Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; : e14342, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38590112

RESUMO

BACKGROUND: Rescanning is a common technique used in proton pencil beam scanning to mitigate the interplay effect. Advances in machine operating parameters across different generations of particle therapy systems have led to improvements in beam delivery time (BDT). However, the potential impact of these improvements on the effectiveness of rescanning remains an underexplored area in the existing research. METHODS: We systematically investigated the impact of proton machine operating parameters on the effectiveness of layer rescanning in mitigating interplay effect during lung SBRT treatment, using the CIRS phantom. Focused on the Hitachi synchrotron particle therapy system, we explored machine operating parameters from our institution's current (2015) and upcoming systems (2025A and 2025B). Accumulated dynamic 4D dose were reconstructed to assess the interplay effect and layer rescanning effectiveness. RESULTS: Achieving target coverage and dose homogeneity within 2% deviation required 6, 6, and 20 times layer rescanning for the 2015, 2025A, and 2025B machine parameters, respectively. Beyond this point, further increasing the number of layer rescanning did not further improve the dose distribution. BDTs without rescanning were 50.4, 24.4, and 11.4 s for 2015, 2025A, and 2025B, respectively. However, after incorporating proper number of layer rescanning (six for 2015 and 2025A, 20 for 2025B), BDTs increased to 67.0, 39.6, and 42.3 s for 2015, 2025A, and 2025B machine parameters. Our data also demonstrated the potential problem of false negative and false positive if the randomness of the respiratory phase at which the beam is initiated is not considered in the evaluation of interplay effect. CONCLUSION: The effectiveness of layer rescanning for mitigating interplay effect is affected by machine operating parameters. Therefore, past clinical experiences may not be applicable to modern machines.

2.
J Appl Clin Med Phys ; 24(7): e14049, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37227694

RESUMO

BACKGROUND: In order to compute the relative biological effectiveness (RBE) of ion radiation therapy with the Mayo Clinic Florida microdosimetric kinetic model (MCF MKM), it is necessary to process entire microdosimetric distributions. Therefore, a posteriori RBE recalculations (i.e., for a different cell line or another biological endpoint) would require whole spectral information. It is currently not practical to compute and store all this data for each clinical voxel. PURPOSE: To develop a methodology that allows to store a limited amount of physical information without losing accuracy in the RBE calculations nor the possibility of a posteriori RBE recalculations. METHODS: Computer simulations for four monoenergetic 12 C ion beams and a 12 C ion spread-out Bragg peak (SOBP) were performed to assess lineal energy distributions as a function of the depth within a water phantom. These distributions were used in combination with the MCF MKM to compute the in vitro clonogenic survival RBE for human salivary gland tumor cells (HSG cell line) and human skin fibroblasts (NB1RGB cell line). The RBE values were also calculated with a new abridged microdosimetric distribution methodology (AMDM) and compared with the reference RBE calculations using the entire distributions. RESULTS: The maximum relative deviation between the RBE values computed using the entire distributions and the AMDM was 0.61% (monoenergetic beams) and 0.49% (SOBP) for the HSG cell line, while 0.45% (monoenergetic beams) and 0.26% (SOBP) for the NB1RGB cell line. CONCLUSION: The excellent agreement between the RBE values computed using the entire lineal energy distributions and the AMDM represents a milestone for the clinical implementation of the MCF MKM.


Assuntos
Radioterapia com Íons Pesados , Humanos , Eficiência Biológica Relativa , Dosagem Radioterapêutica , Simulação por Computador , Cinética , Carbono/uso terapêutico
3.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36293348

RESUMO

The relative biological effectiveness (RBE) calculations used during the planning of ion therapy treatments are generally based on the microdosimetric kinetic model (MKM) and the local effect model (LEM). The Mayo Clinic Florida MKM (MCF MKM) was recently developed to overcome the limitations of previous MKMs in reproducing the biological data and to eliminate the need for ion-exposed in vitro data as input for the model calculations. Since we are considering to implement the MCF MKM in clinic, this article presents (a) an extensive benchmark of the MCF MKM predictions against corresponding in vitro clonogenic survival data for 4 rodent and 10 cell lines exposed to ions from 1H to 238U, and (b) a systematic comparison with published results of the latest version of the LEM (LEM IV). Additionally, we introduce a novel approach to derive an approximate value of the MCF MKM model parameters by knowing only the animal species and the mean number of chromosomes. The overall good agreement between MCF MKM predictions and in vitro data suggests the MCF MKM can be reliably used for the RBE calculations. In most cases, a reasonable agreement was found between the MCF MKM and the LEM IV.


Assuntos
Roedores , Animais , Humanos , Florida , Eficiência Biológica Relativa , Cinética , Linhagem Celular
4.
Ann Surg Oncol ; 23(10): 3297-303, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27334215

RESUMO

BACKGROUND: Data support the use of accelerated partial-breast irradiation (APBI) for early-stage breast cancer. We initiated a prospective protocol for intraoperative APBI catheter placement using a multi-lumen strut-based device. We hypothesized that with intraoperative pathology assessment of margins and sentinel nodes, all locoregional treatment (surgery and APBI) could be completed within 10 days with acceptable complication rates and cosmesis. METHODS: Eligible patients included women age 50 years or older with clinical T1 estrogen receptor positive (ER+) sentinel lymph node (SLN)-negative invasive ductal cancer or pure ductal carcinoma in situ. Patients were prospectively registered. Cosmesis was assessed using photographs graded independently by three investigators for patients with photos taken 6 months or longer after treatment. RESULTS: From October 2012 to August 2015, we enrolled 123 patients; 110 (90 %) underwent intraoperative catheter placement, whereas 13 did not due to intraoperative pathology findings. 109 APBI patients (99 %) completed their prescribed radiotherapy within 5 days, and all their locoregional therapy within 9 days, whereas one patient with a delayed positive SLN received only boost radiotherapy via catheter followed by conventional whole breast radiation. The 30-day complication rate was 6 %. In 81 patients with at least one-year followup, complications occurred in 14 (17 %) (including infection in five patients and symptomatic seroma in five patients) and correlated with device size (p = 0.05) but not with tumor size or location. The local recurrence rate was 1.8 % (two patients). Scored cosmesis was excellent or good in 88 % and fair in 12 % of patients. CONCLUSIONS: A protocol for intraoperative strut-based APBI catheter placement using careful patient selection and intraoperative pathology assessment can deliver efficient, effective treatment for early breast cancer.


Assuntos
Neoplasias da Mama/radioterapia , Neoplasias da Mama/cirurgia , Carcinoma Ductal de Mama/radioterapia , Carcinoma Ductal de Mama/cirurgia , Carcinoma Intraductal não Infiltrante/radioterapia , Carcinoma Intraductal não Infiltrante/cirurgia , Recidiva Local de Neoplasia , Idoso , Idoso de 80 Anos ou mais , Braquiterapia/efeitos adversos , Braquiterapia/métodos , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Carcinoma Intraductal não Infiltrante/patologia , Cateterismo/efeitos adversos , Cateterismo/instrumentação , Fracionamento da Dose de Radiação , Estética , Feminino , Hematoma/etiologia , Humanos , Mastectomia/efeitos adversos , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Seroma/etiologia , Deiscência da Ferida Operatória/etiologia , Infecção da Ferida Cirúrgica/etiologia , Fatores de Tempo
5.
J Appl Clin Med Phys ; 16(6): 293-301, 2015 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-26699584

RESUMO

A 24 mm COMS-like eye plaque was developed to meet the treatment needs of our eye plaque brachytherapy practice. As part of commissioning, it was necessary to determine the new plaque's seed coordinates. The FARO Edge, a commercially available measurement arm, was chosen for this purpose. In order to validate the FARO Edge method, it was first used to measure the seed marker coordinates in the silastic molds for the standard 10, 18, and 20 mm COMS plaques, and the results were compared with the standard published Task Group 129 coordinates by a nonlinear least squares match in MATLAB version R2013a. All measured coordinates were within 0.60 mm, and root mean square deviation was 0.12, 0.23, and 0.35 mm for the 10, 18, and 20 mm molds, respectively. The FARO Edge was then used to measure the seed marker locations in the new 24 mm silastic mold. Those values were compared to the manufacturing specification coordinates and were found to demonstrate good agreement, with a maximum deviation of 0.56mm and a root mean square deviation of 0.37 mm. The FARO Edge is deemed to be a reliable method for determining seed coordinates for COMS silastics, and the seed coordinates for the new 24 mm plaque are presented.


Assuntos
Braquiterapia/instrumentação , Neoplasias da Coroide/radioterapia , Melanoma/radioterapia , Braquiterapia/métodos , Braquiterapia/estatística & dados numéricos , Dimetilpolisiloxanos , Desenho de Equipamento , Humanos , Análise dos Mínimos Quadrados , Dinâmica não Linear , Radiometria/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Planejamento da Radioterapia Assistida por Computador/estatística & dados numéricos , Reprodutibilidade dos Testes
6.
Phys Imaging Radiat Oncol ; 29: 100564, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38544867

RESUMO

Background and Purpose: The effort to translate clinical findings across institutions employing different relative biological effectiveness (RBE) models of ion radiotherapy has rapidly grown in recent years. Nevertheless, even for a chosen RBE model, different implementations exist. These approaches might consider or disregard the dose-dependence of the RBE and the radial variation of the radiation quality around the beam axis. This study investigated the theoretical impact of disregarding these effects during the RBE calculations. Materials and Methods: Microdosimetric simulations were carried out using the Monte Carlo code PHITS along the spread out Bragg peaks of 1H, 4He, 12C, 16O, and 20Ne ions in a water phantom. The RBE was computed using different implementations of the Mayo Clinic Florida microdosimetric kinetic model (MCF MKM) and the modified MKM, considering or not the radial variation of the radiation quality in the penumbra of the ion beams and the dose-dependence of the RBE. Results: For an OAR located 5 mm laterally from the target volume, disregarding the radial variation of the radiation quality or the dose-dependence of the RBE could result in an overestimation of the RBE-weighted dose up to a factor of âˆ¼ 3.5 or âˆ¼ 1.7, respectively. Conclusions: The RBE-weighted dose to OARs close to the tumor volume was substantially impacted by the approach employed for the RBE calculations, even when using the same RBE model and cell line. Therefore, care should be taken in considering these differences while translating clinical findings between institutions with dissimilar approaches.

7.
Radiat Res ; 201(6): 604-616, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38376467

RESUMO

This study offers a review of published data on DNA double strand break (DSB) repair kinetics after exposure to ionizing radiation. By compiling a database, which currently includes 285 DNA DSB repair experiments utilizing both photons and ions, we investigate the impact of distinct experimental parameters on the kinetics of DNA DSB repair. Methodological differences and inconsistencies in reporting make the comparison of data generated by different research groups challenging. Nevertheless, by implementing filtering criteria, we can compare repair kinetics obtained with normal and tumor cells derived from human or animal tissues, as well as cells exposed to photons or ions ranging from hydrogen to iron ions. In addition, several repair curves of repair deficient cell lines were included. The study aims to provide researchers with a comprehensive overview of experimental factors that may confound results and emphasize the importance of precise reporting of experimental parameters. Moreover, we identify gaps in the literature that require attention in future studies, aiming to address clinically relevant questions related to radiotherapy. The database can be freely accessed at: https://github.com/weradstake/DRDNA.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Fótons , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Humanos , Reparo do DNA/efeitos da radiação , Cinética , Animais , Íons
8.
Artigo em Inglês | MEDLINE | ID: mdl-38707713

RESUMO

Carbon-ion radiation therapy (CIRT) is an up-and-coming modality for cancer treatment. Implementation of CIRT requires collaboration among specialists like radiation oncologists, medical physicists, and other healthcare professionals. Effective communication among team members is necessary for the success of CIRT. However, the current workflows involving data management, treatment planning, scheduling, and quality assurance (QA) can be susceptible to errors, leading to delays and decreased efficiency. With the aim of addressing these challenges, a team of medical physicists developed an in-house workflow management software using FileMaker Pro. This tool has streamlined the workflow and improved the efficiency and quality of patient care.

9.
Med Phys ; 51(3): 2239-2250, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37877590

RESUMO

BACKGROUND: Using the pencil beam raster scanning method employed at most carbon beam treatment facilities, spots can be moved without interrupting the beam, allowing for the delivery of a dose between spots (move dose). This technique is also known as Dose-Driven-Continuous-Scanning (DDCS). To minimize its impact on HIMAK patient dosimetry, there's an upper limit to the move dose. Spots within a layer are grouped into sets, or "break points," allowing continuous irradiation. The beam is turned off when transitioning between sets or at the end of a treatment layer or spill. The control system beam-off is accomplished by turning off the RF Knockout (RFKO) extraction and after a brief delay the High Speed Steering Magnet (HSST) redirects the beam transport away from isocenter to a beam dump. PURPOSE: The influence of the move dose and beam on/off control on the dose distribution and irradiation time was evaluated by measurements never before reported and modelled for Hitachi Carbon DDCS. METHOD: We conducted fixed-point and scanning irradiation experiments at three different energies, both with and without breakpoints. For fixed-point irradiation, we utilized a 2D array detector and an oscilloscope to measure beam intensity over time. The oscilloscope data enabled us to confirm beam-off and beam-on timing due to breakpoints, as well as the relative timing of the RFKO signal, HSST signal, and dose monitor (DM) signals. From these measurements, we analyzed and modelled the temporal characteristics of the beam intensity. We also developed a model for the spot shape and amplitude at isocenter occurring after the beam-off signal which we called flap dose and its dependence on beam intensity. In the case of scanning irradiation, we measured move doses using the 2D array detector and compared these measurements with our model. RESULT: We observed that the most dominant time variation of the beam intensity was at 1 kHz and its harmonic frequencies. Our findings revealed that the derived beam intensity cannot reach the preset beam intensity when each spot belongs to different breakpoints. The beam-off time due to breakpoints was approximately 100 ms, while the beam rise time and fall time (tdecay ) were remarkably fast, about 10 ms and 0.2 ms, respectively. Moreover, we measured the time lag (tdelay ) of approximately 0.2 ms between the RFKO and HSST signals. Since tdelay ≈ tdecay at HIMAK then the HSST is activated after the residual beam intensity, resulting in essentially zero flap dose at isocenter from the HSST. Our measurements of the move dose demonstrated excellent agreement with the modelled move dose. CONCLUSION: We conducted the first move dose measurement for a Hitachi Carbon synchrotron, and our findings, considering beam on/off control details, indicate that Hitachi's carbon synchrotron provides a stable beam at HIMAK. Our work suggests that measuring both move dose and flap dose should be part of the commissioning process and possibly using our model in the Treatment Planning System (TPS) for new facilities with treatment delivery control systems with higher beam intensities and faster beam-off control.


Assuntos
Íons Pesados , Terapia com Prótons , Humanos , Terapia com Prótons/métodos , Íons , Planejamento da Radioterapia Assistida por Computador/métodos , Carbono/uso terapêutico , Dosagem Radioterapêutica
10.
Phys Med Biol ; 69(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38862000

RESUMO

Objective.In proton pencil beam scanning (PBS) continuous delivery, the beam is continuously delivered without interruptions between spots. For synchrotron-based systems, the extracted beam current exhibits a spill structure, and recent publications on beam current measurements have demonstrated significant fluctuations around the nominal values. These fluctuations potentially lead to dose deviations from those calculated assuming a stable beam current. This study investigated the dosimetric implications of such beam current fluctuations during proton PBS continuous scanning.Approach.Using representative clinical proton PBS plans, we performed simulations to mimic a worst-case clinical delivery environment with beam current varies from 50% to 250% of the nominal values. The simulations used the beam delivery parameters optimized for the best beam delivery efficiency of the upcoming particle therapy system at Mayo Clinic Florida. We reconstructed the simulated delivered dose distributions and evaluated the dosimetric impact of beam current fluctuations.Main results.Despite significant beam current fluctuations resulting in deviations at each spot level, the overall dose distributions were nearly identical to those assuming a stable beam current. The 1 mm/1% Gamma passing rate was 100% for all plans. Less than 0.2% root mean square error was observed in the planning target volume dose-volume histogram. Minimal differences were observed in all dosimetric evaluation metrics.Significance.Our findings demonstrate that with our beam delivery system and clinical planning practice, while significant beam current fluctuations may result in large local move monitor unit deviations at each spot level, the overall impact on the dose distribution is minimal.


Assuntos
Terapia com Prótons , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Síncrotrons , Terapia com Prótons/métodos , Terapia com Prótons/instrumentação , Radiometria/instrumentação , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Método de Monte Carlo
11.
Med Dosim ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38824052

RESUMO

Mayo Clinic Florida will initially open with the capability to treat with a single horizontal port for carbon ion therapy. Carbon ion therapy is traditionally done using a multi fixed port treatment approach. In this study, for nine treatment sites, clinically approved treatment plan of Osaka Heavy Ion Therapy Center was compared to a treatment plan using only a horizontal port. The treatment sites evaluated in this study were prostate cancer, pancreatic cancer, cervical cancer, recurrent rectal cancer, liver cancer, head and neck cancer, bone cancer (sarcoma and chordoma), and lung cancer. As expected, the prostate plans are identical and are only included for completeness. The DVH results for the pancreas and cervical cancer were very similar. The results for recurrent rectal, head and neck, sarcoma, chordoma, and lung cancer indicate that a single horizontal port with couch roll and yaw will accommodate certain medial targets but will be challenging to treat for laterally located targets without creative mitigations.

12.
Cancers (Basel) ; 16(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38893068

RESUMO

Proton therapy has emerged as a crucial tool in the treatment of head and neck and skull-base cancers, offering advantages over photon therapy in terms of decreasing integral dose and reducing acute and late toxicities, such as dysgeusia, feeding tube dependence, xerostomia, secondary malignancies, and neurocognitive dysfunction. Despite its benefits in dose distribution and biological effectiveness, the application of proton therapy is challenged by uncertainties in its relative biological effectiveness (RBE). Overcoming the challenges related to RBE is key to fully realizing proton therapy's potential, which extends beyond its physical dosimetric properties when compared with photon-based therapies. In this paper, we discuss the clinical significance of RBE within treatment volumes and adjacent serial organs at risk in the management of head and neck and skull-base tumors. We review proton RBE uncertainties and its modeling and explore clinical outcomes. Additionally, we highlight technological advancements and innovations in plan optimization and treatment delivery, including linear energy transfer/RBE optimizations and the development of spot-scanning proton arc therapy. These advancements show promise in harnessing the full capabilities of proton therapy from an academic standpoint, further technological innovations and clinical outcome studies, however, are needed for their integration into routine clinical practice.

13.
Radiat Prot Dosimetry ; 199(15-16): 1953-1957, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37819314

RESUMO

The Mayo Clinic Florida microdosimetric kinetic model (MCF MKM) is a recently developed clonogenic survival model. Since the MCF MKM relies on novel strategies to a priori determine the cell-specific model parameters, the only experiment-specific input values are the α and ß terms of the linear-quadratic model (LQM) of clonogenic survival for the reference photon exposure. Because the two LQM terms are anti-correlated, the fitting process of the reference photon survival curve was found to significantly influence the MCF MKM calculations. This article reports this effect for two clinically relevant cell lines (human brain glioblastoma A-172, human healthy foreskin fibroblasts AG01522) and ions (1H and 12C ions).


Assuntos
Fótons , Humanos , Florida , Linhagem Celular , Íons , Modelos Lineares , Eficiência Biológica Relativa , Sobrevivência Celular
14.
Phys Med Biol ; 68(18)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38133518

RESUMO

Objectives. (1) To examine to what extent the cell- and exposure- specific information neglected in the phenomenological proton relative biological effectiveness (RBE) models could influence the computed RBE in proton therapy. (2) To explore similarities and differences in the formalism and the results between the linear energy transfer (LET)-based phenomenological proton RBE models and the microdosimetry-based Mayo Clinic Florida microdosimetric kinetic model (MCF MKM). (3) To investigate how the relationship between the RBE and the dose-mean proton LET is affected by the proton energy spectrum and the secondary fragments.Approach. We systematically compared six selected phenomenological proton RBE models with the MCF MKM in track-segment simulations, monoenergetic proton beams in a water phantom, and two spread-out Bragg peaks. A representative comparison within vitrodata for human glioblastoma cells (U87 cell line) is also included.Main results. Marked differences were observed between the results of the phenomenological proton RBE models, as reported in previous studies. The dispersion of these models' results was found to be comparable to the spread in the MCF MKM results obtained by varying the cell-specific parameters neglected in the phenomenological models. Furthermore, while single cell-specific correlation between RBE and the dose-mean proton LET seems reasonable above 2 keVµm-1, caution is necessary at lower LET values due to the relevant contribution of secondary fragments. The comparison within vitrodata demonstrates comparable agreement between the MCF MKM predictions and the results of the phenomenological models.Significance. The study highlights the importance of considering cell-specific characteristics and detailed radiation quality information for accurate RBE calculations in proton therapy. Furthermore, these results provide confidence in the use of the MCF MKM for clonogenic survival RBE calculations in proton therapy, offering a more mechanistic approach compared to phenomenological models.


Assuntos
Terapia com Prótons , Prótons , Humanos , Sobrevivência Celular , Terapia com Prótons/métodos , Eficiência Biológica Relativa
15.
Med Phys ; 50(8): 5252-5261, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37115647

RESUMO

BACKGROUND: Discrete spot scanning (DSS) is the commonly used method for proton pencil beam scanning (PBS). There is lack of data on the dose-driven continuous scanning (DDCS). PURPOSE: To investigate delivery benefits and dosimetric implications of DDCS versus DSS for PBS systems. METHODS: The irradiation duty factor, beam delivery time (BDT), and dose deviation were simulated for eight treatment plans in prostate, head and neck, liver, and lung, with both conventional fractionation and hypofractionation schemes. DDCS results were compared with those of DSS. RESULTS: The DDCS irradiation duty factor (range, 11%-41%) was appreciably improved compared to DSS delivery (range, 4%-14%), within which, hypofractionation schemes had greater improvement than conventional fractionation. With decreasing stop ratio constraints, the DDCS BDT reduction was greater, but dose deviation also increased. With stop ratio constraints of 2, 1, 0.5, and 0, DDCS BDT reduction reached to 6%, 10%, 12%, and 15%, respectively, and dose deviation reached to 0.6%, 1.7%, 3.0%, and 5.2% root mean square error in PTV DVH, respectively. The 3%/2-mm gamma passing rate was greater than 99% with stop ratio constraints of 2 and 1, and greater than 95% with a stop ratio of 0.5. When the stop ratio constraint was removed, five of the eight treatment plans had a 3%/2-mm gamma passing rate greater than 95%, and the other three plans had a 3%/2-mm gamma passing rate between 90% and 95%. CONCLUSIONS: The irradiation duty factor was considerably improved with DDCS. Smaller stop ratio constraints led to shorter BDTs, but with the cost of larger dose deviations. Our finding suggested that a stop ratio of 1 constraint seems to yield acceptable DDCS dose deviation.


Assuntos
Terapia com Prótons , Prótons , Masculino , Humanos , Síncrotrons , Radiometria , Cintilografia
16.
Med Phys ; 50(8): 5075-5087, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36763566

RESUMO

BACKGROUND: Recent advancements in Deep Learning (DL) methodologies have led to state-of-the-art performance in a wide range of applications especially in object recognition, classification, and segmentation of medical images. However, training modern DL models requires a large amount of computation and long training times due to the complex nature of network structures and the large number of training datasets involved. Moreover, it is an intensive, repetitive manual process to select the optimized configuration of hyperparameters for a given DL network. PURPOSE: In this study, we present a novel approach to accelerate the training time of DL models via the progressive feeding of training datasets based on similarity measures for medical image segmentation. We term this approach Progressive Deep Learning (PDL). METHODS: The two-stage PDL approach was tested on the auto-segmentation task for two imaging modalities: CT and MRI. The training datasets were ranked according to similarity measures between each sample based on Mean Square Error (MSE), Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), and the Universal Quality Image Index (UQI) values. At the start of the training process, a relatively coarse sampling of training datasets with higher ranks was used to optimize the hyperparameters of the DL network. Following this, the samples with higher ranks were used in step 1 to yield accelerated loss minimization in early training epochs and the total dataset was added in step 2 for the remainder of training. RESULTS: Our results demonstrate that the PDL approach can reduce the training time by nearly half (∼49%) and can predict segmentations (CT U-net/DenseNet dice coefficient: 0.9506/0.9508, MR U-net/DenseNet dice coefficient: 0.9508/0.9510) without major statistical difference (Wilcoxon signed-rank test) compared to the conventional DL approach. The total training times with a fixed cutoff at 0.95 DSC for the CT dataset using DenseNet and U-Net architectures, respectively, were 17 h, 20 min and 4 h, 45 min in the conventional case compared to 8 h, 45 min and 2 h, 20 min with PDL. For the MRI dataset, the total training times using the same architectures were 2 h, 54 min and 52 min in the conventional case and 1 h, 14 min and 25 min with PDL. CONCLUSION: The proposed PDL training approach offers the ability to substantially reduce the training time for medical image segmentation while maintaining the performance achieved in the conventional case.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Imageamento por Ressonância Magnética/métodos
17.
Phys Med Biol ; 68(5)2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36731141

RESUMO

The Mayo Clinic Florida Integrated Oncology Building will be the home of the first spot-scanning only carbon/proton hybrid therapy system by Hitachi, Ltd. It will provide proton beams up to kinetic energies of 230 MeV and carbon beams up to 430 MeV n-1for clinical deployment. To provide adequate radiation protection, the Geant4 (v10.6) Monte Carlo toolkit was utilized to quantify the ambient dose equivalent at a 10 mm depth (H*(10)) for photons and neutrons. To perform accurate calculations of the ambient dose equivalent, three-dimensional computer-aided design files of the entire planned facility were imported into Geant4, as well as certain particle system components such as the bending magnets, fast Faraday cup, and gantry. Particle fluence was scored using 60 cm diameter spheres, which were strategically placed throughout areas of interests. Analytical calculations were performed as first-pass design checks. Major shielding slabs were optimized using Geant4 simulations iteratively, with more than 20 alternative designs evaluated within Geant4. The 430 MeV n-1carbon beams played the most significant role in concrete thickness Requirements. The primary wall thickness for the carbon fixed beam room is 4 meters. The presence of the proton gantry structure in the simulation caused the ambient dose equivalent to increase by around 67% at the maze entrance, but a decrease in the high energy beam transport corridor. All shielding primary and secondary goals for clinical operations were met per state regulation and national guidelines.


Assuntos
Terapia com Prótons , Radiometria , Radiometria/métodos , Prótons , Terapia com Prótons/métodos , Síncrotrons , Método de Monte Carlo , Nêutrons , Carbono
18.
Cancers (Basel) ; 15(16)2023 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-37627112

RESUMO

Pencil beam scanning delivered with continuous scanning has several advantages over conventional discrete spot scanning. Such advantages include improved beam delivery efficiency and reduced beam delivery time. However, a move dose is delivered between consecutive spots with continuous scanning, and current treatment planning systems do not take this into account. Therefore, continuous scanning and discrete spot plans have an inherent dose discrepancy. Using the operating parameters of the state-of-the-art particle therapy system, we conducted a proof-of-concept study in which we systematically generated 28 plans for cubic targets with different combinations of plan parameters and simulated the dose discrepancies between continuous scanning and a planned one. A nomograph to guide the selection of plan parameters was developed to reduce the dose discrepancy. The effectiveness of the nomograph was evaluated with two clinical cases (one prostate and one liver). Plans with parameters guided by the nomograph decreased dose discrepancy than those used standard plan parameters. Specifically, the 2%/2 mm gamma passing rate increased from 96.3% to 100% for the prostate case and from 97.8% to 99.7% for the liver case. The CTV DVH root mean square error decreased from 2.2% to 0.2% for the prostate case and from 1.8% to 0.9% for the liver case. The decreased dose discrepancy may allow the relaxing of the delivery constraint for some cases, leading to greater benefits in continuous scanning. Further investigation is warranted.

19.
Med Phys ; 50(7): 4067-4078, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37272223

RESUMO

BACKGROUND: Absolute dosimetry measurement is an integral part of Treatment Planning System (TPS) commissioning and it involves measuring the integrated absorbed dose to water for all energies in a pencil beam scanning delivery system. During the commissioning of Singapore's first proton therapy center, a uniform scanned field with an Advanced Markus chamber method was employed for this measurement, and a large dose fluctuation of at least 5% was observed for 10% of the energy layers during repeated measurements. PURPOSE: This study aims to understand the root cause of this fluctuation by relating the actual delivered spot information in the log file with the charge measurement by the ion chambers. METHODS: A dedicated pencil beam dose algorithm was developed, taking into account the log file parameters, to calculate the dose for a single energy layer in a homogeneous water phantom. Three energies, 70.2, 182.7, and 228.7 MeV were used in this study, with the 182.7 MeV energy exhibiting large dose fluctuation. The dose fluctuation was investigated as a function of detector's sizes (pinpoint 3D, Advanced Markus, PTW 34070, and PTW 34089) and water depth (2 , 6, and 20 cm). Twelve ion chambers measurements were performed for each chamber and depth. The comparison of the theoretically predicted integrated dose and the charge measurement served as a validation of the algorithm. RESULTS: About 5.9% and 9.6% dose fluctuation were observed in Advanced Markus and pinpoint 3D measurements at 2 cm depth for 182.7 MeV, while fluctuation of 1.6% and 1.1% were observed in Advanced Markus with 228.7 and 70.2 MeV at similar depth. Fluctuation of less than 0.1% was observed for PTW34070 and PTW 34089 for all energies. The fluctuation was found to diminish with larger spot size at 20 cm depth to 1.3% for 182.7 MeV. The theoretical and measured charge comparison showed a high linear correlation of R 2 > 0.80 ${R^2} > 0.80$ for all datasets, indicating the fluctuation originated from the delivered spot characteristics. The cause of fluctuation was identified to be due to the spill change occurring close to the detector, and since the spot positional deviation profiles were different between two spills, this resulted in local hot spots between columns of spots. The actual position of spill change varies randomly during measurement, which led to a random occurrence of hot spot within the detector's sensitive volume and a fluctuating dose measurement. CONCLUSION: This is the first report of a dose fluctuation greater than 5% in absolute dosimetry measurement with a uniform scanned field and the cause of the fluctuation has been conclusively determined. It is important to choose the MU and scanning pattern carefully to avoid spill change happening when the spot delivery is near the detector.


Assuntos
Terapia com Prótons , Prótons , Síncrotrons , Radiometria/métodos , Terapia com Prótons/métodos , Água , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos
20.
Phys Med Biol ; 68(19)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37703907

RESUMO

Objective. To investigate the impact of scan path optimization on the dose accuracy and beam delivery time (BDT) of proton pencil beam scanning in the dose-driven continuous scanning (DDCS).Approach. A diverse set of six clinical plans, representing various spot patterns and treatment sites, was used to evaluate the effectiveness of scan time optimization and scan length optimization. The DDCS dose discrepancy and BDT with optimized scan paths was compared to the default serpentine scan path.Main results. Both scan time optimization and scan path optimization were able to reduce the DDCS dose discrepancy compared to the default serpentine scan path. All plans, except for the layer repainting lung plan, achieved a 2%/2 mm gamma pass rate of over 99% and less than 1% PTV DVH root mean square error (RMSE) through scan path optimization. In the case of the layer repainting lung plan, when compared to the default serpentine scan path, the 2%/2 mm gamma pass rate showed improvements from 91.3% to 93.1% and 95.8%, while the PTV DVH RMSE decreased from 2.1% to 1.7% and 1.1% for scan time optimization and scan length optimization, respectively. Although scan time optimization resulted in shorter total scan times for all plans compared to the default scan path and scan length optimization tended to have longer total scan times. However, due to the short total scan times and their minimal contribution to the total BDT, the impact of scan path optimization on the total BDT was practically negligible.Significance. Both scan time optimization and scan length optimization proved to be effective in minimizing DDCS dose discrepancy. No definitive winner can be determined between these two optimization approaches. Both scan time and scan length optimization had minimal effect on the total BDT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA