Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Radiology ; 300(2): 380-387, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34100680

RESUMO

Background MR fingerprinting (MRF) provides rapid and simultaneous quantification of multiple tissue parameters in a single scan. Purpose To evaluate a rapid kidney MRF technique at 3.0 T in phantoms, healthy volunteers, and patients. Materials and Methods A 15-second kidney MRF acquisition was designed with 12 acquisition segments, a range of low flip angles (5°-12°), multiple magnetization preparation schema (T1, T2, and fat suppression), and an undersampled spiral trajectory. This technique was first validated in vitro using standardized T1 and T2 phantoms. Kidney T1 and T2 maps were then obtained for 10 healthy adult volunteers (mean age ± standard deviation, 35 years ± 13; six men) and three pediatric patients with autosomal recessive polycystic kidney disease (ARPKD) (mean age, 10 years ± 3; two boys) between August 2019 and October 2020 to evaluate the method in vivo. Results Results in nine phantoms showed good agreement with spin-echo-based T1 and T2 values (R2 > 0.99). In vivo MRF kidney T1 and T2 assessments in healthy adult volunteers (cortex: T1, 1362 msec ± 5; T2, 64 msec ± 5; medulla: T1, 1827 msec ± 94; T2, 69 msec ± 3) were consistent with values in the literature but with improved precision in comparison with prior MRF implementations. In vivo MRF-based kidney T1 and T2 values with and without B1 correction were in good agreement (R2 > 0.96, P < .001), demonstrating limited sensitivity to B1 field inhomogeneities. Additional MRF reconstructions using the first nine segments of the MRF profiles (11-second acquisition time) were in good agreement with the reconstructions using 12 segments (15-second acquisition time) (R2 > 0.87, P < .001). Repeat kidney MRF scans for the three patients with ARPKD on successive days also demonstrated good reproducibility (T1 and T2: <3% difference). Conclusion A kidney MR fingerprinting method provided in vivo kidney T1 and T2 maps at 3.0 T in a single breath hold with improved precision and no need for B1 correction. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Laustsen in this issue.


Assuntos
Rim/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Rim Policístico Autossômico Recessivo/diagnóstico por imagem , Adulto , Suspensão da Respiração , Criança , Feminino , Voluntários Saudáveis , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Imagens de Fantasmas
2.
Pediatr Res ; 89(1): 157-162, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32283547

RESUMO

BACKGROUND: Autosomal recessive polycystic kidney disease (ARPKD) is a rare but potentially lethal genetic disorder typically characterized by diffuse renal microcysts. Clinical trials for patients with ARPKD are not currently possible due to the absence of sensitive measures of ARPKD kidney disease progression and/or therapeutic efficacy. METHODS: In this study, animal and human magnetic resonance imaging (MRI) scanners were used to obtain quantitative kidney T1 and T2 relaxation time maps for both excised kidneys from bpk and wild-type (WT) mice as well as for a pediatric patient with ARPKD and a healthy adult volunteer. RESULTS: Mean kidney T1 and T2 relaxation times showed significant increases with age (p < 0.05) as well as significant increases in comparison to WT mice (p < 2 × 10-10). Significant or nearly significant linear correlations were observed for mean kidney T1 (p = 0.030) and T2 (p = 0.054) as a function of total kidney volume, respectively. Initial magnetic resonance fingerprinting assessments in a patient with ARPKD showed visible increases in both kidney T1 and T2 in comparison to the healthy volunteer. CONCLUSIONS: These preclinical and initial clinical MRI studies suggest that renal T1 and T2 relaxometry may provide an additional outcome measure to assess cystic kidney disease progression in patients with ARPKD. IMPACT: A major roadblock for implementing clinical trials in patients with ARPKD is the absence of sensitive measures of ARPKD kidney disease progression and/or therapeutic efficacy. A clinical need exists to develop a safe and sensitive measure for kidney disease progression, and eventually therapeutic efficacy, for patients with ARPKD. Mean kidney T1 and T2 MRI relaxation times showed significant increases with age (p < 0.05) as well as significant increases in comparison to WT mice (p < 2 ×10-10), indicating that T1 and T2 may provide sensitive assessments of cystic changes associated with progressive ARPKD kidney disease. This preclinical and initial clinical study suggests that MRI-based kidney T1 and T2 mapping could be used as a non-invasive assessment of ARPKD kidney disease progression. These non-invasive, quantitative MRI techniques could eventually be used as an outcome measure for clinical trials evaluating novel therapeutics aimed at limiting or preventing ARPKD kidney disease progression.


Assuntos
Rim/diagnóstico por imagem , Imageamento por Ressonância Magnética , Rim Policístico Autossômico Recessivo/diagnóstico por imagem , Adolescente , Animais , Modelos Animais de Doenças , Progressão da Doença , Humanos , Rim Policístico Autossômico Recessivo/genética , Valor Preditivo dos Testes
3.
Nano Lett ; 20(10): 7159-7167, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32845644

RESUMO

Adjuvant radiotherapy is frequently prescribed to treat cancer. To minimize radiation-related damage to healthy tissue, it requires high precision in tumor localization and radiation dose delivery. This can be achieved by MR guidance and targeted amplification of radiation dose selectively to tumors by using radiosensitizers. Here, we demonstrate prostate cancer-targeted gold nanoparticles (AuNPs) for MR-guided radiotherapy to improve the targeting precision and efficacy. By conjugating Gd(III) complexes and prostate-specific membrane antigen (PSMA) targeting ligands to AuNP surfaces, we found enhanced uptake of AuNPs by PSMA-expressing cancer cells with excellent MR contrast and radiation therapy outcome in vitro and in vivo. The AuNPs binding affinity and r1 relaxivity were dramatically improved and the combination of Au and Gd(III)provided better tumor suppression after radiation. The precise tumor localization by MR and selective tumor targeting of the PSMA-1-targeted AuNPs could enable precise radiotherapy, reduction in irradiating dose, and minimization of healthy tissue damage.


Assuntos
Nanopartículas Metálicas , Neoplasias da Próstata , Linhagem Celular Tumoral , Ouro , Humanos , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia
4.
J Physiol ; 598(18): 3941-3956, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-33174711

RESUMO

KEY POINTS: Extreme aviation is accompanied by ever-present risks of hypobaric hypoxia and decompression sickness. Neuroprotection against those hazards is conferred through fractional inspired oxygen ( FI,O2 ) concentrations of 60-100% (hyperoxia). Hyperoxia reduces global cerebral perfusion (gCBF), increases reactive oxygen species within the brain and leads to cell death within the hippocampus. However, an understanding of hyperoxia's effect on cortical activity and concomitant levels of cognitive performance is lacking. This limits our understanding of whether hyperoxia could lower the brain's threshold of tolerance to physiological stressors inherent to extreme aviation, such as high gravitational forces. This study aimed to quantify the impact of hyperoxia upon global cerebral perfusion (gCBF), cognitive performance and cortical electroencephalography (EEG). Hyperoxia evoked a rapid reduction in gCBF, yet cognitive performance and vigilance were enhanced. EEG measurements revealed enhanced alpha power, suggesting less desynchrony, within the cortical temporal regions. Collectively, this work suggests hyperoxia-induced brain hypoperfusion is accompanied by enhanced cognitive processing and cortical arousal. ABSTRACT: Extreme aviators continually inspire hyperoxic gas to mitigate risk of hypoxia and decompression injury. This neuroprotection carries a physiological cost: reduced cerebral perfusion (CBF). As reduced CBF may increase vulnerability to ever-present physiological challenges during extreme aviation, we defined the magnitude and duration of hyperoxia-induced changes in CBF, cortical electrical activity and cognition in 30 healthy males and females. Magnetic resonance imaging with pulsed arterial spin labelling provided serial measurements of global CBF (gCBF), first during exposure to 21% inspired oxygen ( FI,O2 ) followed by a 30-min exposure to 100% FI,O2 . High-density EEG facilitated characterization of cortical activity during assessment of cognitive performance, also measured during exposure to 21% and 100% FI,O2 . Acid-base physiology was measured with arterial blood gases. We found that exposure to 100% FI,O2 reduced gCBF to 63% of baseline values across all participants. Cognitive performance testing at 21% FI,O2 was accompanied by increased theta and beta power with decreased alpha power across multiple cortical areas. During cognitive testing at 100% FI,O2 , alpha activity was less desynchronized within the temporal regions than at 21% FI,O2 . The collective hyperoxia-induced changes in gCBF, cognitive performance and EEG were similar across observed partial pressures of arterial oxygen ( PaO2 ), which ranged between 276-548 mmHg, and partial pressures of arterial carbon dioxide ( PaCO2 ), which ranged between 34-50 mmHg. Sex did not influence gCBF response to 100% FI,O2 . Our findings suggest hyperoxia-induced reductions in gCBF evoke enhanced levels of cortical arousal and cognitive processing, similar to those occurring during a perceived threat.


Assuntos
Hiperóxia , Circulação Cerebrovascular , Cognição , Eletroencefalografia , Feminino , Humanos , Masculino , Oxigênio , Perfusão
5.
Am J Physiol Endocrinol Metab ; 319(1): E187-E195, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32396388

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic fat accumulation and impaired insulin sensitivity. Reduced hepatic ketogenesis may promote these pathologies, but data are inconclusive in humans and the link between NAFLD and reduced insulin sensitivity remains obscure. We investigated individuals with obesity-related NAFLD and hypothesized that ß-hydroxybutyrate (ßOHB; the predominant ketone species) would be reduced and related to hepatic fat accumulation and insulin sensitivity. Furthermore, we hypothesized that ketones would impact skeletal muscle mitochondrial respiration in vitro. Hepatic fat was assessed by 1H-MRS in 22 participants in a parallel design, case control study [Control: n = 7, age 50 ± 6 yr, body mass index (BMI) 30 ± 1 kg/m2; NAFLD: n = 15, age 57 ± 3 yr, BMI 35 ± 1 kg/m2]. Plasma assessments were conducted in the fasted state. Whole body insulin sensitivity was determined by the gold-standard hyperinsulinemic-euglycemic clamp. The effect of ketone dose (0.5-5.0 mM) on mitochondrial respiration was conducted in human skeletal muscle cell culture. Fasting ßOHB, a surrogate measure of hepatic ketogenesis, was reduced in NAFLD (-15.6%, P < 0.01) and correlated negatively with liver fat (r2 = 0.21, P = 0.03) and positively with insulin sensitivity (r2 = 0.30, P = 0.01). Skeletal muscle mitochondrial oxygen consumption increased with low-dose ketones, attributable to increases in basal respiration (135%, P < 0.05) and ATP-linked oxygen consumption (136%, P < 0.05). NAFLD pathophysiology includes impaired hepatic ketogenesis, which is associated with hepatic fat accumulation and impaired insulin sensitivity. This reduced capacity to produce ketones may be a potential link between NAFLD and NAFLD-associated reductions in whole body insulin sensitivity, whereby ketone concentrations impact skeletal muscle mitochondrial respiration.


Assuntos
Ácido 3-Hidroxibutírico/metabolismo , Fígado/metabolismo , Mitocôndrias Musculares/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Adulto , Idoso , Estudos de Casos e Controles , Ácidos Graxos não Esterificados/metabolismo , Feminino , Técnica Clamp de Glucose , Humanos , Técnicas In Vitro , Resistência à Insulina , Corpos Cetônicos/metabolismo , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/etiologia , Obesidade/complicações , Espectroscopia de Prótons por Ressonância Magnética
6.
Int Urogynecol J ; 31(1): 107-115, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30666428

RESUMO

INTRODUCTION AND HYPOTHESIS: SDF-1 chemokine enhances tissue regeneration through stem cell chemotaxis, neovascularization and neuronal regeneration. We hypothesized that non-viral delivery of human plasmids that express SDF-1 (pSDF-1) may represent a novel regenerative therapy for stress urinary incontinence (SUI). METHODS: Seventy-six female rats underwent vaginal distention (VD). They were then divided into four groups according to treatment: pSDF-1 (n = 42), sham (n = 30), PBS (n = 1) and luciferase-tagged pSDF-1 (n = 3). Immediately after VD, the pSDF-1 group underwent immediate periurethral injection of pSDF-1, and the sham group received a vehicle injection followed by leak point pressure (LPP) measurement at the 4th, 7th and 14th days. Urogenital tissues were collected for histology. H&E and trichrome slides were analyzed for vascularity and collagen/muscle components of the sphincter. For the luciferase-tagged pSDF-1 group, bioluminescence scans (BLIs) were obtained on the 3rd, 7th and 14th days following injections. Statistical analysis was conducted using ANOVA with post hoc LSD tests. The Mann-Whitney U test was employed to make pair-wise comparisons between the treated and sham groups. We used IBM SPSS, version 22, for statistical analyses. RESULTS: BLI showed high expression of luciferase-tagged pSDF-1 in the pelvic area over time. VD resulted in a decline of LPP at the 4th day in both groups. The pSDF1-treated group demonstrated accelerated recovery that was significantly higher than that of the sham-treated group at the 7th day (22.64 cmH2O versus 13.99 cmH2O, p < 0.001). Functional improvement persisted until the 14th day (30.51 cmH2O versus 24.11 cmH2O, p = 0.067). Vascularity density in the pSDF-1-treated group was higher than in the sham group at the 7th and 14th days (p < 0.05). The muscle density/sphincter area increased significantly from the 4th to 14th day only in the pSDF-1 group. CONCLUSIONS: Periurethral injection of pSDF-1 after simulated childbirth accelerated the recovery of continence and regeneration of the urethral sphincter in a rat SUI model. This intervention can potentially be translated to the treatment of post-partum urinary incontinence.


Assuntos
Quimiocina CXCL12/genética , Terapia Genética/métodos , Transtornos Puerperais/prevenção & controle , Incontinência Urinária por Estresse/prevenção & controle , Animais , Modelos Animais de Doenças , Injeções , Plasmídeos , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
7.
Nanomedicine ; 28: 102216, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32413511

RESUMO

Poor prognosis for glioblastoma (GBM) is a consequence of the aggressive and infiltrative nature of gliomas where individual cells migrate away from the main tumor to distant sites, making complete surgical resection and treatment difficult. In this manuscript, we characterize an invasive pediatric glioma model and determine if nanoparticles linked to a peptide recognizing the GBM tumor biomarker PTPmu can specifically target both the main tumor and invasive cancer cells in adult and pediatric glioma models. Using both iron and lipid-based nanoparticles, we demonstrate by magnetic resonance imaging, optical imaging, histology, and iron quantification that PTPmu-targeted nanoparticles effectively label adult gliomas. Using PTPmu-targeted nanoparticles in a newly characterized orthotopic pediatric SJ-GBM2 model, we demonstrate individual tumor cell labeling both within the solid tumor margins and at invasive and dispersive sites.


Assuntos
Glioblastoma/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Nanopartículas/química , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Feminino , Compostos Férricos/química , Glioblastoma/metabolismo , Glioma/diagnóstico por imagem , Glioma/metabolismo , Humanos , Camundongos , Camundongos Nus
8.
Pediatr Radiol ; 50(7): 923-934, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32162080

RESUMO

BACKGROUND: Assessment tools for early cystic fibrosis (CF) lung disease are limited. Detecting early pulmonary disease is crucial to increasing life expectancy by starting interventions to slow the progression of the pulmonary disease with the many treatment options available. OBJECTIVE: To compare the utility of lung T1-mapping MRI with ultrashort echo time (UTE) MRI in children with cystic fibrosis in detecting early stage lung disease and monitoring pulmonary exacerbations. MATERIALS AND METHODS: We performed a prospective study in 16 children between September 2017 and January 2018. In Phase 1, we compared five CF patients with normal spirometry (mean 11.2 years) to five age- and gender-matched healthy volunteers. In Phase 2, we longitudinally evaluated six CF patients (median 11 years) in acute pulmonary exacerbation. All children had non-contrast lung T1-mapping and UTE MRI and spirometry testing. We compared the mean normalized T1 value and percentage lung volume without T1 value in CF patients and healthy subjects in Phase 1 and during treatment in Phase 2. We also performed cystic fibrosis MRI scoring. We evaluated differences in continuous variables using standard statistical tests. RESULTS: In Phase 1, mean normalized T1 values of the lung were significantly lower in CF patients in comparison to healthy controls (P=0.02) except in the right lower lobe (P=0.29). The percentage lung volume without T1 value was also significantly higher in CF patients (P=0.006). UTE MRI showed no significant differences between CF patients and healthy volunteers (P=0.11). In Phase 2, excluding one outlier case who developed systemic disease in the course of treatment, the whole-lung T1 value increased (P=0.001) and perfusion scoring improved (P=0.02) following therapy. We observed no other significant changes in the MRI scoring. CONCLUSION: Lung T1-mapping MRI can detect early regional pulmonary CF disease in children and might be helpful in the assessment of acute pulmonary exacerbations.


Assuntos
Fibrose Cística/diagnóstico por imagem , Pneumopatias/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Adolescente , Estudos de Casos e Controles , Criança , Estudos Transversais , Fibrose Cística/fisiopatologia , Progressão da Doença , Feminino , Humanos , Masculino , Projetos Piloto , Estudos Prospectivos , Testes de Função Respiratória
9.
Nutr Metab Cardiovasc Dis ; 29(11): 1197-1204, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31371265

RESUMO

BACKGROUND AND AIMS: Nonalcoholic fatty liver disease (NAFLD) is characterized by excessive hepatic fat accumulation. Increased hepatic saturated fats and decreased hepatic polyunsaturated fats may be particularly lipotoxic, contributing to metabolic dysfunction. We compared hepatic lipid subspecies in adults with and without NAFLD, and examined links with hallmark metabolic and clinical characteristics of NAFLD. METHODS AND RESULTS: Nineteen adults with NAFLD (total hepatic fat:18.8 ± 0.1%) were compared to sixteen adults without NAFLD (total hepatic fat: 2.1 ± 0.01%). 1H-MRS was used to assess hepatic lipid subspecies. Methyl, allylic, methylene, and diallylic proton peaks were measured. Saturation, unsaturation, and polyunsaturation indices were calculated. Whole-body phenotyping in a subset of participants included insulin sensitivity (40 mU/m2 hyperinsulinemic-euglycemic clamps), CT-measured abdominal adipose tissue depots, exercise capacity, and serum lipid profiles. Participants with NAFLD exhibited more saturated and less unsaturated hepatic fat, accompanied by increased insulin resistance, total and visceral adiposity, triglycerides, and reduced exercise capacity compared to controls (all P < 0.05). All proton lipid peaks were related to insulin resistance and hypertriglyceridemia (P < 0.05). CONCLUSION: Participants with NAFLD preferentially stored excess hepatic lipids as saturated fat, at the expense of unsaturated fat, compared to controls. This hepatic lipid profile was accompanied by an unhealthy metabolic phenotype.


Assuntos
Dislipidemias/diagnóstico , Metabolismo dos Lipídeos , Lipidômica/métodos , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Espectroscopia de Prótons por Ressonância Magnética , Adulto , Idoso , Biomarcadores/metabolismo , Estudos de Casos e Controles , Estudos Transversais , Dislipidemias/metabolismo , Dislipidemias/fisiopatologia , Tolerância ao Exercício , Feminino , Humanos , Resistência à Insulina , Fígado/fisiopatologia , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Obesidade Abdominal , Fenótipo , Valor Preditivo dos Testes
10.
Am J Physiol Gastrointest Liver Physiol ; 315(5): G685-G698, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30118352

RESUMO

Negative energy balance is a prevalent feature of cystic fibrosis (CF). Pancreatic insufficiency, elevated energy expenditure, lung disease, and malnutrition, all characteristic of CF, contribute to the negative energy balance causing low body-growth phenotype. As low body weight and body mass index strongly correlate with poor lung health and survival of patients with CF, improving energy balance is an important clinical goal (e.g., high-fat diet). CF mouse models also exhibit negative energy balance (growth retardation and high energy expenditure), independent from exocrine pancreatic insufficiency, lung disease, and malnutrition. To improve energy balance through increased caloric intake and reduced energy expenditure, we disrupted leptin signaling by crossing the db/db leptin receptor allele with mice carrying the R117H Cftr mutation. Compared with db/db mice, absence of leptin signaling in CF mice (CF db/db) resulted in delayed and moderate hyperphagia with lower de novo lipogenesis and lipid deposition, producing only moderately obese CF mice. Greater body length was found in db/db mice but not in CF db/db, suggesting CF-dependent effect on bone growth. The db/db genotype resulted in lower energy expenditure regardless of Cftr genotype leading to obesity. Despite the db/db genotype, the CF genotype exhibited high respiratory quotient indicating elevated carbohydrate oxidation, thus limiting carbohydrates for lipogenesis. In summary, db/db-linked hyperphagia, elevated lipogenesis, and morbid obesity were partially suppressed by reduced CFTR activity. CF mice still accrued large amounts of adipose tissue in contrast to mice fed a high-fat diet, thus highlighting the importance of dietary carbohydrates and not simply fat for energy balance in CF. NEW & NOTEWORTHY We show that cystic fibrosis (CF) mice are able to accrue fat under conditions of carbohydrate overfeeding, increased lipogenesis, and decreased energy expenditure, although length was unaffected. High-fat diet feeding failed to improve growth in CF mice. Morbid db/db-like obesity was reduced in CF double-mutant mice by reduced CFTR activity.


Assuntos
Tecido Adiposo/patologia , Fibrose Cística/complicações , Leptina/metabolismo , Lipogênese , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Animais , Dieta da Carga de Carboidratos/efeitos adversos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/genética , Transdução de Sinais
11.
Magn Reson Med ; 79(4): 2176-2182, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28796368

RESUMO

PURPOSE: The regularly incremented phase encoding-magnetic resonance fingerprinting (RIPE-MRF) method is introduced to limit the sensitivity of preclinical MRF assessments to pulsatile and respiratory motion artifacts. METHODS: As compared to previously reported standard Cartesian-MRF methods (SC-MRF), the proposed RIPE-MRF method uses a modified Cartesian trajectory that varies the acquired phase-encoding line within each dynamic MRF dataset. Phantoms and mice were scanned without gating or triggering on a 7T preclinical MRI scanner using the RIPE-MRF and SC-MRF methods. In vitro phantom longitudinal relaxation time (T1 ) and transverse relaxation time (T2 ) measurements, as well as in vivo liver assessments of artifact-to-noise ratio (ANR) and MRF-based T1 and T2 mean and standard deviation, were compared between the two methods (n = 5). RESULTS: RIPE-MRF showed significant ANR reductions in regions of pulsatility (P < 0.005) and respiratory motion (P < 0.0005). RIPE-MRF also exhibited improved precision in T1 and T2 measurements in comparison to the SC-MRF method (P < 0.05). The RIPE-MRF and SC-MRF methods displayed similar mean T1 and T2 estimates (difference in mean values < 10%). CONCLUSION: These results show that the RIPE-MRF method can provide effective motion artifact suppression with minimal impact on T1 and T2 accuracy for in vivo small animal MRI studies. Magn Reson Med 79:2176-2182, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Artefatos , Processamento de Imagem Assistida por Computador/métodos , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Algoritmos , Anestesia , Animais , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Movimento (Física) , Reconhecimento Automatizado de Padrão , Reprodutibilidade dos Testes
12.
Magn Reson Med ; 80(6): 2681-2690, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29744935

RESUMO

PURPOSE: The goal of this study was to develop a fast MR fingerprinting (MRF) method for simultaneous T1 and T2 mapping in DCE-MRI studies in mice. METHODS: The MRF sequences based on balanced SSFP and fast imaging with steady-state precession were implemented and evaluated on a 7T preclinical scanner. The readout used a zeroth-moment-compensated variable-density spiral trajectory that fully sampled the entire k-space and the inner 10 × 10 k-space with 48 and 4 interleaves, respectively. In vitro and in vivo studies of mouse brain were performed to evaluate the accuracy of MRF measurements with both fully sampled and undersampled data. The application of MRF to dynamic T1 and T2 mapping in DCE-MRI studies were demonstrated in a mouse model of heterotopic glioblastoma using gadolinium-based and dysprosium-based contrast agents. RESULTS: The T1 and T2 measurements in phantom showed strong agreement between the MRF and the conventional methods. The MRF with spiral encoding allowed up to 8-fold undersampling without loss of measurement accuracy. This enabled simultaneous T1 and T2 mapping with 2-minute temporal resolution in DCE-MRI studies. CONCLUSION: Magnetic resonance fingerprinting provides the opportunity for dynamic quantification of contrast agent distribution in preclinical tumor models on high-field MRI scanners.


Assuntos
Meios de Contraste/química , Imageamento por Ressonância Magnética , Algoritmos , Animais , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Linhagem Celular Tumoral , Modelos Animais de Doenças , Disprósio/química , Gadolínio/química , Glioblastoma/diagnóstico por imagem , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Modelos Lineares , Camundongos , Camundongos Nus , Transplante de Neoplasias , Imagens de Fantasmas
13.
NMR Biomed ; 31(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29350437

RESUMO

Chronic kidney disease (CKD) occurs in over one-third of patients with sickle cell disease (SCD) and can progress to end-stage renal disease. Unfortunately, current clinical assessments of kidney function are insensitive to early-stage CKD. Previous studies have shown that diffusion magnetic resonance imaging (MRI) can sensitively detect regional renal microstructural changes associated with early-stage CKD. However, previous MRI studies in patients with SCD have been largely limited to the detection of renal iron deposition assessed by T2 * relaxometry. In this pilot imaging study, we compare MRI assessments of renal microstructure (diffusion) and iron deposition (T2 *) in patients with SCD and in non-SCD control subjects. Diffusion tensor imaging (DTI) and T2 * relaxometry MRI data were obtained for pediatric (n = 5) and adult (n = 4) patients with SCD, as well as for non-SCD control subjects (n = 10), on a Siemens Espree 1.5-T MRI scanner. A region-of-interest analysis was used to calculate mean medullary and cortical values for each MRI metric. MRI findings were also compared with clinical assessments of renal function and hemolysis. Patients with SCD showed a significant decrease in medullary fractional anisotropy (FA, p = 0.0001) in comparison with non-SCD subjects, indicative of microstructural alterations in the renal medulla of patients with SCD. Cortical and medullary reductions in T2 * (increased iron deposition, p = ≤0.0001) were also observed. Significant correlations were also observed between kidney T2 * assessments and multiple measures of hemolysis. This is the first DTI MRI study of patients with SCD to demonstrate reductions in medullary FA despite no overt CKD [estimated glomerular filtration rate (eGFR) > 100 mL/min/1.73 m2 ]. These medullary FA changes are consistent with previous studies in patients with CKD, and suggest that DTI MRI can provide a useful measure of kidney injury to complement MRI assessments of iron deposition.


Assuntos
Anemia Falciforme/diagnóstico por imagem , Anemia Falciforme/metabolismo , Imagem de Tensor de Difusão , Ferro/metabolismo , Nefropatias/diagnóstico por imagem , Nefropatias/metabolismo , Adolescente , Adulto , Anisotropia , Aspartato Aminotransferases/metabolismo , Criança , Feminino , Humanos , Masculino , Adulto Jovem
14.
Pediatr Res ; 83(5): 1067-1074, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29538364

RESUMO

BackgroundAutosomal recessive polycystic kidney disease (ARPKD) is associated with significant mortality and morbidity, and currently, there are no disease-specific treatments available for ARPKD patients. One major limitation in establishing new therapies for ARPKD is a lack of sensitive measures of kidney disease progression. Magnetic resonance imaging (MRI) can provide multiple quantitative assessments of the disease.MethodsWe applied quantitative image analysis of high-resolution (noncontrast) T2-weighted MRI techniques to study cystic kidney disease progression and response to therapy in the PCK rat model of ARPKD.ResultsSerial imaging over a 2-month period demonstrated that renal cystic burden (RCB, %)=[total cyst volume (TCV)/total kidney volume (TKV) × 100], TCV, and, to a lesser extent, TKV detected cystic kidney disease progression, as well as the therapeutic effect of octreotide, a clinically available medication shown previously to slow both kidney and liver disease progression in this model. All three MRI measures correlated significantly with histologic measures of renal cystic area, although the correlation of RCB and TCV was stronger than that of TKV.ConclusionThese preclinical MRI results provide a basis for applying these quantitative MRI techniques in clinical studies, to stage and measure progression in human ARPKD kidney disease.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Rim Policístico Autossômico Recessivo/diagnóstico por imagem , Animais , Cistos/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Hepatopatias/patologia , Masculino , Octreotida/farmacologia , Rim Policístico Autossômico Recessivo/patologia , Ratos , Ratos Sprague-Dawley , Software
15.
J Mater Sci Mater Med ; 29(5): 58, 2018 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-29730814

RESUMO

Iron oxide nanoparticles (IONPs) with high-index facets have shown great potential as high performance T2 contrast agents for MRI. Previous synthetic approaches focused mainly on ion-directed or oxidative etching methods. Herein, we report a new synthetic route for preparing high-index faceted iron oxide concave nanocubes using a bulky coordinating solvent. Through the systematic replacement of a non-coordinating solvent, 1-octadecene, with trioctylamine, the solvent interaction with the nanoparticle surface is modified, thereby, promoting the growth evolution of the IONPs from spherical to concave cubic morphology. The presence of the bulky trioctylamine solvent results in particle size increase and the formation of nanoparticles with enhanced shape anisotropy. A well-defined concave nanocube structure was evident from the early stages of particle growth, further confirming the important role of bulky coordinating solvents in nanoparticle structural development. The unique concave nanocube morphology has a direct influence on the magnetic properties of the IONPs, ultimately leading to an ultra-high T2 relaxivity (862.2 mM-1 s-1), and a 2-fold enhancement in T2*-weighted in vivo MRI contrast compared to spherical IONP analogs.


Assuntos
Técnicas de Química Sintética/métodos , Meios de Contraste/síntese química , Compostos Férricos/química , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita/química , Nanoestruturas/química , Animais , Meios de Contraste/química , Cristalização , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Magnetismo , Masculino , Camundongos Endogâmicos ICR , Solventes/química , Solventes/farmacologia
16.
Anal Chem ; 89(11): 5932-5939, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28481080

RESUMO

Magnetic resonance imaging (MRI) has become an indispensable tool in the diagnosis and treatment of many diseases, especially cancer. However, the poor sensitivity of MRI relative to other imaging modalities, such as PET, has hindered the development and clinical use of molecular MRI contrast agents that could provide vital diagnostic information by specifically locating a molecular target altered in the disease process. This work describes the specific and sustained in vivo binding and retention of a protein tyrosine phosphatase mu (PTPµ)-targeted, molecular magnetic resonance (MR) contrast agent with a single gadolinium (Gd) chelate using a quantitative MRI T1 mapping technique in glioma xenografts. Quantitative T1 mapping is an imaging method used to measure the longitudinal relaxation time, the T1 relaxation time, of protons in a magnetic field after excitation by a radiofrequency pulse. T1 relaxation times can in turn be used to calculate the concentration of a gadolinium-containing contrast agent in a region of interest, thereby allowing the retention or clearance of an agent to be quantified. In this context, retention is a measure of molecular contrast agent binding. Using conventional peptide chemistry, a PTPµ-targeted peptide was linked to a chelator that had been conjugated to a lysine residue. Following complexation with Gd, this PTPµ-targeted molecular contrast agent containing a single Gd ion showed significant tumor enhancement and a sustained increase in Gd concentration in both heterotopic and orthotopic tumors using dynamic quantitative MRI. This single Gd-containing PTPµ agent was more effective than our previous version with three Gd ions. Differences between nonspecific and specific agents, due to specific tumor binding, can be determined within the first 30 min after agent administration by examining clearance rates. This more facile chemistry, when combined with quantitative MR techniques, allows for widespread adoption by academic and commercial entities in the field of molecular MRI ultimately leading to improved detection of disease.


Assuntos
Meios de Contraste/química , Glioma/diagnóstico por imagem , Guanidina , Imagem Molecular/métodos , Animais , Xenoenxertos , Humanos , Camundongos , Neoplasias/diagnóstico por imagem , Proteínas Tirosina Fosfatases , Sensibilidade e Especificidade
17.
J Physiol ; 594(24): 7341-7360, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27558544

RESUMO

KEY POINTS: Hyperammonaemia occurs in hepatic, cardiac and pulmonary diseases with increased muscle concentration of ammonia. We found that ammonia results in reduced skeletal muscle mitochondrial respiration, electron transport chain complex I dysfunction, as well as lower NAD+ /NADH ratio and ATP content. During hyperammonaemia, leak of electrons from complex III results in oxidative modification of proteins and lipids. Tricarboxylic acid cycle intermediates are decreased during hyperammonaemia, and providing a cell-permeable ester of αKG reversed the lower TCA cycle intermediate concentrations and increased ATP content. Our observations have high clinical relevance given the potential for novel approaches to reverse skeletal muscle ammonia toxicity by targeting the TCA cycle intermediates and mitochondrial ROS. ABSTRACT: Ammonia is a cytotoxic metabolite that is removed primarily by hepatic ureagenesis in humans. Hyperammonaemia occurs in advanced hepatic, cardiac and pulmonary disease, and in urea cycle enzyme deficiencies. Increased skeletal muscle ammonia uptake and metabolism are the major mechanism of non-hepatic ammonia disposal. Non-hepatic ammonia disposal occurs in the mitochondria via glutamate synthesis from α-ketoglutarate resulting in cataplerosis. We show skeletal muscle mitochondrial dysfunction during hyperammonaemia in a comprehensive array of human, rodent and cellular models. ATP synthesis, oxygen consumption, generation of reactive oxygen species with oxidative stress, and tricarboxylic acid (TCA) cycle intermediates were quantified. ATP content was lower in the skeletal muscle from cirrhotic patients, hyperammonaemic portacaval anastomosis rat, and C2C12 myotubes compared to appropriate controls. Hyperammonaemia in C2C12 myotubes resulted in impaired intact cell respiration, reduced complex I/NADH oxidase activity and electron leak occurring at complex III of the electron transport chain. Consistently, lower NAD+ /NADH ratio was observed during hyperammonaemia with reduced TCA cycle intermediates compared to controls. Generation of reactive oxygen species resulted in increased content of skeletal muscle carbonylated proteins and thiobarbituric acid reactive substances during hyperammonaemia. A cell-permeable ester of α-ketoglutarate reversed the low TCA cycle intermediates and ATP content in myotubes during hyperammonaemia. However, the mitochondrial antioxidant MitoTEMPO did not reverse the lower ATP content during hyperammonaemia. We provide for the first time evidence that skeletal muscle hyperammonaemia results in mitochondrial dysfunction and oxidative stress. Use of anaplerotic substrates to reverse ammonia-induced mitochondrial dysfunction is a novel therapeutic approach.


Assuntos
Hiperamonemia/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Estresse Oxidativo , Trifosfato de Adenosina/metabolismo , Idoso , Animais , Linhagem Celular , Respiração Celular , Creatina Quinase/metabolismo , Feminino , Humanos , Cirrose Hepática/metabolismo , Masculino , Pessoa de Meia-Idade , Cadeias Pesadas de Miosina/metabolismo , NAD/metabolismo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
18.
Prostate ; 76(11): 964-76, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27040645

RESUMO

OBJECTIVE: Accumulating evidences suggests that obesity and metabolic syndrome (MetS) contribute towards lower urinary tract symptoms (LUTS) through alterations in the phenotype of bladder and prostate gland. Clinical studies indicate a link between MetS and LUTS. Nevertheless, there is lack of suitable animal model(s) which could illustrate an association linking obesity to LUTS. We examined the lower urinary tract function in an obesity-initiated MetS mouse model. METHODS: Male C57BL/6N wild-type and obese B6.V-Lepob/J maintained on regular diet for 28 weeks were subjected to the assessment of body weight (BW), body length (BL), waist circumference (WC), body mass index (BMI), blood glucose (BG), plasma insulin (INS), plasma leptin (LEP), total cholesterol (CHO), free fatty acid (FFA), and measurement of urinary functions. Whole animal peritoneal and subcutaneous adipose tissue measurements as well as prostate and bladder volumes were analyzed by MRI followed by histological evaluation. These parameters were used to draw correlations between MetS and LUTS. RESULTS: Obesity parameters such as BW, WC, and BMI were significantly higher in B6.V-Lepob/J mice compared to C57BL/6N mice (P < 0.01). Higher levels of total CHO and FFA were noted in B6.V-Lepob/J mice than C57BL/6N mice (P < 0.05). These results were concurrent with frequency, lower average urine volume and other urinary voiding dysfunctions in B6.V-Lepob/J mice. MRI assessments demonstrate marked increase in body fat and prostate volume in these mice. Compared to C57BL/6N mice, histological analysis of the prostate from B6.V-Lepob/J mice showed increased proliferation, gland crowding, and infiltration of immune cells in the stroma; whereas the bladder urothelium was slightly thicker and appears more proliferative in these mice. The regression and correlation analysis indicate that peritoneal fat (R = 0.853; P < 0.02), CHO (R = 0.729; P < 0.001), BG (R = 0.712; P < 0.001) and prostate volume (R = 0.706; P < 0.023) strongly correlate with LUTS whereas BMI, WC, INS, and FFA moderately correlate with the prevalence of bladder dysfunction. CONCLUSION: Our results suggest that LUTS may be attributable in part to obesity and MetS. Validation of an in vivo model may lead to understand the underlying pathophysiological mechanisms of obesity-related LUTS in humans. Prostate 76:964-976, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Síndrome Metabólica/complicações , Obesidade/complicações , Transtornos Urinários/etiologia , Tecido Adiposo/patologia , Animais , Biometria , Composição Corporal , Colesterol/sangue , Modelos Animais de Doenças , Leptina/sangue , Sintomas do Trato Urinário Inferior/etiologia , Sintomas do Trato Urinário Inferior/patologia , Sintomas do Trato Urinário Inferior/fisiopatologia , Imageamento por Ressonância Magnética , Masculino , Síndrome Metabólica/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/fisiopatologia , Peritônio , Próstata/patologia , Bexiga Urinária/patologia , Transtornos Urinários/patologia , Transtornos Urinários/fisiopatologia
19.
NMR Biomed ; 29(1): 84-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26608869

RESUMO

Autosomal recessive polycystic kidney disease (ARPKD) is a potentially lethal multi-organ disease affecting both the kidneys and the liver. Unfortunately, there are currently no non-invasive methods to monitor liver disease progression in ARPKD patients, limiting the study of potential therapeutic interventions. Herein, we perform an initial investigation of T1 relaxation time as a potential imaging biomarker to quantitatively assess the two primary pathologic hallmarks of ARPKD liver disease: biliary dilatation and periportal fibrosis in the PCK rat model of ARPKD. T1 relaxation time results were obtained for five PCK rats at 3 months of age using a Look-Locker acquisition on a Bruker BioSpec 7.0 T MRI scanner. Six three-month-old Sprague-Dawley (SD) rats were also scanned as controls. All animals were euthanized after the three-month scans for histological and biochemical assessments of bile duct dilatation and hepatic fibrosis for comparison. PCK rats exhibited significantly increased liver T1 values (mean ± standard deviation = 935 ± 39 ms) compared with age-matched SD control rats (847 ± 26 ms, p = 0.01). One PCK rat exhibited severe cholangitis (mean T1 = 1413 ms), which occurs periodically in ARPKD patients. The observed increase in the in vivo liver T1 relaxation time correlated significantly with three histological and biochemical indicators of biliary dilatation and fibrosis: bile duct area percent (R = 0.85, p = 0.002), periportal fibrosis area percent (R = 0.82, p = 0.004), and hydroxyproline content (R = 0.76, p = 0.01). These results suggest that hepatic T1 relaxation time may provide a sensitive and non-invasive imaging biomarker to monitor ARPKD liver disease.


Assuntos
Fígado/patologia , Imageamento por Ressonância Magnética/métodos , Rim Policístico Autossômico Recessivo/patologia , Animais , Biomarcadores , Masculino , Ratos , Ratos Sprague-Dawley
20.
Int Urogynecol J ; 27(2): 291-300, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26353846

RESUMO

INTRODUCTION AND HYPOTHESIS: We evaluated the potential role of human mesenchymal stem cells (hMSCs) in improvement of urinary continence following birth-trauma injury. METHODS: Human MSCs were injected periurethrally or systemically into rats immediately after vaginal distention (VD) (n = 90). Control groups were non-VD (uninjured/untreated, n = 15), local or systemic saline (injection/control, n = 90), and dermofibroblast (cell therapy/control, n = 90). Leak-point pressure (LPP) was measured 4, 10, and 14 days later. Urethras were morphometrically evaluated. In another sets of VD and non-VD rats, the fate of periurethrally injected hMSC, biodistribution, and in vivo viability was studied using human Alu genomic repeat staining, PKH26 labeling, and luciferase-expression labeling, respectively. RESULTS: Saline- and dermofibroblast-treated control rats demonstrated lower LPP than non-VD controls at days 4 and 14 (P < 0.01). LPP after systemic hMSC and periurethral hMSC treatment were comparable with non-VD controls at 4, 10, and 14 days (P > 0.05). Local saline controls demonstrated extensive urethral tissue bleeding. The connective tissue area/urethral section area proportion and vascular density were higher in the local hMSC- versus the saline-treated group at 4 and 14 days, respectively. No positive Alu-stained nuclei were observed in urethras at 4, 10, and 14 days. PKH26-labelled cells were found in all urethras at 2 and 24 h. Bioluminescence study showed increased luciferase expression from day 0 to 1 following hMSC injection. CONCLUSIONS: Human MSCs restored the continence mechanism with an immediate and sustained effect in the VD model, while saline and dermofibroblast therapy did not. Human MSCs remained at the site of periurethral injection for <7 days. We hypothesize that periurethral hMSC treatment improves vascular, connective tissue, and hemorrhage status of urethral tissues after acute VD injury.


Assuntos
Transplante de Células-Tronco Mesenquimais , Parto , Uretra/patologia , Incontinência Urinária/fisiopatologia , Incontinência Urinária/terapia , Animais , Rastreamento de Células , Modelos Animais de Doenças , Feminino , Humanos , Células-Tronco Mesenquimais/fisiologia , Pressão , Ratos , Ratos Sprague-Dawley , Uretra/lesões , Incontinência Urinária/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA