Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Chem Phys ; 149(7): 072330, 2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30134719

RESUMO

Grate and co-workers at Pacific Northwest National Laboratory recently developed high information content triazine-based sequence-defined polymers that are robust by not having hydrolyzable bonds and can encode structure and functionality by having various side chains. Through molecular dynamics (MD) simulations, the triazine polymers have been shown to form particular sequential stacks, have stable backbone-backbone interactions through hydrogen bonding and π-π interactions, and conserve their cis/trans conformations throughout the simulation. However, we do not know the effects of having different side chains and backbone structures on the entire conformation and whether the cis or trans conformation is more stable for the triazine polymers. For this reason, we investigate the role of non-covalent interactions for different side chains and backbone structures on the conformation and assembly of triazine polymers in MD simulations. Since there is a high energy barrier associated with the cis-trans isomerization, we use replica exchange molecular dynamics (REMD) to sample various conformations of triazine hexamers. To obtain rates and intermediate conformations, we use the recently developed concurrent adaptive sampling (CAS) algorithm for dimers of triazine trimers. We found that the hydrogen bonding ability of the backbone structure is critical for the triazine polymers to self-assemble into nanorod-like structures, rather than that of the side chains, which can help researchers design more robust materials.

2.
Anal Chem ; 89(5): 3101-3107, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28195703

RESUMO

A rapid new method for determining the U and Th mass concentrations in high radiopurity plastics is described, consisting of (1) dry ashing the plastic sample and tracers in low mass crucibles made of ultra low background electroformed copper (ULB EF-Cu) foil cut and folded into boats, (2) dissolving both the ash and the boat in acid, (3) performing a column separation to remove copper, and (4) determining the elements of interest by isotope dilution mass spectrometry. This method was demonstrated on both unfluorinated and fluorinated plastics, demonstrating high tracer recoveries and detection limits to pg/g (i.e., parts per trillion) levels or below, corresponding to µBq/kg of material. Samples of biomedical polyester (Max-Prene 955) and a fluoropolymer (polyvinylidene fluoride, PVDF) were analyzed in powder raw material forms as well as solids in the form of pellets or injection molded parts. The polyester powder contained 6 pg/g and 2 pg/g for 232Th and 238U, respectively. These levels correspond to 25 and 25 µBq/kg radioactivity, respectively. Determinations on samples of PVDF powder were typically below 1 pg/g for 232Th and 2 pg/g for 238U, corresponding to 4 and 25 µBq/kg radioactivity, respectively. The use of low mass ULB EF-Cu boats for dry ashing successfully overcame the problem of crucible-generated contaminants in the analysis; absolute detection limits, calculated as 3 × standard deviation of the process blanks, were typically 20-100 fg within a sample set. Complete dissolution of the ash and low mass boat provided high tracer recoveries and provides a convincing method to recover both the tracer and sample isotopes when full equilibration of tracer isotopes with sample isotopes is not possible prior to beginning chemical sample processing on solids.

3.
Analyst ; 142(18): 3333-3340, 2017 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-28660919

RESUMO

Solid sampling and analysis methods, such as laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), are challenged by matrix effects and calibration difficulties. Matrix-matched standards for external calibration are seldom available and it is difficult to distribute spikes evenly into a solid matrix as internal standards. While isotopic ratios of the same element can be measured to high precision, matrix-dependent effects in the sampling and analysis process frustrate accurate quantification and elemental ratio determinations. Here we introduce a potentially general solid matrix transformation approach entailing chemical reactions in molten ammonium bifluoride (ABF) salt that enables the introduction of spikes as tracers or internal standards. Proof of principle experiments show that the decomposition of uranium ore in sealed PFA fluoropolymer vials at 230 °C yields, after cooling, new solids suitable for direct solid sampling by LA. When spikes are included in the molten salt reaction, subsequent LA-ICP-MS sampling at several spots indicate that the spikes are evenly distributed, and that U-235 tracer dramatically improves reproducibility in U-238 analysis. Precisions improved from 17% relative standard deviation for U-238 signals to 0.1% for the ratio of sample U-238 to spiked U-235, a factor of over two orders of magnitude. These results introduce the concept of solid matrix transformation (SMT) using ABF, and provide proof of principle for a new method of incorporating internal standards into a solid for LA-ICP-MS. This new approach, SMT-LA-ICP-MS, provides opportunities to improve calibration and quantification in solids based analysis. Looking forward, tracer addition to transformed solids opens up LA-based methods to analytical methodologies such as standard addition, isotope dilution, preparation of matrix-matched solid standards, external calibration, and monitoring instrument drift against external calibration standards.

4.
J Chem Phys ; 147(7): 074115, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28830168

RESUMO

Molecular dynamics simulations are useful in obtaining thermodynamic and kinetic properties of bio-molecules, but they are limited by the time scale barrier. That is, we may not obtain properties' efficiently because we need to run microseconds or longer simulations using femtosecond time steps. To overcome this time scale barrier, we can use the weighted ensemble (WE) method, a powerful enhanced sampling method that efficiently samples thermodynamic and kinetic properties. However, the WE method requires an appropriate partitioning of phase space into discrete macrostates, which can be problematic when we have a high-dimensional collective space or when little is known a priori about the molecular system. Hence, we developed a new WE-based method, called the "Concurrent Adaptive Sampling (CAS) algorithm," to tackle these issues. The CAS algorithm is not constrained to use only one or two collective variables, unlike most reaction coordinate-dependent methods. Instead, it can use a large number of collective variables and adaptive macrostates to enhance the sampling in the high-dimensional space. This is especially useful for systems in which we do not know what the right reaction coordinates are, in which case we can use many collective variables to sample conformations and pathways. In addition, a clustering technique based on the committor function is used to accelerate sampling the slowest process in the molecular system. In this paper, we introduce the new method and show results from two-dimensional models and bio-molecules, specifically penta-alanine and a triazine trimer.


Assuntos
Alanina/análogos & derivados , Algoritmos , Oligopeptídeos/química , Triazinas/química , Cinética , Conformação Molecular , Simulação de Dinâmica Molecular , Conformação Proteica , Termodinâmica
5.
Angew Chem Int Ed Engl ; 55(12): 3925-30, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26865312

RESUMO

Sequence control in polymers, well-known in nature, encodes structure and functionality. Here we introduce a new architecture, based on the nucleophilic aromatic substitution chemistry of cyanuric chloride, that creates a new class of sequence-defined polymers dubbed TZPs. Proof of concept is demonstrated with two synthesized hexamers, having neutral and ionizable side chains. Molecular dynamics simulations show backbone-backbone interactions, including H-bonding motifs and pi-pi interactions. This architecture is arguably biomimetic while differing from sequence-defined polymers having peptide bonds. The synthetic methodology supports the structural diversity of side chains known in peptides, as well as backbone-backbone hydrogen-bonding motifs, and will thus enable new macromolecules and materials with useful functions.


Assuntos
Polímeros/química , Triazinas/química , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Espectrometria de Massas em Tandem
6.
Bioconjug Chem ; 26(3): 593-601, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25730280

RESUMO

Methods to covalently conjugate Alexa Fluor dyes to cellulose nanocrystals, at limiting amounts that retain the overall structure of the nanocrystals as model cellulose materials, were developed using two approaches. In the first, aldehyde groups are created on the cellulose surfaces by reaction with limiting amounts of sodium periodate, a reaction well-known for oxidizing vicinal diols to create dialdehyde structures. Reductive amination reactions were then applied to bind Alexa Fluor dyes with terminal amino-groups on the linker section. In the absence of the reductive step, dye washes out of the nanocrystal suspension, whereas with the reductive step, a colored product is obtained with the characteristic spectral bands of the conjugated dye. In the second approach, Alexa Fluor dyes were modified to contain chloro-substituted triazine ring at the end of the linker section. These modified dyes then were reacted with cellulose nanocrystals in acetonitrile at elevated temperature, again isolating material with the characteristic spectral bands of the Alexa Fluor dye. Reactions with Alexa Fluor 546 are given as detailed examples, labeling on the order of 1% of the total glucopyranose rings of the cellulose nanocrystals at dye loadings of ca. 5 µg/mg cellulose. Fluorescent cellulose nanocrystals were deposited in pore network microfluidic structures (PDMS) and proof-of-principle bioimaging experiments showed that the spatial localization of the solid cellulose deposits could be determined, and their disappearance under the action of Celluclast enzymes or microbes could be observed over time. In addition, single molecule fluorescence microscopy was demonstrated as a method to follow the disappearance of solid cellulose deposits over time, following the decrease in the number of single blinking dye molecules with time instead of fluorescent intensity.


Assuntos
Microambiente Celular , Celulose/análise , Corantes Fluorescentes/química , Nanopartículas/química , Compostos de Quinolínio/química , Celulose/química , Microscopia de Fluorescência/métodos
9.
Anal Chem ; 84(7): 3090-8, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22440010

RESUMO

An automated fluidic instrument is described that rapidly determines the total (99)Tc content of aged nuclear waste samples, where the matrix is chemically and radiologically complex and the existing speciation of the (99)Tc is variable. The monitor links microwave-assisted sample preparation with an automated anion exchange column separation and detection using a flow-through solid scintillator detector. The sample preparation steps acidify the sample, decompose organics, and convert all Tc species to the pertechnetate anion. The column-based anion exchange procedure separates the pertechnetate from the complex sample matrix, so that radiometric detection can provide accurate measurement of (99)Tc. We developed a preprogrammed spike addition procedure to automatically determine matrix-matched calibration. The overall measurement efficiency that is determined simultaneously provides a self-diagnostic parameter for the radiochemical separation and overall instrument function. Continuous, automated operation was demonstrated over the course of 54 h, which resulted in the analysis of 215 samples plus 54 hly spike-addition samples, with consistent overall measurement efficiency for the operation of the monitor. A sample can be processed and measured automatically in just 12.5 min with a detection limit of 23.5 Bq/mL of (99)Tc in low activity waste (0.495 mL sample volume), with better than 10% RSD precision at concentrations above the quantification limit. This rapid automated analysis method was developed to support nuclear waste processing operations planned for the Hanford nuclear site.

10.
Langmuir ; 28(18): 7182-8, 2012 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-22364481

RESUMO

The use of air-water, θ(wa), or air-liquid contact angles is customary in surface science, while oil-water contact angles, θ(ow), are of paramount importance in subsurface multiphase flow phenomena including petroleum recovery, nonaqueous phase liquid fate and transport, and geological carbon sequestration. In this paper we determine both the air-water and oil-water contact angles of silica surfaces modified with a diverse selection of silanes, using hexadecane as the oil. The silanes included alkylsilanes, alkylarylsilanes, and silanes with alkyl or aryl groups that are functionalized with heteroatoms such as N, O, and S. These silanes yielded surfaces with wettabilities from water wet to oil wet, including specific silanized surfaces functionalized with heteroatoms that yield intermediate wet surfaces. The oil-water contact angles for clean and silanized surfaces, excluding one partially fluorinated surface, correlate linearly with air-water contact angles with a slope of 1.41 (R = 0.981, n = 13). These data were used to examine a previously untested theoretical treatment relating air-water and oil-water contact angles in terms of fluid interfacial energies. Plotting the cosines of these contact angles against one another, we obtain the relationship cos θ(wa) = 0.667 cos θ(ow) + 0.384 (R = 0.981, n = 13), intercepting cos θ(ow) = -1 at -0.284, which is in excellent agreement with the linear assumption of the theory. The theoretical slope, based on the fluid interfacial tensions σ(wa), σ(ow), and σ(oa), is 0.67. We also demonstrate how silanes can be used to alter the wettability of the interior of a pore network micromodel device constructed in silicon/silica with a glass cover plate. Such micromodels are used to study multiphase flow phenomena. The contact angle of the resulting interior was determined in situ. An intermediate wet micromodel gave a contact angle in excellent agreement with that obtained on an open planar silica surface using the same silane.

11.
Anal Chem ; 83(23): 9086-91, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22004461

RESUMO

A sample preparation sequence for actinide isotopic analysis by thermal ionization mass spectrometry (TIMS) is described that includes column-based extraction chromatography as the first separation step, followed by anion-exchange column separations. The sequence is designed to include a wet ashing step after the extraction chromatography to prevent any leached extractant or oxalic acid eluent reagents from interfering with subsequent separations, source preparation, or TIMS ionization. TEVA resin and DGA resin materials, containing extractants that consist only of C, N, O, and H atoms, were investigated for isolation of plutonium. Radiotracer level studies confirmed expected high yields from column-based separation procedures. Femtogram-level studies were carried out with TIMS detection, using multiple monoisotopic spikes applied sequentially throughout the separation sequence. Pu recoveries were 87% and 86% for TEVA and DGA resin separations, respectively. The Pu recoveries from 400 µL anion-exchange column separation sequences were 89% and 93% for trial sequences incorporating TEVA and DGA resin. Thus, a prior extraction chromatography step in the sequence did not interfere with the subsequent anion-exchange separation when a simple wet ash step was carried out in between these column separations. The average measurement efficiency for Pu, encompassing the chemical separation recoveries and the TIMS ionization efficiency, was 2.73% ± 0.77% (2σ) for the DGA resin trials and 2.67% ± 0.54% for the TEVA resin trials, compared to 3.41% and 2.37% (average 2.89%) for two control trials. These compare with an average measurement efficiency of 2.78% ± 1.70%, n = 33 from process benchmark analyses using Pu spikes processed through a sequence of oxalate precipitation, wet ash, iron hydroxide precipitation, and anion-exchange column separations. We conclude that extraction chromatography can be a viable separation procedure as part of a multistep sequence for TIMS sample preparation.

12.
Environ Sci Technol ; 45(17): 7581-8, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21774502

RESUMO

Permeability contrasts exist in multilayer geological formations under consideration for carbon sequestration. To improve our understanding of heterogeneous pore-scale displacements, liquid CO(2) (LCO(2))-water displacement was evaluated in a pore network micromodel with two distinct permeability zones. Due to the low viscosity ratio (logM = -1.1), unstable displacement occurred at all injection rates over 2 orders of magnitude. LCO(2) displaced water only in the high permeability zone at low injection rates with the mechanism shifting from capillary fingering to viscous fingering with increasing flow rate. At high injection rates, LCO(2) displaced water in the low permeability zone with capillary fingering as the dominant mechanism. LCO(2) saturation (S(LCO2)) as a function of injection rate was quantified using fluorescent microscopy. In all experiments, more than 50% of LCO(2) resided in the active flowpaths, and this fraction increased as displacement transitioned from capillary to viscous fingering. A continuum-scale two-phase flow model with independently determined fluid and hydraulic parameters was used to predict S(LCO2) in the dual-permeability field. Agreement with the micromodel experiments was obtained for low injection rates. However, the numerical model does not account for the unstable viscous fingering processes observed experimentally at higher rates and hence overestimated S(LCO2).


Assuntos
Dióxido de Carbono/química , Sedimentos Geológicos/química , Modelos Teóricos , Água/química , Permeabilidade , Porosidade , Viscosidade
13.
Proteomics ; 9(7): 1893-900, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19288524

RESUMO

A stable and robust trypsin-based biocatalytic system was developed and demonstrated for proteomic applications. The system utilizes polymer nanofibers coated with trypsin aggregates for immobilized protease digestions. After covalently attaching an initial layer of trypsin to the polymer nanofibers, highly concentrated trypsin molecules are crosslinked to the layered trypsin by way of a glutaraldehyde treatment. This process produced a 300-fold increase in trypsin activity compared with a conventional method for covalent trypsin immobilization, and proved to be robust in that it still maintained a high level of activity after a year of repeated recycling. This highly stable form of immobilized trypsin was resistant to autolysis, enabling repeated digestions of BSA over 40 days and successful peptide identification by LC-MS/MS. This active and stable form of immobilized trypsin was successfully employed in the digestion of yeast proteome extract with high reproducibility and within shorter time than conventional protein digestion using solution phase trypsin. Finally, the immobilized trypsin was resistant to proteolysis when exposed to other enzymes (i.e., chymotrypsin), which makes it suitable for use in "real-world" proteomic applications. Overall, the biocatalytic nanofibers with trypsin aggregate coatings proved to be an effective approach for repeated and automated protein digestion in proteomic analyses.


Assuntos
Reatores Biológicos , Enzimas Imobilizadas/metabolismo , Nanoestruturas , Polímeros/metabolismo , Tripsina/metabolismo , Biocatálise , Cromatografia Líquida , Estabilidade Enzimática , Reutilização de Equipamento , Microscopia Eletrônica de Varredura , Nanoestruturas/ultraestrutura , Fragmentos de Peptídeos , Proteínas/metabolismo , Proteômica/instrumentação , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem
14.
Anal Chem ; 81(3): 1228-37, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19138126

RESUMO

Strontium-90 is an environmental contaminant at several U.S. Department of Energy sites, including the Hanford site, Washington. Due to its high biological toxicity and moderately long half-life of approximately 29 years, groundwater and surface water contamination plumes containing 90Sr must be closely monitored. The highly energetic beta radiation from the short-lived 90Y daughter of 90Sr generates Cherenkov photons in aqueous media that can be detected by photomultiplier tubes with good sensitivity, without the use of scintillation cocktails. A laboratory-based automated fluid handling system coupled to a Cherenkov radiation detector for measuring 90Sr via the high-energy beta decay of its daughter, 90Y, has been assembled and tested using standards prepared in Hanford groundwater. A SuperLig 620 column in the system enables preconcentration and separation of 90Sr from matrix and radiological interferences and, by removing the 90Y present in the sample, creates a pure 90Sr source from which subsequent 90Y ingrowth can be measured. This 90Y is fluidically transferred from the column to the Cherenkov detection flow cell for quantification and calculation of the original 90Sr concentration. Preconcentrating 0.35 L sample volumes by this approach, we have demonstrated a detection limit of 0.057 Bq/L using a 5 mL volume Cherenkov flow cell, which is below the drinking water limit of 0.30 Bq/L. This method does not require that the sample be at secular equilibrium prior to measurement. The system can also deliver water samples directly to the counting cell for analysis without preconcentration or separation, assuming that the sample is in secular equilibrium, with a detection limit of 7 Bq/L. The performance of the analysis method using a preconcentrating separation column is characterized in detail and compared with direct counting. This method is proposed as the basis for an automated fluidic monitor for 90Sr for unattended at-site operation.


Assuntos
Monitoramento de Radiação/métodos , Radioisótopos de Estrôncio/análise , Poluentes Radioativos da Água/análise , Radioisótopos de Ítrio/análise , Automação , Modelos Teóricos , Radiometria
15.
Anal Chem ; 81(3): 1068-78, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19178339

RESUMO

A preconcentrating minicolumn sensor for technetium-99 detection in water consists of a packed bed containing a mixture of anion-exchange resin and scintillating plastic beads. The column materials are contained in a transparent plastic flow cell placed between two photomultiplier tubes for radiometric detection. Upon retention of pertechnetate anions, the radioactive decay of Tc-99 results in detectable scintillation pulses that are counted in coincidence. In equilibration-based sensing mode, the sample is pumped through the packed bed until complete chromatographic equilibrium is achieved between the activity concentration in the water sample and the concentration on the anion-exchange resin. The analytical signal is the observed steady-state count rate at equilibrium. The sensitivity is related to a measurement efficiency parameter that is the product of the retention volume and the absolute radiometric detection efficiency. This sensor can readily detect pertechnetate to levels 10 times below the drinking water standard of 0.033 Bq/mL. The potential for other anions in natural groundwater and contaminated groundwater plumes to interfere with pertechnetate detection and quantification has been examined in detail, with reference to the groundwater chemistry at the Hanford site in Washington state. Individual anions such as nitrate, carbonate, chloride, and iodide, at natural or elevated concentrations, do not interfere significantly with pertechnetate uptake on the anion-exchange resin. Elevated chromate or sulfate anion concentrations can interfere with pertechnetate uptake by the resin, but only at levels substantially higher than typical concentrations in groundwater or contamination plumes. Nevertheless, elevated anion concentrations may reduce pertechnetate uptake and sensitivity of the sensor when present in combination. Chromate is retained on the anion-exchange resin from water at parts-per-billion levels, leading to an orange stain that interferes with pertechnetate detection by the absorption of scintillation light pulses (color quench). Radioactivity from radioiodine, tritium, and uranium is not expected to create a significant positive bias in groundwater analyses. A method of automated fluidic standard addition is demonstrated that corrects for matrix interferences leading to accurate analyses over a wide range of groundwater compositions. This method is developed for automated groundwater monitoring applications.

16.
Anal Chem ; 81(14): 5783-93, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19530657

RESUMO

A bead-based sandwich immunoassay for botulinum neurotoxin serotype A (BoNT/A) has been developed and demonstrated using a recombinant 50 kDa fragment (BoNT/A-HC-fragment) of the BoNT/A heavy chain (BoNT/A-HC) as a structurally valid simulant. Three different anti-BoNT/A antibodies were attached to three different fluorescent dye encoded flow cytometry beads for multiplexing. The assay was conducted in two formats: a manual microcentrifuge tube format and an automated fluidic system format. Flow cytometry detection was used for both formats. The fluidic system used a novel microbead-trapping flow cell to capture antibody-coupled beads with subsequent sequential perfusion of sample, wash, dye-labeled reporter antibody, and final wash solutions. After the reaction period, the beads were collected for analysis by flow cytometry. Sandwich assays performed on the fluidic system gave median fluorescence intensity signals on the flow cytometer that were 2-4 times higher than assays performed manually in the same amount of time. Limits of detection were estimated at 1 pM (approximately 50 pg/mL for BoNT/A-HC-fragment) for the 15 min fluidic assay in buffer.


Assuntos
Técnicas Biossensoriais/métodos , Toxinas Botulínicas Tipo A/análise , Citometria de Fluxo/métodos , Microesferas , Animais , Anticorpos/imunologia , Automação , Toxinas Botulínicas Tipo A/química , Toxinas Botulínicas Tipo A/imunologia , Soluções Tampão , Processamento Eletrônico de Dados , Epitopos/imunologia , Humanos , Proteínas Imobilizadas/análise , Proteínas Imobilizadas/química , Proteínas Imobilizadas/imunologia , Camundongos , Peso Molecular , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/imunologia , Estrutura Terciária de Proteína , Proteínas Recombinantes/análise , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Fatores de Tempo
17.
Analyst ; 134(5): 987-96, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19381395

RESUMO

A renewable surface biosensor for rapid detection of botulinum neurotoxin serotype A is described based on fluidic automation of a fluorescence sandwich immunoassay, using a recombinant protein fragment of the toxin heavy chain ( approximately 50 kDa) as a structurally valid simulant. Monoclonal antibodies AR4 and RAZ1 bind to separate non-overlapping epitopes of the full botulinum holotoxin ( approximately 150 kDa). Both of the targeted epitopes are located on the recombinant fragment. The AR4 antibody was covalently bound to Sepharose beads and used as the capture antibody. A rotating rod flow cell was used to capture these beads delivered as a suspension by a sequential injection flow system, creating a 3.6 microL column. After perfusing the bead column with sample and washing away the matrix, the column was perfused with Alexa 647 dye-labeled RAZ1 antibody as the reporter. Optical fibers coupled to the rotating rod flow cell at a 90 degrees angle to one another delivered excitation light from a HeNe laser (633 nm) using one fiber and collected fluorescent emission light for detection with the other. After each measurement, the used Sepharose beads are released and replaced with fresh beads. In a rapid screening approach to sample analysis, the toxin simulant was detected to concentrations of 10 pM in less than 20 minutes using this system.


Assuntos
Toxinas Botulínicas/química , Imunoensaio/instrumentação , Imunoensaio/métodos , Anticorpos , Técnicas Biossensoriais , Fluorescência , Modelos Moleculares , Conformação Proteica , Estrutura Terciária de Proteína , Receptores Fc
18.
J Phys Chem B ; 123(44): 9364-9377, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31603686

RESUMO

Triazine-based sequence-defined polymers have recently been developed that are biomimetic and robust. In molecular dynamics (MD) simulations, the triazine polymers were shown to form linear nanorod foldamers through hydrogen bonding and π-π interactions. The nanorod foldamers have motifs resembling those of DNA, α-helices, and ß-sheets and have potential to be useful building blocks for new macromolecules and materials. To understand the formation of nanorod foldamers, we investigate how linker structures in the middle of the triazine polymers lead to folding using MD simulations. We found that a variety of linkers can participate in folding but that specific linker structures are more favorable than others, depending on the polymer length. Folding of hexamers into well-defined nanorod foldamers was most favorable with pentanediamine and ortho-xylenediamine linkers in the center of the polymers. Foldamers with ortho-xylenediamine linkers in the center were investigated for longer polymers, i.e., octamers and decamers, using two different enhanced sampling methods, since regular MD simulations had failed to show any folding for these longer polymers. In particular, the recently developed concurrent adaptive sampling (CAS) algorithm and replica exchange molecular dynamics (REMD) were used. We found that the two enhanced sampling methods did lead to the observation of foldamers and that REMD revealed new foldamer architectures where cis-trans isomerizations had occurred. Foldamer formation, diversity, and the strengths and limitations of simulation techniques are discussed. These findings provide new insights into the diversity of foldamer architectures for a new type of biomimetic synthetic polymer.


Assuntos
Polímeros/química , Triazinas/química , Algoritmos , DNA/química , Etilenos/química , Isomerismo , Conformação Molecular , Simulação de Dinâmica Molecular , Nanotubos/química , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Xilenos/química
19.
ACS Sens ; 4(2): 317-325, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30609370

RESUMO

Interior surfaces of polystyrene microfluidic structures were impregnated with the oxygen sensing dye Pt(II) tetra(pentafluorophenyl)porphyrin (PtTFPP) using a solvent-induced fluorophore impregnation (SIFI) method. Using this technique, microfluidic oxygen sensors are obtained that enable simultaneous imaging of both chemical oxygen gradients and the physical structure of the microfluidic interior. A gentle method of fluorophore impregnation using acetonitrile solutions of PtTFPP at 50 °C was developed leading to a 10-µm-deep region containing fluorophore. This region is localized at the surface to sense oxygen in the interior fluid during use. Regions of the device that do not contact the interior fluid pathways lack fluorophores and are dark in fluorescent imaging. The technique was demonstrated on straight microchannel and pore network devices, the latter having pillars of 300 µm diameter spaced center to center at 340 µm providing pore throats of 40 µm. Sensing within channels or pores and imaging across the pore network devices were performed using a Lambert LIFA-P frequency domain fluorescence lifetime imaging system on a Leica microscope platform. Calibrations of different devices prepared by the SIFI method were indistinguishable. Gradient imaging showed fluorescent regions corresponding to the fluid pore network, dark pillars, and fluorescent lifetime varying across the gradient, thus providing both physical and chemical imaging. More generally, the SIFI technique can impregnate the interior surfaces of other polystyrene containers, such as cuvettes or cell and tissue culture containers, to enable sensing of interior conditions.


Assuntos
Corantes Fluorescentes/química , Dispositivos Lab-On-A-Chip , Imagem Óptica/instrumentação , Oxigênio/química , Fatores de Tempo
20.
J Chromatogr A ; 1586: 139-144, 2019 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-30528768

RESUMO

In ultralow Pu analyses, the gold standard is thermal ionization mass spectrometry (TIMS), which requires pure sources to achieve its performance. This purity is achieved through step-wise purifications. In this work single, anion-exchange beads were trapped in the tubing to allow for dynamic solution cycling over the surface of the beads to improve the rates of metal complex uptake. Rates of Pu sorption on single ∼900 µm SIR-1200 and ∼620 µm Reillex-HPQ beads were determined for single beads trapped in a tube with syringe pump driven dynamic solution cycling over the bead, improving sorption and desorption rates. A static control was used as a comparison. Using 238Pu to enable facile activity-based measurements, rates were determined by measuring the residual Pu after contact with beads using liquid scintillation analysis (LSA) for fixed periods of time. Syringe pump driven dynamic solution cycling results in ∼5 and ∼15-fold improvements in the sorption rates for SIR-1200 and Reillex-HPQ. Impacts on desorption were also examined.


Assuntos
Espectrometria de Massas/métodos , Plutônio/análise , Plutônio/química , Resinas Sintéticas/química , Contagem de Cintilação/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA