Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(51): e2303641120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38096410

RESUMO

When threatened by dangerous or harmful stimuli, animals engage in diverse forms of rapid escape behaviors. In Drosophila larvae, one type of escape response involves C-shaped bending and lateral rolling followed by rapid forward crawling. The sensory circuitry that promotes larval escape has been extensively characterized; however, the motor programs underlying rolling are unknown. Here, we characterize the neuromuscular basis of rolling escape behavior. We used high-speed, volumetric, Swept Confocally Aligned Planar Excitation (SCAPE) microscopy to image muscle activity during larval rolling. Unlike sequential peristaltic muscle contractions that progress from segment to segment during forward and backward crawling, muscle activity progresses circumferentially during bending and rolling escape behavior. We propose that progression of muscular contraction around the larva's circumference results in a transient misalignment between weight and the ground support forces, which generates a torque that induces stabilizing body rotation. Therefore, successive cycles of slight misalignment followed by reactive aligning rotation lead to continuous rolling motion. Supporting our biomechanical model, we found that disrupting the activity of muscle groups undergoing circumferential contraction progression leads to rolling defects. We use EM connectome data to identify premotor to motor connectivity patterns that could drive rolling behavior and perform neural silencing approaches to demonstrate the crucial role of a group of glutamatergic premotor neurons in rolling. Our data reveal body-wide muscle activity patterns and putative premotor circuit organization for execution of the rolling escape response.


Assuntos
Drosophila , Neurônios , Animais , Drosophila/fisiologia , Neurônios/fisiologia , Larva/fisiologia , Reação de Fuga/fisiologia , Contração Muscular , Drosophila melanogaster/fisiologia
2.
IEEE ASME Trans Mechatron ; 22(6): 2780-2789, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31105420

RESUMO

Magnetic Resonance (MR) guided interventional robots have recently been developed for a variety of surgeries, such as biopsy, ablation, and brachytherapy. The actuators and encoders that power and track such robots must be MR-conditional. In this paper, we propose an MR-conditional pneumatic motor with an integrated and custom-built fiber-optical encoder that provides powerful and accurate actuation. The motor is coupled with a modular plastic gearbox that provides a variety of gear ratio options so that the motor can be adapted to application requirements. With a 100:1 gear reduction at 0.55 MPa, the motor achieves 460 mNm stall torque and 370 rpm no-load speed, which leads to the peak output power of 6W. The motor has the bandwidth of approximately 1.1 Hz and 3.5 Hz when connected to 8 m and 0.2 m air hoses, respectively. The motor was tested in a 3T MRI scanner. No image artifact was observed and maximum signal to noise ratio (SNR) variation was less than 5%. Different from most of the existing MR-conditional pneumatic actuators, the proposed motor shape is more like the traditional electric motors, which offers more flexibility in the MR-conditional robot design.

3.
IEEE Trans Med Robot Bionics ; 6(2): 577-588, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38911181

RESUMO

Stereotactic neurosurgery is a well-established surgical technique for navigation and guidance during treatment of intracranial pathologies. Intracerebral hemorrhage (ICH) is an example of various neurosurgical conditions that can benefit from stereotactic neurosurgery. As a part of our ongoing work toward real-time MR-guided ICH evacuation, we aim to address an unmet clinical need for a skull-mounted frameless stereotactic aiming device that can be used with minimally invasive robotic systems for MR-guided interventions. In this paper, we present NICE-Aiming, a Neurosurgical, Interventional, Configurable device for Effective-Aiming in MR-guided robotic neurosurgical interventions. A kinematic model was developed and the system was used with a concentric tube robot (CTR) for ICH evacuation in (i) a skull phantom and (ii) in the first ever reported ex vivo CTR ICH evacuation using an ex vivo ovine head. The NICE-Aiming prototype provided a tip accuracy of 1.41±0.35 mm in free-space. In the MR-guided gel phantom experiment, the targeting accuracy was 2.07±0.42 mm and the residual hematoma volume was 12.87 mL (24.32% of the original volume). In the MR-guided ex vivo ovine head experiment, the targeting accuracy was 2.48±0.48 mm and the residual hematoma volume was 1.42 mL (25.08% of the original volume).

4.
IEEE Trans Biomed Eng ; 70(10): 2895-2904, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37074885

RESUMO

OBJECTIVE: We aim to develop and evaluate an MR-conditional concentric tube robot for intracerebral hemorrhage (ICH) evacuation. METHODS: We fabricated the concentric tube robot hardware with plastic tubes and customized pneumatic motors. The robot kinematic model was developed using a discretized piece-wise constant curvature (D-PCC) approach to account for variable curvature along the tube shape, and tube mechanics model was used to compensate torsional deflection of the inner tube. The MR-safe pneumatic motors were controlled using a variable gain PID algorithm. The robot hardware was validated in a series of bench-top and MRI experiments, and the robot's evacuation efficacy was tested in MR-guided phantom trials. RESULTS: The pneumatic motor was able to achieve a rotational accuracy of 0.32°±0.30° with the proposed variable gain PID control algorithm. The kinematic model provided a positional accuracy of the tube tip of 1.39 ± 0.54 mm. The robot was able to evacuate an initial 38.36 mL clot, leaving a residual hematoma of 8.14 mL after 5 minutes, well below the 15 mL guideline suggesting good post-ICH evacuation clinical outcomes. CONCLUSION: This robotic platform provides an effective method for MR-guided ICH evacuation. SIGNIFICANCE: ICH evacuation is feasible under MRI guidance using a plastic concentric tube, indicating potential feasibility in future live animal studies.


Assuntos
Robótica , Animais , Hemorragia Cerebral/diagnóstico por imagem , Imagens de Fantasmas , Imageamento por Ressonância Magnética/métodos
5.
bioRxiv ; 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36778508

RESUMO

When threatened by dangerous or harmful stimuli, animals engage in diverse forms of rapid escape behaviors. In Drosophila larvae, one type of escape response involves C-shaped bending and lateral rolling followed by rapid forward crawling. The sensory circuitry that promotes larval escape has been extensively characterized; however, the motor programs underlying rolling are unknown. Here, we characterize the neuromuscular basis of rolling escape behavior. We used high-speed, volumetric, Swept Confocally-Aligned Planar Excitation (SCAPE) microscopy to image muscle activity during larval rolling. Unlike sequential peristaltic muscle contractions that progress from segment to segment during forward and backward crawling, the muscle activity progresses circumferentially during bending and rolling escape behavior. We propose that progression of muscular contraction around the larval circumference results in a transient misalignment between weight and the ground support forces, which generates a torque that induces stabilizing body rotation. Therefore, successive cycles of slight misalignment followed by reactive aligning rotation lead to continuous rolling motion. Supporting our biomechanical model, we found that disrupting the activity of muscle groups undergoing circumferential contraction progression lead to rolling defects. We use EM connectome data to identify premotor to motor connectivity patterns that could drive rolling behavior, and perform neural silencing approaches to demonstrate the crucial role of a group of glutamatergic premotor neurons in rolling. Our data reveal body-wide muscle activity patterns and putative premotor circuit organization for execution of the rolling escape response.

6.
IEEE Robot Autom Lett ; 7(3): 6830-6837, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36532612

RESUMO

Continuum arms are bio-inspired devices that exhibit continuous, smooth bending and generate motion through structural deformation. Rapidly-exploring random trees (RRT) is a traditional approach for performing efficient path planning. RRT approaches are usually based on exploring the configuration space (C-Space) of the robot to find a desirable work space (W-Space) path. Due to the complex kinematics and the highly non-linear mapping between the C-Space and W-Space of continuum arms, a high-quality path in the C-Space (e.g., a linear path) may not correspond to a desirable path/movement in the W-Space. Consequently, the C-Space RRT approaches that are based on C-Space cost functions do not lead to reliable and effective path planning when applied to continuum arms. In this paper, we propose a RRT* path planning approach for continuum arms that is based on exploring the W-Space of the robot as opposed to its C-Space. We show the successful applications of the proposed W-Space RRT* path planner in performing path planning with obstacle avoidance and in performing trajectory tracking. In all the aforementioned tasks, the quality of the paths generated by the proposed planner is superior to that of previous approaches and to its counterpart C-Space based RRT* approach, while the paths are generated in substantially less time.

7.
Ann Biomed Eng ; 50(4): 365-386, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35226279

RESUMO

Intracerebral hemorrhage is a leading cause of morbidity and mortality worldwide. To date, there is no specific treatment that clearly provides a benefit in functional outcome or mortality. Surgical treatment for hematoma evacuation has not yet shown clear benefit over medical management despite promising preclinical studies. Minimally invasive treatment options for hematoma evacuation are under investigation but remain in early-stage clinical trials. Robotics has the potential to improve treatment. In this paper, we review intracerebral hemorrhage pathology, currently available treatments, and potential robotic approaches to date. We also discuss the future role of robotics in stroke treatment.


Assuntos
Hemorragia Cerebral , Procedimentos Cirúrgicos Minimamente Invasivos , Hemorragia Cerebral/cirurgia , Humanos , Resultado do Tratamento
8.
Soft Robot ; 8(3): 298-309, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32668189

RESUMO

Soft robots offer an alternative approach to manipulate within a constrained space while maintaining a safe interaction with the external environment. Owing to its adaptable compliance characteristic, external contact force can easily deform the robot shapes and lead to undesired robot kinematic and dynamic properties. Accurate contact detection and contact location estimation are of critical importance for soft robot modeling, control, trajectory planning, and eventually affect the success of task completion. In this article, we focus on the investigation of a one degree of freedom (1-DoF) soft pneumatic bending robot, which is regarded as one of the fundamental components to construct complex, multi-DoFs soft robots. This 1-DoF soft robot is modeled through the integral representation of the spatial curve, where direct and instantaneous kinematics are calculated explicitly through a modal method. The fixed centrode deviation method is used to detect the external contact and estimate the contact location. Simulation results and experimental studies indicate that the contact location can be accurately estimated by solving a nonlinear least-square optimization problem. Experimental validation shows that the proposed algorithm is able to successfully estimate the contact location with the estimation error of 1.46 mm.


Assuntos
Robótica , Algoritmos , Fenômenos Biomecânicos , Simulação por Computador , Robótica/métodos
9.
Ann Biomed Eng ; 47(2): 335-353, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30377898

RESUMO

Recent technological developments in magnetic resonance imaging (MRI) and stereotactic techniques have significantly improved surgical outcomes. Despite the advantages offered by the conventional MRI-guided stereotactic neurosurgery, the robotic-assisted stereotactic approach has potential to further improve the safety and accuracy of neurosurgeries. This review aims to provide an update on the potential and continued growth of the MRI-guided stereotactic neurosurgical techniques by describing the state of the art in MR conditional stereotactic devices including manual and robotic-assisted. The paper also presents a detailed overview of MRI-guided stereotactic devices, MR conditional actuators and encoders used in MR conditional robotic-assisted stereotactic devices. The review concludes with several research challenges and future perspectives, including actuator and sensor technique, MR image guidance, and robot design issues.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/mortalidade , Procedimentos Cirúrgicos Robóticos/instrumentação , Procedimentos Cirúrgicos Robóticos/métodos , Técnicas Estereotáxicas/instrumentação , Humanos
10.
Ann Biomed Eng ; 47(11): 2322-2333, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31218486

RESUMO

This paper presents a hardware and software system to implement the task space control of an MR-conditional robot by integrating inductively coupled wireless coil based tracking feedback into the control loop. The main motivation of this work is to increase the accuracy performance and address the system uncertainties in the practical scenarios. We present the MR-conditional robot hardware design, wireless tracking method, and custom-designed communication software for real-time tracking data transfer. Based on these working principles, we fabricate the robot platform and evaluate the complete system with respect to various performance indices, i.e. data communication speed, targeting accuracy, tracking coil resolution, image quality, temperature variation, and task space control accuracy for static and dynamic targeting inside MRI scanner. The in-scanner targeting results show that the MR-conditional robot with wireless tracking coil feedback achieves the targeting error of 0.17 ± 0.08 mm, while the error calculated from the joint space optical encoder feedback is 0.68 ± 0.19 mm.


Assuntos
Imageamento por Ressonância Magnética , Robótica , Software , Desenho de Equipamento , Retroalimentação
11.
Int J Comput Assist Radiol Surg ; 14(1): 105-115, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30173334

RESUMO

BACKGROUND: Intracerebral hemorrhage (ICH) is one of the deadliest forms of stroke in the USA. Conventional surgical techniques such as craniotomy or stereotactic aspiration disrupt a large volume of healthy brain tissue in their attempts to reach the surgical site. Consequently, the surviving patients suffer from debilitating complications. METHODS: We fabricated a novel MR-conditional steerable needle robot for ICH treatment. The robot system is powered by a custom-designed high power and low-cost pneumatic motor. We tested the robot's targeting accuracy and MR-conditionality performance, and performed phantom evacuation experiment under MR image guidance. RESULTS: Experiments demonstrate that the robotic hardware is MR-conditional; the robot has the targeting accuracy of 1.26 ± 1.22 mm in bench-top tests. With real-time MRI guidance, the robot successfully reached the desired target and evacuated an 11.3 ml phantom hematoma in 9 min. CONCLUSION: MRI-guided steerable needle robotic system is a potentially feasible approach for ICH treatment by providing accurate needle guidance and intraoperative surgical outcome evaluation.


Assuntos
Encéfalo/cirurgia , Hemorragia Cerebral/cirurgia , Imageamento por Ressonância Magnética/métodos , Procedimentos Cirúrgicos Robóticos/métodos , Encéfalo/diagnóstico por imagem , Hemorragia Cerebral/diagnóstico por imagem , Desenho de Equipamento , Humanos , Imageamento Tridimensional/métodos , Agulhas , Imagens de Fantasmas
12.
Soft Robot ; 6(5): 671-684, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31241408

RESUMO

While soft material actuators can undergo large deformations to execute very complex motions, what is critically lacking in soft material robotic systems is the ability to collect high-resolution shape information for sophisticated functions such as environmental mapping, collision detection, and full state feedback control. This work explores the potential of a nearly commercial fiber optic shape sensor (FOSS) and presents the first demonstrations of a monolithic, multicore FOSS integrated into the structure of a fiber-reinforced soft actuator. In this pilot study, we report an open loop sensorized soft actuator capable of submillimeter position feedback that can detect the soft actuator's shape, environmental shapes, collision locations, and material stiffness properties.

13.
IEEE Robot Autom Lett ; 2(3): 1488-1494, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29202035

RESUMO

This paper presents a novel miniature robotic endoscope that is small enough to pass through the Eustachian tube and provide visualization of the middle ear (ME). The device features a miniature bending tip previously conceived of as a small-scale robotic wrist that has been adapted to carry and aim a small chip-tip camera and fiber optic light sources. The motivation for trans-Eustachian tube ME inspection is to provide a natural-orifice-based route to the ME that does not require cutting or lifting the eardrum, as is currently required. In this paper, we first perform an analysis of the ME anatomy and use a computational design optimization platform to derive the kinematic requirements for endoscopic inspection of the ME through the Eustachian tube. Based on these requirements, we fabricate the proposed device and use it to demonstrate the feasibility of ME inspection in an anthropomorphic model, i.e. a 3D-printed ME phantom generated from patient image data. We show that our prototype provides > 74% visibility coverage of the sinus tympani, a region of the ME crucial for diagnosis, compared to an average of only 6.9% using a straight, non-articulated endoscope through the Eustachian Tube.

14.
Bioinspir Biomim ; 10(3): 035002, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25969947

RESUMO

This paper presents a novel spatial kinematic model for multisection continuum arms based on mode shape functions (MSF). Modal methods have been used in many disciplines from finite element methods to structural analysis to approximate complex and nonlinear parametric variations with simple mathematical functions. Given certain constraints and required accuracy, this helps to simplify complex phenomena with numerically efficient implementations leading to fast computations. A successful application of the modal approximation techniques to develop a new modal kinematic model for general variable length multisection continuum arms is discussed. The proposed method solves the limitations associated with previous models and introduces a new approach for readily deriving exact, singularity-free and unique MSF's that simplifies the approach and avoids mode switching. The model is able to simulate spatial bending as well as straight arm motions (i.e., pure elongation/contraction), and introduces inverse position and orientation kinematics for multisection continuum arms. A kinematic decoupling feature, splitting position and orientation inverse kinematics is introduced. This type of decoupling has not been presented for these types of robotic arms before. The model also carefully accounts for physical constraints in the joint space to provide enhanced insight into practical mechanics and impose actuator mechanical limitations onto the kinematics thus generating fully realizable results. The proposed method is easily applicable to a broad spectrum of continuum arm designs.


Assuntos
Extremidades/fisiologia , Modelos Biológicos , Movimento/fisiologia , Músculo Esquelético/fisiologia , Octopodiformes/fisiologia , Robótica/métodos , Animais , Biomimética/métodos , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA