Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 3937, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38366014

RESUMO

Fixed frequency beam-scanning leaky-wave antennas have been a focus of attention for many scholars in recent years, and numerous related results have been obtained. However, these antennas suffer from several issues such as small beam-scanning range, low gain, and unsatisfactory impedance matching. To address these problems, this paper proposes a microstrip line (ML) antenna unit based on liquid crystal (LC) materials etched Complementary Split Ring Resonator (CSRR). In a first-of-its-kind approach, the substrate integrated waveguide (SIW) structure and the ML transmission structure are combined to present the SIW-ML transmission structure. The antenna operates in the Ka-band with excellent resonance characteristics at 34.7 GHz, and the S11 parameters are below - 13 dB in the frequency range of 30-40 GHz, indicating outstanding impedance matching. By arranging 56 antenna units, a periodic leaky-wave antenna is created, enabling fixed-frequency beam-scanning at 34.7 GHz. Experimental results show that the antenna can achieve scanning of angles between - 53° and + 60° with a gain of up to 12.63 dB. Once single-beam scanning is achieved, a method combining LC and discrete amplitude weighting technique, as well as multi-beam theory, is proposed for multi-beam study. Experimental results reveal that the designed 56-unit beam-scanning antenna can effectively realize beam scanning in two directions.

2.
Nanomaterials (Basel) ; 14(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38470795

RESUMO

The initial electrical characteristics and bias stabilities of thin-film transistors (TFTs) are vital factors regarding the practical use of electronic devices. In this study, the dependence of positive bias stress (PBS) instability on an initial threshold voltage (VTH) and its origin were analyzed by understanding the roles of slow and fast traps in solution-processed oxide TFTs. To control the initial VTH of oxide TFTs, the indium oxide (InOx) semiconductor was doped with aluminum (Al), which functioned as a carrier suppressor. The concentration of oxygen vacancies decreased as the Al doping concentration increased, causing a positive VTH shift in the InOx TFTs. The VTH shift (∆VTH) caused by PBS increased exponentially when VTH was increased, and a distinct tendency was observed as the gate bias stress increased due to a high vertical electric field in the oxide dielectric. In addition, the recovery behavior was analyzed to reveal the influence of fast and slow traps on ∆VTH by PBS. Results revealed that the effect of the slow trap increased as the VTH moved in the positive direction; this occured because the main electron trap location moved away from the interface as the Fermi level approached the conduction band minimum. Understanding the correlation between VTH and PBS instability can contribute to optimizing the fabrication of oxide TFT-based circuits for electronic applications.

3.
Nanomaterials (Basel) ; 13(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37299625

RESUMO

In this study, we used a low-pressure thermal annealing (LPTA) treatment to improve the switching characteristics and bias stability of zinc-tin oxide (ZTO) thin film transistors (TFTs). For this, we first fabricated the TFT and then applied the LPTA treatment at temperatures of 80 °C and 140 °C. The LPTA treatment reduced the number of defects in the bulk and interface of the ZTO TFTs. In addition, the changes in the water contact angle on the ZTO TFT surface indicated that the LPTA treatment reduced the surface defects. Hydrophobicity suppressed the off-current and instability under negative bias stress because of the limited absorption of moisture on the oxide surface. Moreover, the ratio of metal-oxygen bonds increased, while the ratio of oxygen-hydrogen bonds decreased. The reduced action of hydrogen as a shallow donor induced improvements in the on/off ratio (from 5.5 × 103 to 1.1 × 107) and subthreshold swing (8.63 to V·dec-1 and 0.73 V·dec-1), producing ZTO TFTs with excellent switching characteristics. In addition, device-to-device uniformity was significantly improved because of the reduced defects in the LPTA-treated ZTO TFTs.

4.
Nanomaterials (Basel) ; 13(18)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37764597

RESUMO

High-performance oxide transistors have recently attracted significant attention for use in various electronic applications, such as displays, sensors, and back-end-of-line transistors. In this study, we demonstrate atomically thin indium-oxide (InOx) semiconductors using a solution process for high-performance thin-film transistors (TFTs). To achieve superior field-effect mobility and switching characteristics in TFTs, the bandgap and thickness of the InOx were tuned by controlling the InOx solution molarity. As a result, a high field-effect mobility and on/off-current ratio of 13.95 cm2 V-1 s-1 and 1.42 × 1010, respectively, were achieved using 3.12-nanometer-thick InOx. Our results showed that the charge transport of optimized InOx with a thickness of 3.12 nm is dominated by percolation conduction due to its low surface roughness and appropriate carrier concentration. Furthermore, the atomically thin InOx TFTs showed superior positive and negative gate bias stress stabilities, which are important in electronic applications. The proposed oxide TFTs could provide an effective means of the fabrication of scalable, high-throughput, and high-performance transistors for next-generation electronic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA