Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(51): 25991-26000, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31796595

RESUMO

Mutations in Cu/Zn superoxide dismutase (Sod1) have been reported in both familial and sporadic amyotrophic lateral sclerosis (ALS). In this study, we investigated the behavior of heteromeric combinations of wild-type (WT) and mutant Sod1 proteins A4V, L38V, G93A, and G93C in human cells. We showed that both WT and mutant Sod1 formed dimers and oligomers, but only mutant Sod1 accumulated in intracellular inclusions. Coexpression of WT and hSod1 mutants resulted in the formation of a larger number of intracellular inclusions per cell than that observed in cells coexpressing WT or mutant hSod1. The number of inclusions was greater in cells expressing A4V hSod1. To eliminate the contribution of endogenous Sod1, and better evaluate the effect of ALS-associated mutant Sod1 expression, we expressed human Sod1 WT and mutants in human cells knocked down for endogenous Sod1 (Sod1-KD), and in sod1Δ yeast cells. Using Sod1-KD cells we found that the WT-A4V heteromers formed higher molecular weight species compared with A4V and WT homomers. Using the yeast model, in conditions of chronological aging, we concluded that cells expressing Sod1 heterodimers showed decreased antioxidant activity, increased oxidative damage, reduced longevity, and oxidative stress-induced mutant Sod1 aggregation. In addition, we also found that ALS-associated Sod1 mutations reduced nuclear localization and, consequently, impaired the antioxidant response, suggesting this change in localization may contribute to disease in familial ALS. Overall, our study provides insight into the molecular underpinnings of ALS and may open avenues for the design of future therapeutic strategies.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Envelhecimento , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Corpos de Inclusão/metabolismo , Peso Molecular , Proteínas Mutantes/química , Mutação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Superóxido Dismutase-1/química
2.
Hum Mol Genet ; 28(1): 31-50, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30219847

RESUMO

Alpha-synuclein (aSyn) is a central player in Parkinson's disease (PD) but the precise molecular mechanisms underlying its pathogenicity remain unclear. It has recently been suggested that nuclear aSyn may modulate gene expression, possibly via interactions with DNA. However, the biological behavior of aSyn in the nucleus and the factors affecting its transcriptional role are not known. Here, we investigated the mechanisms underlying aSyn-mediated transcription deregulation by assessing its effects in the nucleus and the impact of phosphorylation in these dynamics. We found that aSyn induced severe transcriptional deregulation, including the downregulation of important cell cycle-related genes. Importantly, transcriptional deregulation was concomitant with reduced binding of aSyn to DNA. By forcing the nuclear presence of aSyn in the nucleus (aSyn-NLS), we found the accumulation of high molecular weight aSyn species altered gene expression and reduced toxicity when compared with the wild-type or exclusively cytosolic protein. Interestingly, nuclear localization of aSyn, and the effect on gene expression and cytotoxicity, was also modulated by phosphorylation on serine 129. Thus, we hypothesize that the role of aSyn on gene expression and, ultimately, toxicity, may be modulated by the phosphorylation status and nuclear presence of different aSyn species. Our findings shed new light onto the subcellular dynamics of aSyn and unveil an intricate interplay between subcellular location, phosphorylation and toxicity, opening novel avenues for the design of future strategies for therapeutic intervention in PD and other synucleinopathies.


Assuntos
alfa-Sinucleína/metabolismo , alfa-Sinucleína/fisiologia , Animais , Linhagem Celular , Núcleo Celular , Proteínas de Ligação a DNA , Regulação para Baixo , Expressão Gênica , Regulação da Expressão Gênica/fisiologia , Humanos , Camundongos , Sinais de Localização Nuclear/fisiologia , Doença de Parkinson/patologia , Fosforilação , Cultura Primária de Células , Ratos
3.
J Neurochem ; 153(4): 433-454, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31957016

RESUMO

Synucleinopathies are a group of disorders characterized by the accumulation of inclusions rich in the a-synuclein (aSyn) protein. This group of disorders includes Parkinson's disease, dementia with Lewy bodies (DLB), multiple systems atrophy, and pure autonomic failure (PAF). In addition, genetic alterations (point mutations and multiplications) in the gene encoding for aSyn (SNCA) are associated with familial forms of Parkinson's disease, the most common synucleinopathy. The Synuclein Meetings are a series that has been taking place every 2 years for about 12 years. The Synuclein Meetings bring together leading experts in the field of Synuclein and related human conditions with the goal of discussing and advancing the research. In 2019, the Synuclein meeting took place in Ofir, a city in the outskirts of Porto, Portugal. The meeting, entitled "Synuclein Meeting 2019: Where we are and where we need to go", brought together >300 scientists studying both clinical and molecular aspects of synucleinopathies. The meeting covered a many of the open questions in the field, in a format that prompted open discussions between the participants, and underscored the need for additional research that, hopefully, will lead to future therapies for a group of as of yet incurable disorders. Here, we provide a summary of the topics discussed in each session and highlight what we know, what we do not know, and what progress needs to be made in order to enable the field to continue to advance. We are confident this systematic assessment of where we stand will be useful to steer the field and contribute to filling knowledge gaps that may form the foundations for future therapeutic strategies, which is where we need to go.


Assuntos
Congressos como Assunto/tendências , Sinucleinopatias/diagnóstico , Sinucleinopatias/metabolismo , alfa-Sinucleína/metabolismo , Animais , Biomarcadores/metabolismo , Humanos , Corpos de Inclusão/genética , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Mutação/fisiologia , Portugal , Sinucleinopatias/genética
4.
PLoS Biol ; 15(3): e2000374, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28257421

RESUMO

Sirtuin genes have been associated with aging and are known to affect multiple cellular pathways. Sirtuin 2 was previously shown to modulate proteotoxicity associated with age-associated neurodegenerative disorders such as Alzheimer and Parkinson disease (PD). However, the precise molecular mechanisms involved remain unclear. Here, we provide mechanistic insight into the interplay between sirtuin 2 and α-synuclein, the major component of the pathognomonic protein inclusions in PD and other synucleinopathies. We found that α-synuclein is acetylated on lysines 6 and 10 and that these residues are deacetylated by sirtuin 2. Genetic manipulation of sirtuin 2 levels in vitro and in vivo modulates the levels of α-synuclein acetylation, its aggregation, and autophagy. Strikingly, mutants blocking acetylation exacerbate α-synuclein toxicity in vivo, in the substantia nigra of rats. Our study identifies α-synuclein acetylation as a key regulatory mechanism governing α-synuclein aggregation and toxicity, demonstrating the potential therapeutic value of sirtuin 2 inhibition in synucleinopathies.


Assuntos
Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Sirtuína 2/metabolismo , alfa-Sinucleína/toxicidade , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Acetilação/efeitos dos fármacos , Animais , Autofagia/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , Córtex Cerebral/patologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Deleção de Genes , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Lisina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Neuroproteção/efeitos dos fármacos , Agregados Proteicos/efeitos dos fármacos , Ligação Proteica
6.
Hum Mol Genet ; 26(12): 2231-2246, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28369321

RESUMO

Alpha-synuclein (aSyn) is considered a major culprit in Parkinson's disease (PD) pathophysiology. However, the precise molecular function of the protein remains elusive. Recent evidence suggests that aSyn may play a role on transcription regulation, possibly by modulating the acetylation status of histones. Our study aimed at evaluating the impact of wild-type (WT) and mutant A30P aSyn on gene expression, in a dopaminergic neuronal cell model, and decipher potential mechanisms underlying aSyn-mediated transcriptional deregulation. We performed gene expression analysis using RNA-sequencing in Lund Human Mesencephalic (LUHMES) cells expressing endogenous (control) or increased levels of WT or A30P aSyn. Compared to control cells, cells expressing both aSyn variants exhibited robust changes in the expression of several genes, including downregulation of major genes involved in DNA repair. WT aSyn, unlike A30P aSyn, promoted DNA damage and increased levels of phosphorylated p53. In dopaminergic neuronal cells, increased aSyn expression led to reduced levels of acetylated histone 3. Importantly, treatment with sodium butyrate, a histone deacetylase inhibitor (HDACi), rescued WT aSyn-induced DNA damage, possibly via upregulation of genes involved in DNA repair. Overall, our findings provide novel and compelling insight into the mechanisms associated with aSyn neurotoxicity in dopaminergic cells, which could be ameliorated with an HDACi. Future studies will be crucial to further validate these findings and to define novel possible targets for intervention in PD.


Assuntos
alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Ácido Butírico/metabolismo , Técnicas de Cultura de Células , Dano ao DNA , Neurônios Dopaminérgicos/metabolismo , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Humanos , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia
7.
Biochem Soc Trans ; 47(3): 827-838, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31085616

RESUMO

The identification of genetic forms of Parkinson's disease (PD) has tremendously expanded our understanding of the players and mechanisms involved. Mutations in the genes encoding for alpha-synuclein (aSyn), LRRK2, and tau have been associated with familial and sporadic forms of the disease. aSyn is the major component of Lewy bodies and Lewy neurites, which are pathognomonic protein inclusions in PD. Hyperphosphorylated tau protein accumulates in neurofibrillary tangles in the brains of Alzheimer's disease patients but is also seen in the brains of PD patients. LRRK2 is a complex multi-domain protein with kinase and GTPase enzymatic activity. Since aSyn and tau are phosphoproteins, we review the possible interplay between the three proteins. Understanding the interplay between LRRK2, aSyn and tau is extremely important, as this may enable the identification of novel targets and pathways for therapeutic intervention.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Humanos , Doença de Parkinson/metabolismo , Fosforilação
8.
Proc Natl Acad Sci U S A ; 113(42): E6506-E6515, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27708160

RESUMO

Synucleinopathies are a group of progressive disorders characterized by the abnormal aggregation and accumulation of α-synuclein (aSyn), an abundant neuronal protein that can adopt different conformations and biological properties. Recently, aSyn pathology was shown to spread between neurons in a prion-like manner. Proteins like aSyn that exhibit self-propagating capacity appear to be able to adopt different stable conformational states, known as protein strains, which can be modulated both by environmental and by protein-intrinsic factors. Here, we analyzed these factors and found that the unique combination of the neurodegeneration-related metal copper and the pathological H50Q aSyn mutation induces a significant alteration in the aggregation properties of aSyn. We compared the aggregation of WT and H50Q aSyn with and without copper, and assessed the effects of the resultant protein species when applied to primary neuronal cultures. The presence of copper induces the formation of structurally different and less-damaging aSyn aggregates. Interestingly, these aggregates exhibit a stronger capacity to induce aSyn inclusion formation in recipient cells, which demonstrates that the structural features of aSyn species determine their effect in neuronal cells and supports a lack of correlation between toxicity and inclusion formation. In total, our study provides strong support in favor of the hypothesis that protein aggregation is not a primary cause of cytotoxicity.


Assuntos
Meio Ambiente , Agregados Proteicos , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Substituição de Aminoácidos , Animais , Células Cultivadas , Cobre/química , Cobre/metabolismo , Predisposição Genética para Doença , Histidina/química , Histidina/metabolismo , Humanos , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Cinética , Mutação , Neurônios/metabolismo , Fosforilação , Conformação Proteica em alfa-Hélice , Ratos , alfa-Sinucleína/química
9.
Hum Mol Genet ; 25(2): 275-90, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26586132

RESUMO

Synucleins belong to a family of intrinsically unstructured proteins that includes alpha-synuclein (aSyn), beta-synuclein (bSyn) and gamma-synuclein (gSyn). aSyn is the most studied member of the synuclein family due to its central role in genetic and sporadic forms of Parkinson's disease and other neurodegenerative disorders known as synucleionopathies. In contrast, bSyn and gSyn have been less studied, but recent reports also suggest that, unexpectedly, these proteins may also cause neurotoxicity. Here, we explored the yeast toolbox to investigate the cellular effects of bSyn and gSyn. We found that bSyn is toxic and forms cytosolic inclusions that are similar to those formed by aSyn. Moreover, we found that bSyn shares similar toxicity mechanisms with aSyn, including vesicular trafficking impairment and induction of oxidative stress. We demonstrate that co-expression of aSyn and bSyn exacerbates cytotoxicity, due to increased dosage of toxic synuclein forms, and that they are able to form heterodimers in both yeast and in human cells. In contrast, gSyn is not toxic and does not form inclusions in yeast cells. Altogether, our findings shed light into the question of whether bSyn can exert toxic effects and confirms the occurrence of aSyn/bSyn heterodimers, opening novel perspectives for the development of novel strategies for therapeutic intervention in synucleinopathies.


Assuntos
Estresse Oxidativo , alfa-Sinucleína/metabolismo , beta-Sinucleína/metabolismo , Células HEK293 , Humanos , Mutação , Multimerização Proteica , Transporte Proteico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transgenes , Vesículas Transportadoras , alfa-Sinucleína/genética , beta-Sinucleína/genética
10.
Hum Mol Genet ; 24(1): 76-85, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25143394

RESUMO

Tau abnormalities play a central role in several neurodegenerative diseases, collectively known as tauopathies. In the present study, we examined whether mutant huntingtin (mHtt), which causes Huntington's disease (HD), modifies Tau phosphorylation and subcellular localization using cell and mouse HD models. Initially, we used novel bimolecular fluorescence complementation assays in live cells to evaluate Tau interactions with either wild type (25QHtt) or mutant huntingtin (103QHtt). While 25QHtt and Tau interacted at the level of the microtubule network, 103QHtt and Tau interacted and formed 'ring-like' inclusions localized in the vicinity of the microtubular organizing center (MTOC). Fluorescence recovery after photobleaching experiments also indicated that, whereas homomeric 103QHtt/103QHtt pairs rapidly re-entered into inclusions, heteromeric 103QHtt/Tau pairs remained excluded from the 'ring-like' inclusions. Interestingly, in vitro Tau relocalization was associated to Tau hyperphosphorylation. Consistent with this observation, we found strong Tau hyperphosphorylation in brain samples from two different mouse models of HD, R6/2 and 140CAG knock-in. This was associated with a significant reduction in the levels of Tau phosphatases (PP1, PP2A and PP2B), with no apparent involvement of major Tau kinases. Thus, the present study strongly suggests that expression of mHtt leads to Tau hyperphosphorylation, relocalization and sequestration through direct protein-protein interactions in inclusion-like compartments in the vicinity of the MTOC. Likewise, our data also suggest that Tau alterations may also contribute to HD pathogenesis.


Assuntos
Doença de Huntington/genética , Doença de Huntington/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas tau/metabolismo , Animais , Encéfalo/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Células HEK293 , Humanos , Proteína Huntingtina , Camundongos , Centro Organizador dos Microtúbulos/metabolismo , Mutação , Proteínas do Tecido Nervoso/metabolismo , Fosforilação , Transporte Proteico , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo
11.
PLoS Genet ; 10(11): e1004741, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25393002

RESUMO

Aggregation of alpha-synuclein (ASYN) in Lewy bodies and Lewy neurites is the typical pathological hallmark of Parkinson's disease (PD) and other synucleinopathies. Furthermore, mutations in the gene encoding for ASYN are associated with familial and sporadic forms of PD, suggesting this protein plays a central role in the disease. However, the precise contribution of ASYN to neuronal dysfunction and death is unclear. There is intense debate about the nature of the toxic species of ASYN and little is known about the molecular determinants of oligomerization and aggregation of ASYN in the cell. In order to clarify the effects of different mutations on the propensity of ASYN to oligomerize and aggregate, we assembled a panel of 19 ASYN variants and compared their behaviour. We found that familial mutants linked to PD (A30P, E46K, H50Q, G51D and A53T) exhibited identical propensities to oligomerize in living cells, but had distinct abilities to form inclusions. While the A30P mutant reduced the percentage of cells with inclusions, the E46K mutant had the opposite effect. Interestingly, artificial proline mutants designed to interfere with the helical structure of the N-terminal domain, showed increased propensity to form oligomeric species rather than inclusions. Moreover, lysine substitution mutants increased oligomerization and altered the pattern of aggregation. Altogether, our data shed light into the molecular effects of ASYN mutations in a cellular context, and established a common ground for the study of genetic and pharmacological modulators of the aggregation process, opening new perspectives for therapeutic intervention in PD and other synucleinopathies.


Assuntos
Doença de Parkinson/genética , Agregação Patológica de Proteínas/genética , alfa-Sinucleína/genética , Linhagem Celular , Humanos , Corpos de Lewy/metabolismo , Corpos de Lewy/patologia , Lisossomos/metabolismo , Lisossomos/patologia , Mutagênese Sítio-Dirigida , Doença de Parkinson/patologia , Fosforilação , Mutação Puntual , alfa-Sinucleína/metabolismo
12.
PLoS Genet ; 8(2): e1002488, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22319455

RESUMO

Overexpression or mutation of α-Synuclein is associated with protein aggregation and interferes with a number of cellular processes, including mitochondrial integrity and function. We used a whole-genome screen in the fruit fly Drosophila melanogaster to search for novel genetic modifiers of human [A53T]α-Synuclein-induced neurotoxicity. Decreased expression of the mitochondrial chaperone protein tumor necrosis factor receptor associated protein-1 (TRAP1) was found to enhance age-dependent loss of fly head dopamine (DA) and DA neuron number resulting from [A53T]α-Synuclein expression. In addition, decreased TRAP1 expression in [A53T]α-Synuclein-expressing flies resulted in enhanced loss of climbing ability and sensitivity to oxidative stress. Overexpression of human TRAP1 was able to rescue these phenotypes. Similarly, human TRAP1 overexpression in rat primary cortical neurons rescued [A53T]α-Synuclein-induced sensitivity to rotenone treatment. In human (non)neuronal cell lines, small interfering RNA directed against TRAP1 enhanced [A53T]α-Synuclein-induced sensitivity to oxidative stress treatment. [A53T]α-Synuclein directly interfered with mitochondrial function, as its expression reduced Complex I activity in HEK293 cells. These effects were blocked by TRAP1 overexpression. Moreover, TRAP1 was able to prevent alteration in mitochondrial morphology caused by [A53T]α-Synuclein overexpression in human SH-SY5Y cells. These results indicate that [A53T]α-Synuclein toxicity is intimately connected to mitochondrial dysfunction and that toxicity reduction in fly and rat primary neurons and human cell lines can be achieved using overexpression of the mitochondrial chaperone TRAP1. Interestingly, TRAP1 has previously been shown to be phosphorylated by the serine/threonine kinase PINK1, thus providing a potential link of PINK1 via TRAP1 to α-Synuclein.


Assuntos
Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Drosophila melanogaster/genética , Proteínas de Choque Térmico HSP90/metabolismo , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Trifosfato de Adenosina/biossíntese , Trifosfato de Adenosina/genética , Animais , Sobrevivência Celular/genética , Dopamina/fisiologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Células HEK293 , Proteínas de Choque Térmico HSP90/genética , Humanos , Potencial da Membrana Mitocondrial , Mitocôndrias/genética , Chaperonas Moleculares/genética , Mutação , Estresse Oxidativo , Células PC12 , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , RNA Interferente Pequeno , Ratos , Rotenona/farmacologia , alfa-Sinucleína/toxicidade
13.
Aging Cell ; 23(5): e14128, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38415292

RESUMO

Parkinson's disease (PD) is characterized by aggregation of α-synuclein (α-syn) into protein inclusions in degenerating brains. Increasing amounts of aggregated α-syn species indicate significant perturbation of cellular proteostasis. Altered proteostasis depends on α-syn protein levels and the impact of α-syn on other components of the proteostasis network. Budding yeast Saccharomyces cerevisiae was used as eukaryotic reference organism to study the consequences of α-syn expression on protein dynamics. To address this, we investigated the impact of overexpression of α-syn and S129A variant on the abundance and stability of most yeast proteins using a genome-wide yeast library and a tandem fluorescent protein timer (tFT) reporter as a measure for protein stability. This revealed that the stability of in total 377 cellular proteins was altered by α-syn expression, and that the impact on protein stability was significantly enhanced by phosphorylation at Ser129 (pS129). The proteasome assembly chaperone Rpn14 was identified as one of the top candidates for increased protein stability by expression of pS129 α-syn. Elevated levels of Rpn14 enhanced the growth inhibition by α-syn and the accumulation of ubiquitin conjugates in the cell. We found that Rpn14 interacts physically with α-syn and stabilizes pS129 α-syn. The expression of α-syn along with elevated levels of Rpn14 or its human counterpart PAAF1 reduced the proteasome activity in yeast and in human cells, supporting that pS129 α-syn negatively affects the 26S proteasome through Rpn14. This comprehensive study into the alternations of protein homeostasis highlights the critical role of the Rpn14/PAAF1 in α-syn-mediated proteasome dysfunction.


Assuntos
Complexo de Endopeptidases do Proteassoma , Saccharomyces cerevisiae , alfa-Sinucleína , alfa-Sinucleína/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Humanos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Chaperonas Moleculares/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/patologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
14.
Cell Death Dis ; 15(4): 264, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615035

RESUMO

Cognitive dysfunction and dementia are critical symptoms of Lewy Body dementias (LBD). Specifically, alpha-synuclein (αSyn) accumulation in the hippocampus leading to synaptic dysfunction is linked to cognitive deficits in LBD. Here, we investigated the pathological impact of αSyn on hippocampal neurons. We report that either αSyn overexpression or αSyn pre-formed fibrils (PFFs) treatment triggers the formation of cofilin-actin rods, synapse disruptors, in cultured hippocampal neurons and in the hippocampus of synucleinopathy mouse models and of LBD patients. In vivo, cofilin pathology is present concomitantly with synaptic impairment and cognitive dysfunction. Rods generation prompted by αSyn involves the co-action of the cellular prion protein (PrPC) and the chemokine receptor 5 (CCR5). Importantly, we show that CCR5 inhibition, with a clinically relevant peptide antagonist, reverts dendritic spine impairment promoted by αSyn. Collectively, we detail the cellular and molecular mechanism through which αSyn disrupts hippocampal synaptic structure and we identify CCR5 as a novel therapeutic target to prevent synaptic impairment and cognitive dysfunction in LBD.


Assuntos
Transtornos Cognitivos , Doença por Corpos de Lewy , Animais , Camundongos , Humanos , alfa-Sinucleína , Espinhas Dendríticas , Fatores de Despolimerização de Actina , Receptores CCR5/genética
15.
Mech Ageing Dev ; 209: 111759, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36464085

RESUMO

The exon skipping of α-Synuclein (α-Syn), the main constituent of the abnormal protein aggregation in Lewy bodies of Parkinson's disease (PD), forms four isoforms. In contrast to the full length α-Syn (α-Syn 140), little is known about the splice isoforms' properties and functions. SUMOylation, a post-translational modification, regulates α-Syn function, aggregation, and degradation, but information about α-Syn isoforms and the effect of SUMOylation on them is unknown. Therefore, this study aims to characterize the SUMOylation of α-Syn isoforms and its impact on cell death and α-Syn aggregation. In a cellular model of PD induced by rotenone, cell toxicity, SUMOylation, and α-Syn aggregation with or without isoforms overexpression were evaluated. First, rotenone induced cell toxicity and α-Syn aggregation, with a significant reduction of SUMOylation and autophagy. Boosting SUMOylation prevented α-Syn aggregation, phosphorylation and recovery of autophagy. Moreover, α-Syn 140 and α-Syn 126 were SUMOylated while the other two isoforms, α-Syn 112 and 98 were not and their overexpression showed that were more toxic and induced more α-Syn aggregation. Rotenone increased their toxicity that was not affected by boosting SUMOylation. These results may indicate a role of SUMOylation in modulating α-Syn aggregation, inducing to understanding more about the behavior of α-Syn isoforms.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/genética , Rotenona/toxicidade , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sumoilação
16.
J Parkinsons Dis ; 13(2): 179-196, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36744345

RESUMO

BACKGROUND: Synucleinopathies are disorders characterized by the abnormal accumulation of α-synuclein (aSyn). Synaptic compromise is observed in synucleinopathies parallel to aSyn aggregation and is accompanied by transcript deregulation. OBJECTIVE: We sought to identify microRNAs associated with synaptic processes that may contribute to synaptic dysfunction and degeneration in synucleinopathies. METHODS: We performed small RNA-sequencing of midbrain from 6-month-old transgenic mice expressing A30P mutant aSyn, followed by comparative expression analysis. We then used real-time quantitative polymerase chain reaction (qPCR) for validation. Functional analysis was performed in primary neurons by biochemical assays and imaging. RESULTS: We found several deregulated biological processes linked to the synapse. miR-101a-3p was validated as a synaptic miRNA upregulated in aSyn Tg mice and in the cortex of dementia with Lewy bodies patients. Mice and primary cultured neurons overexpressing miR-101a-3p showed downregulation of postsynaptic proteins GABA Ab2 and SAPAP3 and altered dendritic morphology resembling synaptic plasticity impairments and/or synaptic damage. Interestingly, primary cultured neuron exposure to recombinant wild-type aSyn species efficiently increased miR-101a-3p levels. Finally, a dynamic role of miR-101a-3p in synapse plasticity was shown by identifying downregulation of miR-101a-3p in a condition of enhanced synaptic plasticity modelled in Wt animals housed in enriched environment. CONCLUSION: To conclude, we correlated pathologic aSyn with high levels of miR-101a-3p and a novel dynamic role of the miRNA in synaptic plasticity.


Assuntos
MicroRNAs , Doença de Parkinson , Sinucleinopatias , Camundongos , Animais , Sinucleinopatias/genética , Doença de Parkinson/genética , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Camundongos Transgênicos , MicroRNAs/genética , Plasticidade Neuronal , Proteínas do Tecido Nervoso
17.
J Neurosci ; 31(1): 225-33, 2011 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-21209208

RESUMO

Death receptor (DR) signaling has a major impact on the outcome of numerous neurological diseases, including ischemic stroke. DRs mediate not only cell death signals, but also proinflammatory responses and cell proliferation. Identification of regulatory proteins that control the switch between apoptotic and alternative DR signaling opens new therapeutic opportunities. Fas apoptotic inhibitory molecule 2 (Faim2) is an evolutionary conserved, neuron-specific inhibitor of Fas/CD95-mediated apoptosis. To investigate its role during development and in disease models, we generated Faim2-deficient mice. The ubiquitous null mutation displayed a viable and fertile phenotype without overt deficiencies. However, lack of Faim2 caused an increase in susceptibility to combined oxygen-glucose deprivation in primary neurons in vitro as well as in caspase-associated cell death, stroke volume, and neurological impairment after cerebral ischemia in vivo. These processes were rescued by lentiviral Faim2 gene transfer. In summary, we provide evidence that Faim2 is a novel neuroprotective molecule in the context of cerebral ischemia.


Assuntos
Infarto Encefálico/prevenção & controle , Ataque Isquêmico Transitório/complicações , Ataque Isquêmico Transitório/patologia , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptor fas/metabolismo , Análise de Variância , Animais , Infarto Encefálico/etiologia , Caspase 3/metabolismo , Caspase 8/metabolismo , Morte Celular/genética , Células Cultivadas , Córtex Cerebral/citologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Glucose/deficiência , Proteínas de Fluorescência Verde/genética , Hipóxia , Marcação In Situ das Extremidades Cortadas/métodos , Ataque Isquêmico Transitório/genética , Proteínas de Membrana/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Proteínas do Tecido Nervoso/deficiência , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/prevenção & controle , Fosfopiruvato Hidratase/metabolismo , Fatores de Tempo , Transfecção/métodos , Receptor fas/genética
18.
Neurobiol Dis ; 45(1): 591-600, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22001606

RESUMO

Parkinson's disease (PD) is the most common neurodegenerative movement disorder and is characterized by the loss of dopaminergic neurons from the substantia nigra pars compacta (SNpc). α-synuclein (αsyn) has been linked to the pathophysiology of PD, because of its mutations causing familial PD and its accumulation in brains of patients with familial and sporadic PD. Dopamine (DA) replacement is the most effective therapy for ameliorating the motor symptoms of PD; however, it remains controversial whether DA-replacement boosts regeneration in the dopaminergic system or accelerates disease progression and enhances neuronal loss. Here, we studied the effect of chronic L-DOPA treatment on dopaminergic neurons in wild-type (WT) and A30P αsyn transgenic mice after MPTP treatment. Acute MPTP intoxication induced degeneration of dopaminergic neurons in both WT and A30P αsyn transgenic mice. A strong regeneration of dopaminergic fibers at 90 days after MPTP was observed in WT mice. In contrast, regeneration was less pronounced in A30P αsyn mice. Chronic L-DOPA treatment after MPTP intoxication did not only reduce the regeneration of nigrostriatal fibers but also led to an increased apoptotic gene-expression profile in the SNpc and to a decline of TH-positive neurons in A30P αsyn. Our findings reveal that the presence of A30P αsyn inhibits the regeneration of nigrostriatal dopaminergic fibers, and that L-DOPA treatment might interact with the pathogenesis in PD.


Assuntos
Encéfalo/metabolismo , Neurônios Dopaminérgicos/fisiologia , Levodopa/farmacologia , Regeneração Nervosa/fisiologia , Transtornos Parkinsonianos/patologia , alfa-Sinucleína/genética , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/fisiopatologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Masculino , Camundongos , Camundongos Knockout , Regeneração Nervosa/efeitos dos fármacos , Transtornos Parkinsonianos/fisiopatologia , alfa-Sinucleína/metabolismo
19.
J Proteomics ; 269: 104721, 2022 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-36089191

RESUMO

Extracellular vesicles (EVs) are important mediators in intercellular communication. However, understanding the biological origin and functional effects of EVs subtypes has been challenging due to the moderate differences in their physical properties and absence of reliable markers. Here, we characterize the proteomes of ectosomes and exosomes using an improved differential ultracentrifugation protocol and quantitative proteomics. Our analyses revealed singular proteomic profiles for ectosomes and exosomes that enabled us to establish specific protein markers that can be used for their biochemical distinction. Cytoskeleton and glycolytic proteins are distinctively present in ectosomes, while endosomal sorting complexes proteins and tetraspanins are enriched in exosomes. Furthermore, annexin-A2 was identified as a specific marker for ectosomes derived from cell media and human cerebrospinal fluid. Expression of EGFP as a cytosolic reporter leads to its incorporation in EVs and enables their imaging with higher resolution. Assessment of neuronal network activity using multi-electrode array recordings demonstrated that spontaneous neuronal activity can be modulated by EVs. Ectosomes and exosomes internalization in neuronal cells disrupted their regular synchronized bursting activity, resulting in overall lower and more disorganized spiking activity. Our findings suggest that EVs cargoes reflect core intracellular processes, and their functional properties might regulate basic biological and pathological processes. SIGNIFICANCE: This article presents novel approaches for studying the origin, composition, and biological effects in neuronal activity of ectosomes and exosomes. Our findings suggest that EVs cargoes reflect core intracellular processes, and their functional properties might regulate basic biological and pathological processes. Ultimately, our study also forms the foundation for future biomarker studies and for the understanding of the molecular basis of different diseases.


Assuntos
Micropartículas Derivadas de Células , Exossomos , Vesículas Extracelulares , Anexinas/metabolismo , Biomarcadores/metabolismo , Micropartículas Derivadas de Células/metabolismo , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Proteoma/metabolismo , Proteômica
20.
Sci Rep ; 12(1): 2987, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35194057

RESUMO

Parkinson's disease (PD) and Alzheimer's disease (AD) are characterized by pathological accumulation and aggregation of different amyloidogenic proteins, α-synuclein (aSyn) in PD, and amyloid-ß (Aß) and Tau in AD. Strikingly, few PD and AD patients' brains exhibit pure pathology with most cases presenting mixed types of protein deposits in the brain. Bimolecular fluorescence complementation (BiFC) is a technique based on the complementation of two halves of a fluorescent protein, which allows direct visualization of protein-protein interactions. In the present study, we assessed the ability of aSyn and Tau to interact with each other. For in vitro evaluation, HEK293 and human neuroblastoma cells were used, while in vivo studies were performed by AAV6 injection in the substantia nigra pars compacta (SNpc) of mice and rats. We observed that the co-expression of aSyn and Tau led to the emergence of fluorescence, reflecting the interaction of the proteins in cell lines, as well as in mouse and rat SNpc. Thus, our data indicates that aSyn and Tau are able to interact with each other in a biologically relevant context, and that the BiFC assay is an effective tool for studying aSyn-Tau interactions in vitro and in different rodent models in vivo.


Assuntos
Fluorescência , Imunofluorescência/métodos , Mapas de Interação de Proteínas , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo , Animais , Linhagem Celular Tumoral , Células HEK293 , Humanos , Técnicas In Vitro , Camundongos , Agregados Proteicos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA