Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genes Dev ; 31(16): 1666-1678, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28924035

RESUMO

Platelet-derived growth factor (PDGF) acts through two conserved receptor tyrosine kinases: PDGFRα and PDGFRß. Gain-of-function mutations in human PDGFRB have been linked recently to genetic diseases characterized by connective tissue wasting (Penttinen syndrome) or overgrowth (Kosaki overgrowth syndrome), but it is unclear whether PDGFRB mutations alone are responsible. Mice with constitutive PDGFRß signaling caused by a kinase domain mutation (D849V) develop lethal autoinflammation. Here we used a genetic approach to investigate the mechanism of autoinflammation in Pdgfrb+/D849V mice and test the hypothesis that signal transducer and activator of transcription 1 (STAT1) mediates this phenotype. We show that Pdgfrb+/D849V mice with Stat1 knockout (Stat1-/-Pdgfrb+/D849V ) are rescued from autoinflammation and have improved life span compared with Stat1+/-Pdgfrb+/D849V mice. Furthermore, PDGFRß-STAT1 signaling suppresses PDGFRß itself. Thus, Stat1-/-Pdgfrb+/D849V fibroblasts exhibit increased PDGFRß signaling, and mice develop progressive overgrowth, a distinct phenotype from the wasting seen in Stat1+/-Pdgfrb+/D849V mice. Deletion of interferon receptors (Ifnar1 or Ifngr1) does not rescue wasting in Pdgfrb+/D849V mice, indicating that interferons are not required for autoinflammation. These results provide functional evidence that elevated PDGFRß signaling causes tissue wasting or overgrowth reminiscent of human genetic syndromes and that the STAT1 pathway is a crucial modulator of this phenotypic spectrum.


Assuntos
Transtornos do Crescimento/genética , Mutação , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Fator de Transcrição STAT1/genética , Tecido Adiposo/patologia , Animais , Aorta/patologia , Atrofia , Osso e Ossos/anormalidades , Feminino , Fibroblastos/metabolismo , Fibrose , Transtornos do Crescimento/metabolismo , Transtornos do Crescimento/patologia , Hiperplasia , Inflamação/metabolismo , Interferons/fisiologia , Masculino , Camundongos , Camundongos Knockout , Músculo Liso Vascular/patologia , Células NIH 3T3 , Fenótipo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Pele/patologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-38527663

RESUMO

OBJECTIVE: Metabolic processes are intricately linked to the resolution of innate inflammation and tissue repair, two critical steps for treating post-traumatic osteoarthritis (PTOA). Based on lipolytic and immunoregulatory actions of norepinephrine, we hypothesized that intra-articular ß-adrenergic receptor (ßAR) stimulation would suppress PTOA-associated inflammation in the infrapatellar fat pad (IFP) and synovium. DESIGN: We used the ßAR agonist isoproterenol to perturb intra-articular metabolism 3.5 weeks after applying a non-invasive single-load compression injury to knees of 12-week-old male and female mice. We examined the acute effects of intra-articular isoproterenol treatment relative to saline on IFP histology, multiplex gene expression of synovium-IFP tissue, synovial fluid metabolomics, and mechanical allodynia. RESULTS: Injured knees developed PTOA pathology characterized by heterotopic ossification, articular cartilage loss, and IFP atrophy and fibrosis. Isoproterenol suppressed the upregulation of pro-fibrotic genes and downregulated the expression of adipose genes and pro-inflammatory genes (Adam17, Cd14, Icam1, Csf1r, and Casp1) in injured joints of female (but not male) mice. Analysis of published single-cell RNA-seq data identified elevated catecholamine-associated gene expression in resident-like synovial-IFP macrophages after injury. Injury substantially altered synovial fluid metabolites by increasing amino acids, peptides, sphingolipids, phospholipids, bile acids, and dicarboxylic acids, but these changes were not appreciably altered by isoproterenol. Intra-articular injection of either isoproterenol or saline increased mechanical allodynia in female mice, whereas neither substance affected male mice. CONCLUSIONS: Acute ßAR activation altered synovial-IFP transcription in a sex and injury-dependent manner, suggesting that women with PTOA may be more sensitive than men to treatments targeting sympathetic neural signaling pathways.

3.
J Zoo Wildl Med ; 53(4): 801-810, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36640083

RESUMO

Osteoarthritis (OA) is common in zoo Asian (Elephas maximus) and African (Loxodonta africana) elephants. This study investigated the relationship between confirmed or suspected OA with ovarian cyclicity, gonadotropins, progestagens, luteinizing hormone (LH), follicle-stimulating hormone (FSH), and collagen type I (CTX-I) in zoo elephants. In Asian elephants, odds of having confirmed or suspected OA decreased with cycling (OR = 0.22, P = 0.016; OR = 0.29, P = 0.020, respectively), however, not when adjusted for age (odds ratio [OR] = 0.31, P = 0.112; OR = 0.58, P = 0.369, respectively). In African elephants, none of the models between confirmed OA and cycling status were significant (P > 0.060), while the odds of having suspected OA decreased with cycling (OR = 0.12, P = 0.001), even after adjusting for age (OR = 0.15, P = 0.005). Progestagens (Asian elephants P > 0.096; African elephants P > 0.415), LH (Asian P > 0.129; African P > 0.359), and FSH (Asian P > 0.738; African P > 0.231) did not differ with confirmed or suspected OA status, unadjusted. CTX-I concentrations were not related to OA status (P > 0.655). This study concluded hormonal changes may not have a strong impact on OA, so additional investigation into other serologic biomarkers is warranted.


Assuntos
Elefantes , Osteoartrite , Animais , Progestinas , Hormônio Luteinizante , Hormônio Foliculoestimulante , Osteoartrite/veterinária , Animais de Zoológico
4.
FASEB J ; 35(7): e21728, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34110658

RESUMO

Proliferation and differentiation of preadipocytes, and other cell types, is accompanied by an increase in glucose uptake. Previous work showed that a pulse of high glucose was required during the first 3 days of differentiation in vitro, but was not required after that. The specific glucose metabolism pathways required for adipocyte differentiation are unknown. Herein, we used 3T3-L1 adipocytes as a model system to study glucose metabolism and expansion of the adipocyte metabolome during the first 3 days of differentiation. Our primary outcome measures were GLUT4 and adiponectin, key proteins associated with healthy adipocytes. Using complete media with 0 or 5 mM glucose, we distinguished between developmental features that were dependent on the differentiation cocktail of dexamethasone, insulin, and isobutylmethylxanthine alone or the cocktail plus glucose. Cocktail alone was sufficient to activate the capacity for 2-deoxglucose uptake and glycolysis, but was unable to support the expression of GLUT4 and adiponectin in mature adipocytes. In contrast, 5 mM glucose in the media promoted a transient increase in glucose uptake and glycolysis as well as a significant expansion of the adipocyte metabolome and proteome. Using genetic and pharmacologic approaches, we found that the positive effects of 5 mM glucose on adipocyte differentiation were specifically due to increased expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a key regulator of glycolysis and the ancillary glucose metabolic pathways. Our data reveal a critical role for PFKFB3 activity in regulating the cellular metabolic remodeling required for adipocyte differentiation and maturation.


Assuntos
Adipócitos/metabolismo , Glucose/metabolismo , Fosfofrutoquinase-2/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adiponectina/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular , Dexametasona/farmacologia , Transportador de Glucose Tipo 4/metabolismo , Glicólise/efeitos dos fármacos , Glicólise/fisiologia , Insulina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Xantinas/farmacologia
5.
Connect Tissue Res ; 61(1): 34-47, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31522568

RESUMO

Purpose: An underlying cause of osteoarthritis (OA) is the inability of chondrocytes to maintain homeostasis in response to changing stress conditions. The purpose of this article was to review and experimentally evaluate oxidative stress resistance and resilience concepts in cartilage using glutathione redox homeostasis as an example. This framework may help identify novel approaches for promoting chondrocyte homeostasis during aging and obesity.Materials and Methods: Changes in glutathione content and redox ratio were evaluated in three models of chondrocyte stress: (1) age- and tissue-specific changes in joint tissues of 10 and 30-month old F344BN rats, including ex vivo patella culture experiments to evaluate N-acetylcysteine dependent resistance to interleukin-1beta; (2) effect of different durations and patterns of cyclic compressive loading in bovine cartilage on glutathione stress resistance and resilience pathways; (3) time-dependent changes in GSH:GSSG in primary chondrocytes from wild-type and Sirt3 deficient mice challenged with the pro-oxidant menadione.Results: Glutathione was more abundant in cartilage than meniscus or infrapatellar fat pad, although cartilage was also more susceptible to age-related glutathione oxidation. Glutathione redox homeostasis was sensitive to the duration of compressive loading such that load-induced oxidation required unloaded periods to recover and increase total antioxidant capacity. Exposure to a pro-oxidant stress enhanced stress resistance by increasing glutathione content and GSH:GSSG ratio, especially in Sirt3 deficient cells. However, the rate of recovery, a marker of resilience, was delayed without Sirt3.Conclusions: OA-related models of cartilage stress reveal multiple mechanisms by which glutathione provides oxidative stress resistance and resilience.


Assuntos
Envelhecimento/metabolismo , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Glutationa/metabolismo , Osteoartrite/metabolismo , Estresse Oxidativo , Envelhecimento/patologia , Animais , Cartilagem Articular/patologia , Condrócitos/patologia , Humanos , Osteoartrite/patologia , Ratos
6.
EMBO Rep ; 19(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29420235

RESUMO

Caseinolytic peptidase P (ClpP) is a mammalian quality control protease that is proposed to play an important role in the initiation of the mitochondrial unfolded protein response (UPRmt), a retrograde signaling response that helps to maintain mitochondrial protein homeostasis. Mitochondrial dysfunction is associated with the development of metabolic disorders, and to understand the effect of a defective UPRmt on metabolism, ClpP knockout (ClpP-/-) mice were analyzed. ClpP-/- mice fed ad libitum have reduced adiposity and paradoxically improved insulin sensitivity. Absence of ClpP increased whole-body energy expenditure and markers of mitochondrial biogenesis are selectively up-regulated in the white adipose tissue (WAT) of ClpP-/- mice. When challenged with a metabolic stress such as high-fat diet, despite similar caloric intake, ClpP-/- mice are protected from diet-induced obesity, glucose intolerance, insulin resistance, and hepatic steatosis. Our results show that absence of ClpP triggers compensatory responses in mice and suggest that ClpP might be dispensable for mammalian UPRmt initiation. Thus, we made an unexpected finding that deficiency of ClpP in mice is metabolically beneficial.


Assuntos
Endopeptidase Clp/genética , Resistência à Insulina/genética , Mitocôndrias/genética , Obesidade/genética , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Animais , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/genética , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Obesidade/metabolismo , Obesidade/patologia , Resposta a Proteínas não Dobradas/genética
7.
Metabolomics ; 15(2): 18, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30830475

RESUMO

INTRODUCTION: As an insulin sensitive tissue, the heart decreases glucose usage during fasting. This response is mediated, in part, by decreasing phosphofructokinase-2 (PFK-2) activity and levels of its product fructose-2,6-bisphosphate. However, the importance of fructose-2,6-bisphosphate in the fasting response on other metabolic pathways has not been evaluated. OBJECTIVES: The goal of this study is to determine how sustaining cardiac fructose-2,6-bisphosphate levels during fasting affects the metabolomic profile. METHODS: Control and transgenic mice expressing a constitutively active form of PFK-2 (GlycoHi) were subjected to either 12-h fasting or regular feeding. Animals (n = 4 per group) were used for whole-heart extraction, followed by gas chromatography-mass spectrometry metabolic profiling and multivariate data analysis. RESULTS: Principal component analysis displayed differences between Control and GlycoHi groups under both fasting and fed conditions while a clear response to fasting was observed only for Control animals. However, pathway analysis revealed that these smaller changes in the GlycoHi group were significantly associated with branched-chain amino acid (BCAA) metabolism (~ 40% increase in all BCAAs). Correlation network analysis demonstrated clear differences in response to fasting between Control and GlycoHi groups amongst most parameters. Notably, fasting caused an increase in network density in the Control group from 0.12 to 0.14 while the GlycoHi group responded oppositely (0.17-0.15). CONCLUSIONS: Elevated cardiac PFK-2 activity during fasting selectively increases BCAAs levels and decreases global changes in metabolism.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Frutosedifosfatos/metabolismo , Miocárdio/metabolismo , Animais , Glicemia/metabolismo , Jejum/metabolismo , Frutose , Cromatografia Gasosa-Espectrometria de Massas/métodos , Glucose/metabolismo , Coração/fisiologia , Insulina , Masculino , Metabolômica/métodos , Camundongos , Camundongos Transgênicos , Fosfofrutoquinase-2/metabolismo , Análise de Componente Principal
8.
Clin Exp Rheumatol ; 37 Suppl 120(5): 57-63, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31621560

RESUMO

Although osteoarthritis (OA) was historically referred to as the non-inflammatory arthritis, it is now considered a condition involving persistent low-grade inflammation and activation of innate inflammatory pathways. Synovitis increases the risk of OA onset and progression and involves the recruitment of monocytes, lymphocytes, and other leukocytes. In particular, macrophages are important mediators of synovial inflammatory activity and pathologic cartilage and bone responses that are characteristic of OA. Advances in understanding how damage-associated molecular patterns (DAMPs) trigger monocyte/macrophage recruitment and activation in joints provide opportunities for disease-modifying therapies. However, the complexity and plasticity of macrophage phenotypes that exist in vivo have thus far prevented the successful development of macrophage-targeted treatments. Current studies show that synovial macrophages are derived from distinct cellular lineages, which correspond to unique functional roles for maintaining joint homeostasis. An improved understanding of the aetiology of synovial inflammation in specific OA-subtypes, such as with obesity or genetic risk, is a potential strategy for developing patient selection criteria for future precision therapies.


Assuntos
Macrófagos/imunologia , Osteoartrite , Sinovite , Humanos , Inflamação , Monócitos , Osteoartrite/imunologia , Osteoartrite/patologia , Sinovite/imunologia , Sinovite/patologia
9.
Curr Rheumatol Rep ; 19(8): 45, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28718060

RESUMO

PURPOSE OF THE REVIEW: Osteoarthritis (OA) is a chronic, painful joint disease that affects approximately 40% of adults over 70 year. Age is the strongest predictor of OA, while obesity is considered the primary preventable risk factor for OA. Both conditions are associated with abnormal innate immune inflammatory responses that contribute to OA progression and are the focus of this review. RECENT FINDINGS: Recent studies have identified risk factors for OA progression including increased innate immune responses secondary to aging-associated myeloid skewing, obesity-related myeloid activation, and synovial tissue hyperplasia with activated macrophage infiltration. Toll-like receptor (TLR)4-induced catabolic responses also play a significant role in OA. The complex interplay between obesity and aging-associated macrophage activation, pro-inflammatory cytokine production from TLR-driven responses, and adipokines leads to a vicious cycle of synovial hyperplasia, macrophage activation, cartilage catabolism, infrapatellar fat pad fibrosis, and joint destruction.


Assuntos
Citocinas/metabolismo , Imunidade Inata/fisiologia , Inflamação/imunologia , Osteoartrite/imunologia , Sinovite/imunologia , Progressão da Doença , Humanos , Inflamação/metabolismo , Ativação de Macrófagos/imunologia , Osteoartrite/metabolismo , Fatores de Risco , Sinovite/metabolismo , Receptor 4 Toll-Like/metabolismo
10.
J Biol Chem ; 289(42): 29112-22, 2014 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-25190816

RESUMO

Id1, a helix-loop-helix (HLH) protein that inhibits the function of basic HLH E protein transcription factors in lymphoid cells, has been implicated in diet- and age-induced obesity by unknown mechanisms. Here we show that Id1-deficient mice are resistant to a high fat diet- and age-induced obesity, as revealed by reduced weight gain and body fat, increased lipid oxidation, attenuated hepatosteatosis, lower levels of lipid droplets in brown adipose tissue, and smaller white adipocytes after a high fat diet feeding or in aged animals. Id1 deficiency improves glucose tolerance, lowers serum insulin levels, and reduces TNFα gene expression in white adipose tissue. Id1 deficiency also increased expression of Sirtuin 1 and peroxisome proliferator-activated receptor γ coactivator 1α, regulators of mitochondrial biogenesis and energy expenditure, in the white adipose tissue. This effect was accompanied by the elevation of several genes encoding proteins involved in oxidative phosphorylation and fatty acid oxidation, such as cytochrome c, medium-chain acyl-CoA dehydrogenase, and adipocyte protein 2. Moreover, the phenotype for Id1 deficiency was similar to that of mice expressing an E protein dominant-positive construct, ET2, suggesting that the balance between Id and E proteins plays a role in regulating lipid metabolism and insulin sensitivity.


Assuntos
Tecido Adiposo Branco/metabolismo , Regulação Enzimológica da Expressão Gênica , Intolerância à Glucose/metabolismo , Proteína 1 Inibidora de Diferenciação/genética , Sirtuína 1/metabolismo , Fatores de Transcrição/metabolismo , Animais , Calorimetria , Metabolismo Energético , Ácidos Graxos/metabolismo , Genótipo , Glucose/metabolismo , Teste de Tolerância a Glucose , Insulina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Oxigênio/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo
11.
FASEB J ; 28(10): 4534-50, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25016030

RESUMO

The chemokine receptor CXCR4 is expressed on adipocytes and macrophages in adipose tissue, but its role in this tissue remains unknown. We evaluated whether deficiency in either adipocyte or myeloid leukocyte CXCR4 affects body weight (BW) and adiposity in a mouse model of high-fat-diet (HFD)-induced obesity. We found that ablation of adipocyte, but not myeloid leukocyte, CXCR4 exacerbated obesity. The HFD-fed adipocyte-specific CXCR4-knockout (AdCXCR4ko) mice, compared to wild-type C57BL/6 control mice, had increased BW (average: 52.0 g vs. 35.5 g), adiposity (average: 49.3 vs. 21.0% of total BW), and inflammatory leukocyte content in white adipose tissue (WAT), despite comparable food intake. As previously reported, HFD feeding increased uncoupling protein 1 (UCP1) expression (fold increase: 3.5) in brown adipose tissue (BAT) of the C57BL/6 control mice. However, no HFD-induced increase in UCP1 expression was observed in the AdCXCR4ko mice, which were cold sensitive. Thus, our study suggests that adipocyte CXCR4 limits development of obesity by preventing excessive inflammatory cell recruitment into WAT and by supporting thermogenic activity of BAT. Since CXCR4 is conserved between mouse and human, the newfound role of CXCR4 in mouse adipose tissue may parallel the role of this chemokine receptor in human adipose tissue.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo Marrom/metabolismo , Obesidade/metabolismo , Receptores CXCR4/metabolismo , Termogênese , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/fisiologia , Animais , Dieta Hiperlipídica/efeitos adversos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Leucócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Obesidade/etiologia , Receptores CXCR4/genética , Proteína Desacopladora 1
12.
Ann Rheum Dis ; 72(2): 300-4, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23178209

RESUMO

OBJECTIVE: To test the hypotheses that: (1) the transient receptor potential vanilloid 4 (TRPV4) ion channel is protective in the obesity model of osteoarthritis (OA), resulting in more severe obesity-induced OA in Trpv4 knockout (Trpv4(-/-)) mice; and (2) loss of TRPV4 alters mesodermal stem cell differentiation. METHODS: Male Trpv4(-/-) and wild-type (Trpv4(+/+)) mice were fed a control or high-fat diet (10% kcal and 60% kcal from fat, respectively) for 22 weeks, at which time spontaneous cage activity and severity of knee OA were evaluated. In addition, the adipogenic, osteogenic and chondrogenic potential of bone marrow-derived (MSC) and adipose-derived (ASC) stem cells from Trpv4(-/-) and Trpv4(+/+) mice were compared. RESULTS: A high-fat diet significantly increased knee OA scores and reduced spontaneous cage activity in Trpv4(-/-) mice, while also increasing weight gain and adiposity. MSCs from Trpv4(-/-) mice had decreased adipogenic and osteogenic differentiation potential versus Trpv4(+/+) MSCs. ASCs from Trpv4(-/-) mice had increased adipogenic and osteogenic and reduced chondrogenic differentiation potential versus Trpv4(+/+) ASCs. CONCLUSIONS: Pan-Trpv4(-/-) mice develop more severe OA with high-fat feeding, potentially due to more severe diet-induced obesity. The altered differentiation potential of Trpv4(-/-) progenitor cells may reflect the importance of this ion channel in the maintenance and turnover of mesodermally-derived tissues.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Predisposição Genética para Doença/genética , Obesidade/genética , Osteoartrite do Joelho/genética , Canais de Cátion TRPV/genética , Animais , Diferenciação Celular/genética , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Knockout
13.
Arthritis Rheum ; 64(2): 443-53, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21953366

RESUMO

OBJECTIVE: To test the hypotheses that obesity due to a very high-fat diet induces knee osteoarthritis (OA), and that short-term wheel-running exercise protects against obesity-induced knee OA by reducing systemic inflammation and metabolic dysregulation. METHODS: Male C57BL/6J mice were fed either a control diet (13.5% kcal from fat) or a very high-fat diet (60% kcal from fat) from age 12 weeks to age 24 weeks. From 20 to 24 weeks of age, half of the mice were housed with running wheels. The severity of knee OA was determined by assessing histopathologic features, and serum cytokines were measured using a multiplex bead immunoassay and enzyme-linked immunosorbent assays. Body composition was quantified by dual-energy x-ray absorptiometry, and insulin resistance was assessed by glucose tolerance testing. RESULTS: Feeding mice with a very high-fat diet increased knee OA scores and levels of serum leptin, adiponectin, KC (mouse analog of interleukin-8 [IL-8]), monokine induced by interferon-γ (CXCL9), and IL-1 receptor antagonist to an extent in proportion to the gain in body fat (3-fold increase in percent body fat compared to controls). Wheel-running exercise reduced progression of OA in the medial femur of obese mice. In addition, exercise disrupted the clustering of cytokine expression and improved glucose tolerance, without reducing body fat or cytokine levels. CONCLUSION: Obesity induced by a very high-fat diet in mice causes OA and systemic inflammation in proportion to body fat. Increased joint loading is not sufficient to explain the increased incidence of knee OA with obesity, as wheel running is protective rather than damaging. Exercise improves glucose tolerance and disrupts the coexpression of proinflammatory cytokines, suggesting that increased aerobic exercise may act independently of weight loss in promoting joint health.


Assuntos
Dieta Hiperlipídica , Inflamação/metabolismo , Obesidade/metabolismo , Osteoartrite do Joelho/metabolismo , Condicionamento Físico Animal/fisiologia , Adiponectina/sangue , Animais , Composição Corporal/fisiologia , Quimiocina CXCL1/sangue , Quimiocina CXCL9/sangue , Inflamação/etiologia , Proteína Antagonista do Receptor de Interleucina 1/sangue , Leptina/sangue , Masculino , Camundongos , Obesidade/etiologia , Osteoartrite do Joelho/etiologia
14.
JBMR Plus ; 7(7): e10754, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37457883

RESUMO

Leptin is a proinflammatory adipokine that contributes to obesity-associated osteoarthritis (OA), especially in women. However, the extent to which leptin causes knee OA separate from the effect of increased body weight is not clear. We hypothesized that leptin is necessary to induce knee OA in obese female rats but not sufficient to induce knee OA in lean rats lacking systemic metabolic inflammation. The effect of obesity without leptin signaling was modeled by comparing female lean Zucker rats to pair fed obese Zucker rats, which possess mutant fa alleles of the leptin receptor gene. The effect of leptin without obesity was modeled in female F344BN F1 hybrid rats by systemically administering recombinant rat leptin versus saline for 23 weeks via osmotic pumps. Primary OA outcomes included cartilage histopathology and subchondral bone micro-computed tomography. Secondary outcomes included targeted cartilage proteomics, serum inflammation, and synovial fluid inflammation following an acute intra-articular challenge with interleukin-1ß (IL-1ß). Compared to lean Zucker rats, obese Zucker rats developed more severe tibial osteophytes and focal cartilage lesions in the medial tibial plateau, with modest changes in proximal tibial epiphysis trabecular bone structure. In contrast, exogenous leptin treatment, which increased plasma leptin sixfold without altering body weight, caused mild generalized cartilage fibrillation and reduced Safranin O staining compared to vehicle-treated animals. Leptin also significantly increased subchondral and trabecular bone volume and bone mineral density in the proximal tibia. Cartilage metabolic and antioxidant enzyme protein levels were substantially elevated with leptin deficiency and minimally suppressed with leptin treatment. In contrast, leptin treatment induced greater changes in systemic and local inflammatory mediators compared to leptin receptor deficiency, including reduced serum IL-6 and increased synovial fluid IL-1ß. In conclusion, rat models that separately elevate leptin or body weight develop distinct OA-associated phenotypes, revealing how obesity increases OA pathology through both leptin-dependent and independent pathways. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

15.
Arthritis Rheumatol ; 75(10): 1770-1780, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37096632

RESUMO

OBJECTIVE: Osteoarthritis (OA) is a leading cause of chronic pain, yet OA pain management remains poor. Age is the strongest predictor of OA development, and mechanisms driving OA pain are unclear. We undertook this study to characterize age-associated changes in knee OA, pain-related behaviors, and dorsal root ganglion (DRG) molecular phenotypes in mice of both sexes. METHODS: Male or female C57BL/6 mice 6 or 20 months of age were evaluated for histopathologic knee OA, pain-related behaviors, and L3-L5 DRG immune characterization via flow cytometry. DRG gene expression in older mice and humans was also examined. RESULTS: Male mice at 20 months of age had worse cartilage degeneration than 6-month-old mice. Older female mouse knees showed increased cartilage degeneration but to a lesser degree than those of male mice. Older mice of both sexes had worse mechanical allodynia, knee hyperalgesia, and grip strength compared to younger mice. For both sexes, DRGs from older mice showed decreased CD45+ cells and a significant increase in F4/80+ macrophages and CD11c+ dendritic cells. Older male mouse DRGs showed increased expression of Ccl2 and Ccl5, and older female mouse DRGs showed increased Cxcr4 and Ccl3 expression compared to 6-month-old mouse DRGs, among other differentially expressed genes. Human DRG analysis from 6 individuals >80 years of age revealed elevated CCL2 in men compared to women, whereas CCL3 was higher in DRGs from women. CONCLUSION: We found that aging in male and female mice is accompanied by mild knee OA, mechanical sensitization, and changes to immune cell populations in the DRG, suggesting novel avenues for development of OA therapies.


Assuntos
Osteoartrite do Joelho , Camundongos , Humanos , Feminino , Masculino , Animais , Lactente , Osteoartrite do Joelho/complicações , Gânglios Espinais/metabolismo , Imunofenotipagem , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Dor/etiologia , Hiperalgesia/metabolismo
16.
Osteoarthr Cartil Open ; 5(4): 100416, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38107076

RESUMO

Objective: To develop an imaging mass cytometry method for identifying complex cell phenotypes, inter-cellular interactions, and population changes in the synovium and infrapatellar fat pad (IFP) of the mouse knee following a non-invasive compression injury. Design: Fifteen male C57BL/6 mice were fed a high-fat diet for 8 weeks prior to random assignment to sham, 0.88 â€‹mm, or 1.7 â€‹mm knee compression displacement at 24 weeks of age. 2-weeks after loading, limbs were prepared for histologic and imaging mass cytometry analysis, focusing on myeloid immune cell populations in the synovium and IFP. Results: 1.7 â€‹mm compression caused anterior cruciate ligament (ACL) rupture, development of post-traumatic osteoarthritis, and a 2- to 3-fold increase in cellularity of synovium and IFP tissues compared to sham or 0.88 â€‹mm compression. Imaging mass cytometry identified 11 myeloid cell subpopulations in synovium and 7 in IFP, of which approximately half were elevated 2 weeks after ACL injury in association with the vasculature. Notably, two monocyte/macrophage subpopulations and an MHC IIhi population were elevated 2-weeks post-injury in the synovium but not IFP. Vascular and immune cell interactions were particularly diverse in the synovium, incorporating 8 unique combinations of 5 myeloid cell populations, including a monocyte/macrophage population, an MHC IIhi population, and 3 different undefined F4/80+ myeloid populations. Conclusions: Developing an imaging mass cytometry method for the mouse enabled us to identify a diverse array of synovial and IFP vascular-associated myeloid cell subpopulations. These subpopulations were differentially elevated in synovial and IFP tissues 2-weeks post injury, providing new details on tissue-specific immune regulation.

17.
Osteoarthr Cartil Open ; 4(1): 100228, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36474473

RESUMO

Objective: Exercise is known to induce beneficial effects in synovial joints. However, the mechanisms underlying these are unclear. Synovial joints experience repeated mechanical loading during exercise. These mechanical stimuli are transduced into biological responses through cellular mechanotransduction. Mechanotransduction in synovial joints is typically studied in tissues. However, synovial fluid directly contacts all components of the joint, and thus may produce a whole-joint picture of the mechanotransduction response to loading. The objective of this study was to determine if metabolic phenotypes are present in the synovial fluid after acute exercise as a first step to understanding the beneficial effects of exercise on the joint. Material and methods: Mice underwent a single night of voluntary wheel running or standard housing and synovial fluid was harvested for global metabolomic profiling by LC-MS. Hierarchical unsupervised clustering, partial least squares discriminant, and pathway analysis provided insight into exercise-induced mechanotransduction. Results: Acute exercise produced a distinct metabolic phenotype in synovial fluid. Mechanosensitive metabolites included coenzyme A derivatives, prostaglandin derivatives, phospholipid species, tryptophan, methionine, vitamin D3, fatty acids, and thiocholesterol. Enrichment analysis identified several pathways previously linked to exercise including amino acid metabolism, inflammatory pathways, citrulline-nitric oxide cycle, catecholamine biosynthesis, ubiquinol biosynthesis, and phospholipid metabolism. Conclusion: To our knowledge, this is the first study to investigate metabolomic profiles of synovial fluid during in vivo mechanotransduction. These profiles indicate that exercise induced stress-response processes including both pro- and anti-inflammatory pathways. Further research will expand these results and define the relationship between the synovial fluid and the serum.

18.
Cell Death Dis ; 13(7): 613, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840554

RESUMO

Insulin-like growth factor I (IGF-1) is a neurotrophic factor and is the ligand for insulin-like growth factor 1 receptor (IGF-1R). Reduced expression of IGF-1 has been reported to cause deafness, mental retardation, postnatal growth failure, and microcephaly. IGF-1R is expressed in the retina and photoreceptor neurons; however, its functional role is not known. Global IGF-1 KO mice have age-related vision loss. We determined that conditional deletion of IGF-1R in photoreceptors and pan-retinal cells produces age-related visual function loss and retinal degeneration. Retinal pigment epithelial cell-secreted IGF-1 may be a source for IGF-1R activation in the retina. Altered retinal, fatty acid, and phosphoinositide metabolism are observed in photoreceptor and retinal cells lacking IGF-1R. Our results suggest that the IGF-1R pathway is indispensable for photoreceptor survival, and activation of IGF-1R may be an essential element of photoreceptor and retinal neuroprotection.


Assuntos
Fator de Crescimento Insulin-Like I , Células Fotorreceptoras de Vertebrados , Degeneração Retiniana , Animais , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos , Neurônios/metabolismo , Neuroproteção/genética , Neuroproteção/fisiologia , Células Fotorreceptoras de Vertebrados/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Retina/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo
19.
Function (Oxf) ; 3(2): zqac008, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399495

RESUMO

Targeting chondrocyte dynamics is a strategy for slowing osteoarthritis progression during aging. We describe a stable-isotope method using in vivo deuterium oxide labeling and mass spectrometry to measure protein concentration, protein half-life, cell proliferation, and ribosomal biogenesis in a single sample of murine articular cartilage. We hypothesized that a 60-d labeling period would capture age-related declines in cartilage matrix protein content, protein synthesis rates, and cellular proliferation. Knee cartilage was harvested to the subchondral bone from 25- to 90-wk-old female C57BL/6J mice treated with deuterium oxide for 15, 30, 45, and 60 d. We measured protein concentration and half-lives using targeted high resolution accurate mass spectrometry and d2ome data processing software. Deuterium enrichment was quantified in isolated DNA and RNA to measure cell proliferation and ribosomal biogenesis, respectively. Most collagen isoforms were less abundant in aged animals, with negligible collagen synthesis at either age. In contrast, age altered the concentration and half-lives of many proteoglycans and other matrix proteins, including several with greater concentration and half-lives in older mice such as proteoglycan 4, clusterin, and fibronectin-1. Cellular proteins were less abundant in older animals, consistent with reduced cellularity. Nevertheless, deuterium was maximally incorporated into 60% of DNA and RNA by 15 d of labeling in both age groups, suggesting the presence of two large pools of either rapidly (<15 d) or slowly (>60 d) proliferating cells. Our findings indicate that age-associated changes in cartilage matrix protein content and synthesis occur without detectable changes in the relative number of proliferating cells.


Assuntos
Cartilagem Articular , Camundongos , Animais , Feminino , Proteínas Matrilinas/genética , Marcação por Isótopo/métodos , Óxido de Deutério/metabolismo , Deutério/metabolismo , Camundongos Endogâmicos C57BL , Colágeno/genética , Proliferação de Células , DNA/metabolismo , Biossíntese de Proteínas , RNA/metabolismo
20.
J Bone Miner Res ; 37(12): 2531-2547, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36214465

RESUMO

Understanding how obesity-induced metabolic stress contributes to synovial joint tissue damage is difficult because of the complex role of metabolism in joint development, maintenance, and repair. Chondrocyte mitochondrial dysfunction is implicated in osteoarthritis (OA) pathology, which motivated us to study the mitochondrial deacetylase enzyme sirtuin 3 (Sirt3). We hypothesized that combining high-fat-diet (HFD)-induced obesity and cartilage Sirt3 loss at a young age would impair chondrocyte mitochondrial function, leading to cellular stress and accelerated OA. Instead, we unexpectedly found that depleting cartilage Sirt3 at 5 weeks of age using Sirt3-flox and Acan-CreERT2 mice protected against the development of cartilage degeneration and synovial hyperplasia following 20 weeks of HFD. This protection was associated with increased cartilage glycolysis proteins and reduced mitochondrial fatty acid metabolism proteins. Seahorse-based assays supported a mitochondrial-to-glycolytic shift in chondrocyte metabolism with Sirt3 deletion. Additional studies with primary murine juvenile chondrocytes under hypoxic and inflammatory conditions showed an increased expression of hypoxia-inducible factor (HIF-1) target genes with Sirt3 deletion. However, Sirt3 deletion impaired chondrogenesis using a murine bone marrow stem/stromal cell pellet model, suggesting a context-dependent role of Sirt3 in cartilage homeostasis. Overall, our data indicate that Sirt3 coordinates HFD-induced changes in mature chondrocyte metabolism that promote OA. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Respiração Celular , Condrócitos , Condrogênese , Dieta Hiperlipídica , Mitocôndrias , Osteoartrite , Sirtuína 3 , Animais , Camundongos , Condrócitos/metabolismo , Dieta Hiperlipídica/efeitos adversos , Mitocôndrias/metabolismo , Obesidade/genética , Obesidade/metabolismo , Osteoartrite/etiologia , Osteoartrite/genética , Sirtuína 3/genética , Sirtuína 3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA