the development of treatment strategies for PH1.


Assuntos
Hiperoxalúria Primária/genética , Mitocôndrias/metabolismo , Mutação , Alanina/genética , Alelos , Animais , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , Dimerização , Humanos , Cinética , Polimorfismo Genético , Dobramento de Proteína , Transaminases/genética
5.
Biochim Biophys Acta ; 1832(10): 1776-83, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23597595

RESUMO

Primary hyperoxaluria type 1 (PH1) is a rare hereditary calcium oxalate kidney stone disease caused by a deficiency of the liver-specific pyridoxal-phosphate-dependent peroxisomal enzyme alanine:glyoxylate aminotransferase (AGT). About one third of patients are responsive to pharmacological doses of pyridoxine (vitamin B6), but its mechanism of action is unknown. Using stably transformed Chinese Hamster Ovary (CHO) cells expressing various normal and mutant forms of AGT, we have shown that pyridoxine increases the net expression, catalytic activity and peroxisomal import of the most common mistargeted mutant form of AGT (i.e. Gly170Arg on the background of the polymorphic minor allele). These multiple effects explain for the first time the action of pyridoxine in the most common group of responsive patients. Partial effects of pyridoxine were also observed for two other common AGT mutants on the minor allele (i.e. Phe152Ile and Ile244Thr) but not for the minor allele mutant AGT containing a Gly41Arg replacement. These findings demonstrate that pyridoxine, which is metabolised to pyridoxal phosphate, the essential cofactor of AGT, achieves its effects both as a prosthetic group (increasing enzyme catalytic activity) and a chemical chaperone (increasing peroxisome targeting and net expression). This new understanding should aid the development of pharmacological treatments that attempt to enhance efficacy of pyridoxine in PH1, as well as encouraging a re-evaluation of the extent of pyridoxine responsiveness in PH1, as more patients than previously thought might benefit from such treatment.


Assuntos
Hiperoxalúria Primária/tratamento farmacológico , Piridoxina/uso terapêutico , Animais , Células CHO , Cricetinae , Cricetulus , Humanos
6.
Nephrol Dial Transplant ; 27(5): 1729-36, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22547750

RESUMO

Primary hyperoxaluria Type 1 is a rare autosomal recessive inborn error of glyoxylate metabolism, caused by a deficiency of the liver-specific enzyme alanine:glyoxylate aminotransferase. The disorder results in overproduction and excessive urinary excretion of oxalate, causing recurrent urolithiasis and nephrocalcinosis. As glomerular filtration rate declines due to progressive renal involvement, oxalate accumulates leading to systemic oxalosis. The diagnosis is based on clinical and sonographic findings, urine oxalate assessment, enzymology and/or DNA analysis. Early initiation of conservative treatment (high fluid intake, pyridoxine, inhibitors of calcium oxalate crystallization) aims at maintaining renal function. In chronic kidney disease Stages 4 and 5, the best outcomes to date were achieved with combined liver-kidney transplantation.


Assuntos
Testes Genéticos , Hiperoxalúria Primária/diagnóstico , Hiperoxalúria Primária/terapia , Mutação/genética , Transaminases/genética , Hidratação , Humanos , Hiperoxalúria Primária/metabolismo , Rim/diagnóstico por imagem , Transplante de Rim , Oxalatos/metabolismo , Citrato de Potássio/uso terapêutico , Ultrassonografia , Vitamina B 6/uso terapêutico
7.
Artigo em Inglês | MEDLINE | ID: mdl-20208150

RESUMO

In a subset of patients with the hereditary kidney-stone disease primary hyperoxaluria type 1 (PH1), the liver-specific enzyme alanine:glyoxylate aminotransferase (AGT) is mistargeted from peroxisomes to mitochondria. This is a consequence of the combined presence of the common P11L polymorphism and a disease-specific G170R mutation. In this paper, the crystal structure of mutant human AGT containing the G170R replacement determined at a resolution of 2.6 A is reported. The crystal structure of AGT consists of an intimate dimer in which an extended N-terminal segment of 21 amino acids from one subunit wraps as an elongated irregular coil around the outside of the crystallographic symmetry-related subunit. In addition to the N-terminal segment, the monomer structure contains a large domain of 261 amino acids and a small C-terminal domain of 110 amino acids. Comparison of the mutant AGT structure and that of wild-type normal AGT shows that the two structures are almost identical, with a backbone-atom r.m.s. deviation of 0.34 A. However, evidence of significant local structural changes in the vicinity of the G170R mutation might be linked to the apparent decrease in protein stability.


Assuntos
Mitocôndrias/enzimologia , Mutação , Peroxissomos/enzimologia , Transaminases/química , Transaminases/metabolismo , Cristalografia por Raios X , Ácidos Glicéricos/química , Ácidos Glicéricos/metabolismo , Humanos , Modelos Moleculares , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transporte Proteico , Especificidade por Substrato , Transaminases/genética
8.
Biochim Biophys Acta ; 1763(12): 1776-84, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17027096

RESUMO

Primary hyperoxaluria type 1 (PH1) is an atypical peroxisomal disorder, as befits a deficiency of alanine:glyoxylate aminotransferase (AGT), which is itself an atypical peroxisomal enzyme. PH1 is characterized by excessive synthesis and excretion of the metabolic end-product oxalate and the progressive accumulation of insoluble calcium oxalate in the kidney and urinary tract. Disease in many patients is caused by a unique protein trafficking defect in which AGT is mistargeted from peroxisomes to mitochondria, where it is metabolically ineffectual, despite remaining catalytically active. Although the peroxisomal import of human AGT is dependent upon the PTS1 import receptor PEX5p, its PTS1 is exquisitely specific for mammalian AGT, suggesting the presence of additional peroxisomal targeting information elsewhere in the AGT molecule. This and many other functional peculiarities of AGT are probably a consequence of its rather chequered evolutionary history, during which much of its time has been spent being a mitochondrial, rather than a peroxisomal, enzyme. Analysis of the molecular basis of AGT mistargeting in PH1 has thrown into sharp relief some of the fundamental differences between the requirements of the peroxisomal and mitochondrial protein import pathways, particularly the properties of peroxisomal and mitochondrial matrix targeting sequences and the different conformational limitations placed upon importable cargos.


Assuntos
Hiperoxalúria Primária/metabolismo , Mitocôndrias/metabolismo , Peroxissomos/metabolismo , Transaminases/metabolismo , Animais , Oxalato de Cálcio/metabolismo , Genótipo , Humanos , Hiperoxalúria Primária/enzimologia , Hiperoxalúria Primária/genética , Cálculos Renais/genética , Cálculos Renais/metabolismo , Cálculos Renais/fisiopatologia , Mitocôndrias/enzimologia , Modelos Moleculares , Mutação , Receptor 1 de Sinal de Orientação para Peroxissomos , Peroxissomos/enzimologia , Fenótipo , Transporte Proteico , Receptores Citoplasmáticos e Nucleares/metabolismo , Transaminases/genética
9.
Biochem J ; 394(Pt 2): 409-16, 2006 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-16309382

RESUMO

Failure to detoxify the intermediary metabolite glyoxylate in human hepatocytes underlies the metabolic pathology of two potentially lethal hereditary calcium oxalate kidney stone diseases, PH (primary hyperoxaluria) types 1 and 2. In order to define more clearly the roles of enzymes involved in the metabolism of glyoxylate, we have established singly, doubly and triply transformed CHO (Chinese-hamster ovary) cell lines, expressing all combinations of normal human AGT (alanine:glyoxylate aminotransferase; the enzyme deficient in PH1), GR/HPR (glyoxylate/hydroxypyruvate reductase; the enzyme deficient in PH2), and GO (glycolate oxidase). We have embarked on the preliminary metabolic analysis of these transformants by studying the indirect toxicity of glycolate as a simple measure of the net intracellular production of glyoxylate. Our results show that glycolate is toxic only to those cells expressing GO and that this toxicity is diminished when AGT and/or GR/HPR are expressed in addition to GO. This finding indicates that we have been able to reconstruct the glycolate-->glyoxylate, glyoxylate-->glycine, and glyoxylate-->glycolate metabolic pathways, catalysed by GO, AGT, and GR/HPR respectively, in cells that do not normally express them. These results are compatible with the findings in PH1 and PH2, in which AGT and GR/HPR deficiencies lead to increased oxalate synthesis, due to the failure to detoxify its immediate precursor glyoxylate. These CHO cell transformants have a potential use as a cell-based bioassay for screening small molecules that stabilize AGT or GR/HPR and might have use in the treatment of PH1 or PH2.


Assuntos
Glioxilatos/metabolismo , Hepatócitos/metabolismo , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Animais , Células CHO , Cricetinae , Regulação Enzimológica da Expressão Gênica , Humanos , Transaminases/genética , Transaminases/metabolismo , Transfecção
10.
Sci Rep ; 6: 34060, 2016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-27670739

RESUMO

Glycolate oxidase (GO) and alanine:glyoxylate aminotransferase (AGT) are both involved in the peroxisomal glyoxylate pathway. Deficiency in AGT function causes the accumulation of intracellular oxalate and the primary hyperoxaluria type 1 (PH1). AGT enhancers or GO inhibitors may restore the abnormal peroxisomal glyoxylate pathway in PH1 patients. With stably transformed cells which mimic the glyoxylate metabolic pathway, we developed an indirect glycolate cytotoxicity assay in a 1,536-well plate format for high throughput screening. This assay can be used to identify compounds that reduce indirect glycolate-induced cytotoxicity by either enhancing AGT activity or inhibiting GO. A pilot screen of 4,096 known compounds identified two membrane permeable GO inhibitors: dichromate salt and colistimethate. We also developed a GO enzyme assay using the hydrogen peroxide-Amplex red reporter system. The IC50 values of potassium dichromate, sodium dichromate, and colistimethate sodium were 0.096, 0.108, and 2.3 µM in the GO enzyme assay, respectively. Further enzyme kinetic study revealed that both types of compounds inhibit GO activity by the mixed linear inhibition. Our results demonstrate that the cell-based assay and GO enzyme assay developed in this study are useful for further screening of large compound libraries for drug development to treat PH1.

11.
Biochim Biophys Acta ; 1647(1-2): 70-5, 2003 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-12686111

RESUMO

The pyridoxal-phosphate (PLP)-dependent enzyme alanine:glyoxylate aminotransferase (AGT) is mistargeted from peroxisomes to mitochondria in patients with the hereditary kidney stone disease primary hyperoxaluria type 1 (PH1) due to the synergistic interaction between a common Pro(11)Leu polymorphism and a PH1-specific Gly(170)Arg mutation. The kinetic partitioning of newly synthesised AGT between peroxisomes and mitochondria is determined by the combined effects of (1) the generation of cryptic mitochondrial targeting information, and (2) the inhibition of AGT dimerization. The crystal structure of AGT has recently been solved, allowing the effects of the various polymorphisms and mutations to be rationalised in terms of AGT's three-dimensional conformation. Procedures that increase dimer stability and/or increase the rate of dimer formation have potential in the formulation of novel strategies to treat this otherwise intractable life-threatening disease.


Assuntos
Alanina/metabolismo , Cálculos Renais/enzimologia , Cálculos Renais/genética , Mitocôndrias/enzimologia , Peroxissomos/enzimologia , Transaminases/genética , Humanos , Cinética , Mutação , Polimorfismo Genético , Transporte Proteico , Transaminases/química
12.
Biochim Biophys Acta ; 1574(2): 205-9, 2002 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-11955631

RESUMO

Primer extension of human liver poly(A)(+) RNA revealed that the main transcription start site of the human alanine:glyoxylate aminotransferase gene (AGXT) is situated near 45 bp upstream from the translation start site. Deletion analysis using the 1203 bp 5'-flanking region of the AGXT gene and a luciferase reporter suggested that the promoter sequence is most likely located 2-325 bp upstream from the translation start site, possibly with enhancer elements 440-700 bp upstream. It was also suggested that the region -2 to -64 is important for the expression of the AGXT gene. The region -2 to -325 has two TATA boxes and some initiator elements.


Assuntos
Transaminases/genética , Transcrição Gênica/genética , Sequência de Bases , Sítios de Ligação , Linhagem Celular , DNA Complementar/química , Genes Reporter , Humanos , Dados de Sequência Molecular , Plasmídeos , Regiões Promotoras Genéticas
13.
J Mol Biol ; 331(3): 643-52, 2003 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12899834

RESUMO

A deficiency of the liver-specific enzyme alanine:glyoxylate aminotransferase (AGT) is responsible for the potentially lethal hereditary kidney stone disease primary hyperoxaluria type 1 (PH1). Many of the mutations in the gene encoding AGT are associated with specific enzymatic phenotypes such as accelerated proteolysis (Ser205Pro), intra-peroxisomal aggregation (Gly41Arg), inhibition of pyridoxal phosphate binding and loss of catalytic activity (Gly82Glu), and peroxisome-to-mitochondrion mistargeting (Gly170Arg). Several mutations, including that responsible for AGT mistargeting, co-segregate and interact synergistically with a Pro11Leu polymorphism found at high frequency in the normal population. In order to gain further insights into the mechanistic link between genotype and enzymatic phenotype in PH1, we have determined the crystal structure of normal human AGT complexed to the competitive inhibitor amino-oxyacetic acid to 2.5A. Analysis of this structure allows the effects of these mutations and polymorphism to be rationalised in terms of AGT tertiary and quaternary conformation, and in particular it provides a possible explanation for the Pro11Leu-Gly170Arg synergism that leads to AGT mistargeting.


Assuntos
Hiperoxalúria/enzimologia , Transaminases/química , Transaminases/genética , Alelos , Sítios de Ligação , Cristalografia por Raios X , Dimerização , Genótipo , Glicerol/metabolismo , Humanos , Hiperoxalúria/genética , Hiperoxalúria/metabolismo , Modelos Moleculares , Fenótipo , Polimorfismo Genético , Conformação Proteica , Transporte Proteico , Fosfato de Piridoxal/metabolismo , Transaminases/deficiência , Transaminases/metabolismo
14.
Proc Biol Sci ; 272(1565): 833-40, 2005 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-15888416

RESUMO

The subcellular distribution of the enzyme alanine:glyoxylate aminotransferase (AGT) in the livers of different mammals appears to be related to their natural diets. Thus, AGT tends to be mitochondrial in carnivores, peroxisomal in herbivores, and both mitochondrial and peroxisomal in omnivores. To what extent this relationship is an incidental consequence of phylogenetic structure or an evolutionarily meaningful adaptive response to changes in dietary selection pressure is unknown. In order to distinguish between these two possibilities, we have determined the subcellular distribution of AGT in the livers of 22 new mammalian species, including members of three orders not studied before. In addition, we have analysed the statistical relationship between AGT distribution and diet in all 77 mammalian species, from 12 different orders, for which the distribution is currently known. Our analysis shows that there is a highly significant correlation between AGT distribution and diet, independent of phylogeny. This finding is compatible with the suggestion that the variable intracellular targeting of AGT is an adaptive response to episodic changes in dietary selection pressure. To our knowledge, this is the first example of such a response being manifested at the molecular and cellular levels across the breadth of Mammalia.


Assuntos
Alanina Transaminase/metabolismo , Quirópteros/metabolismo , Dieta , Glioxilatos/metabolismo , Fígado/metabolismo , Marsupiais/metabolismo , Animais , Imuno-Histoquímica , Modelos Lineares , Mitocôndrias/metabolismo , Peroxissomos/metabolismo , Filogenia
15.
Assay Drug Dev Technol ; 13(1): 16-24, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25710543

RESUMO

Primary hyperoxaluria is a severe disease for which the best current therapy is dialysis or organ transplantation. These are risky, inconvenient, and costly procedures. In some patients, pyridoxine treatment can delay the need for these surgical procedures. The underlying cause of particular forms of this disease is the misrouting of a specific enzyme, alanine:glyoxylate aminotransferase (AGT), to the mitochondria instead of the peroxisomes. Pharmacoperones are small molecules that can rescue misfolded proteins and redirect them to their correct location, thereby restoring their function and potentially curing disease. In the present study, we miniaturized a cell-based assay to identify pharmacoperone drugs present in large chemical libraries to selectively correct AGT misrouting. This assay employs AGT-170, a mutant form of AGT that predominantly resides in the mitochondria, which we monitor for its relocation to the peroxisomes through automated image acquisition and analysis. Over the course of a pilot screen of 1,280 test compounds, we achieved an average Z'-factor of 0.72±0.02, demonstrating the suitability of this assay for HTS.


Assuntos
Bioensaio/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Hiperoxalúria Primária/tratamento farmacológico , Hiperoxalúria Primária/patologia , Chaperonas Moleculares/farmacologia , Animais , Células CHO , Sobrevivência Celular/efeitos dos fármacos , Cricetulus , Desenho de Fármacos , Humanos , Chaperonas Moleculares/síntese química , Chaperonas Moleculares/classificação , Fenótipo , Tecnologia Farmacêutica/métodos
16.
Expert Rev Mol Med ; 6(1): 1-16, 2004 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-14987413

RESUMO

The primary hyperoxalurias type 1 (PH1) and type 2 (PH2) are autosomal recessive calcium oxalate kidney stone diseases caused by deficiencies of the metabolic enzymes alanine:glyoxylate aminotransferase (AGT) and glyoxylate/hydroxypyruvate reductase (GR/HPR), respectively. Over 50 mutations have been identified in the AGXT gene (encoding AGT) in PH1, associated with a wide variety of effects on AGT, including loss of catalytic activity, aggregation, accelerated degradation, and peroxisome-to-mitochondrion mistargeting. Some of these mutations segregate and interact synergistically with a common polymorphism. Over a dozen mutations have been found in the GRHPR gene (encoding GR/HPR) in PH2, all associated with complete loss of glyoxylate reductase enzyme activity and immunoreactive protein. The crystal structure of human AGT, but not human GR/HPR, has been solved, allowing the effects of many of the mutations in PH1 to be rationalised in structural terms. Detailed analysis of the molecular aetiology of PH1 and PH2 has led to significant improvements in all aspects of their clinical management. Enzyme replacement therapy by liver transplantation can provide a metabolic cure for PH1, but it has yet to be tried for PH2. New treatments that aim to counter the effects of specific mutations on the properties of the enzymes could be feasible in the not-too-distant future.


Assuntos
Hiperoxalúria Primária , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Animais , Oxalato de Cálcio/metabolismo , Linhagem Celular , Genótipo , Humanos , Hidroxipiruvato Redutase/genética , Hidroxipiruvato Redutase/metabolismo , Hiperoxalúria Primária/enzimologia , Hiperoxalúria Primária/etiologia , Hiperoxalúria Primária/genética , Hiperoxalúria Primária/terapia , Modelos Moleculares , Mutação , Fenótipo , Polimorfismo Genético , Conformação Proteica , Transaminases/química , Transaminases/genética , Transaminases/metabolismo
17.
Nephron Exp Nephrol ; 98(2): e39-44, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15499210

RESUMO

Primary hyperoxaluria type 1 (PH1) is a rare autosomal-recessive disorder, caused by a deficiency of the liver-specific intermediary-metabolic enzyme alanine:glyoxylate aminotransferase (AGT). AGT deficiency results in increased synthesis and excretion of the metabolic end-product oxalate and the deposition of insoluble calcium oxalate in the kidney and urinary tract. Numerous mutations and polymorphisms have been identified in the gene (AGXT) that encodes AGT, some of which interact synergistically to cause a variety of complex enzyme phenotypes, including AGT intraperoxisomal aggregation, accelerated degradation, and peroxisome-to-mitochondrion mistargeting. The latter is the single most common cause of PH1 and results from the functional interaction between a common Pro11Leu polymorphism and a disease-specific Gly170Arg mutation. The recent solution of the crystal structure of AGT has enabled the effects of several mutations and polymorphisms to be rationalised in terms of their likely effects on AGT conformation. Increased understanding of the molecular aetiology of PH1 has led to significant improvements in all aspects of the clinical management of the disorder, including diagnosis (by enzyme assay of percutaneous needle liver biopsies), prenatal diagnosis (by DNA analysis of chorionic villus samples) and treatment (by liver transplantation as a form of enzyme replacement therapy).


Assuntos
Hiperoxalúria Primária/genética , Hiperoxalúria Primária/fisiopatologia , Transaminases/genética , Transaminases/metabolismo , Biópsia por Agulha , Oxalato de Cálcio/metabolismo , Humanos , Transplante de Fígado , Mitocôndrias/fisiologia , Polimorfismo Genético , Diagnóstico Pré-Natal , Transaminases/deficiência , Cálculos Urinários/fisiopatologia
18.
Int J Biochem Cell Biol ; 44(3): 536-46, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22198249

RESUMO

Alanine:glyoxylate aminotransferase (AGT) is a pyridoxal-phosphate (PLP)-dependent enzyme. Its deficiency causes the hereditary kidney stone disease primary hyperoxaluria type 1. AGT is a highly stable compact dimer and the first 21 residues of each subunit form an extension which wraps over the surface of the neighboring subunit. Naturally occurring and artificial amino acid replacements in this extension create changes in the functional properties of AGT in mammalian cells, including relocation of the enzyme from peroxisomes to mitochondria. In order to elucidate the structural and functional role of this N-terminal extension, we have analyzed the consequences of its removal using a variety of biochemical and cell biological methods. When expressed in Escherichia coli, the N-terminal deleted form of AGT showed the presence of the protein but in an insoluble form resulting in only a 10% soluble yield as compared to the full-length version. The purified soluble fraction showed reduced affinity for PLP and greatly reduced catalytic activity. Although maintaining a dimer form, it was highly prone to self-aggregation. When expressed in a mammalian cell line, the truncated construct was normally targeted to peroxisomes, where it formed large stable but catalytically inactive aggregates. These results suggest that the N-terminal extension plays an essential role in allowing AGT to attain its correct conformation and functional activity. The precise mechanism of this effect is still under investigation.


Assuntos
Hiperoxalúria Primária/genética , Fígado/enzimologia , Transaminases/química , Animais , Células CHO , Clonagem Molecular , Cricetinae , Humanos , Camundongos , Fragmentos de Peptídeos/genética , Conformação Proteica , Dobramento de Proteína , Multimerização Proteica , Deleção de Sequência/genética , Transaminases/genética
19.
Am J Nephrol ; 25(3): 303-10, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15961951

RESUMO

Primary hyperoxaluria type 1 (PH1) is a rare autosomal-recessive disorder caused by a deficiency of the liver-specific enzyme alanine:glyoxylate aminotransferase (AGT). AGT deficiency results in increased synthesis and excretion of the metabolic end-product oxalate and deposition of insoluble calcium oxalate in the kidney and urinary tract. Classic treatments for PH1 have tended to address the more distal aspects of the disease process (i.e. the symptoms rather than the causes). However, advances in the understanding of the molecular etiology of PH1 over the past decade have shifted attention towards the more proximal aspects of the disease process (i.e. the causes rather than the symptoms). The determination of the crystal structure of AGT has enabled the effects of some of the most important missense mutations in the AGXT gene to be rationalised in terms of AGT folding, dimerization and stability. This has opened up new possibilities for the design pharmacological agents that might counteract the destabilizing effects of these mutations and which might be of use for the treatment of a potentially life-threatening and difficult-to-treat disease.


Assuntos
Hiperoxalúria Primária/etiologia , Hiperoxalúria Primária/terapia , Erros Inatos do Metabolismo/complicações , Transaminases/deficiência , Humanos , Hiperoxalúria Primária/genética , Erros Inatos do Metabolismo/genética , Mutação , Nefrologia/tendências , Polimorfismo Genético , Transaminases/química , Transaminases/genética
20.
J Biol Chem ; 280(29): 27111-20, 2005 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-15911627

RESUMO

Although human alanine:glyoxylate aminotransferase (AGT) is imported into peroxisomes by a Pex5p-dependent pathway, the properties of its C-terminal tripeptide (KKL) are unlike those of any other type 1 peroxisomal targeting sequence (PTS1). We have previously suggested that AGT might possess ancillary targeting information that enables its unusual PTS1 to work. In this study, we have attempted to locate this information and to determine whether or not it is a characteristic of all vertebrate AGTs. Using the two-hybrid system, we show that human AGT interacts with human Pex5p in mammalian cells, but not yeast cells. Using (immuno)fluorescence microscopic analysis of the distribution of various constructs expressed in COS cells, we show the following. 1) The putative ancillary peroxisomal targeting information (PTS1A) in human AGT is located entirely within the smaller C-terminal structural domain of 110 amino acids, with the sequence between Val-324 and Ile-345 being the most likely candidate region. 2) The PTS1A is present in all mammalian AGTs studied (human, rat, guinea pig, rabbit, and cat), but not amphibian AGT (Xenopus). 3) The PTS1A is necessary for peroxisomal import of human, rabbit, and cat AGTs, but not rat and guinea pig AGTs. We speculate that the internal PTS1A of human AGT works in concert with the C-terminal PTS1 by interacting with Pex5p indirectly with the aid of a yet-to-be-identified mammal-specific adaptor molecule. This interaction might reshape the tetratricopeptide repeat domain allosterically, enabling it to accept KKL as a functional PTS1.


Assuntos
Peroxissomos/metabolismo , Sinais Direcionadores de Proteínas , Transaminases/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Fluorescência Verde , Humanos , Microscopia de Fluorescência , Mutagênese Sítio-Dirigida , Fragmentos de Peptídeos/genética , Receptor 1 de Sinal de Orientação para Peroxissomos , Estrutura Terciária de Proteína , Transporte Proteico , Receptores Citoplasmáticos e Nucleares/metabolismo , Especificidade da Espécie , Transaminases/química , Transaminases/genética , Transfecção , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA