Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(5): 2634-2644, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31964834

RESUMO

During invasion of host cells, Chlamydia pneumoniae secretes the effector protein CPn0678, which facilitates internalization of the pathogen by remodeling the target cell's plasma membrane and recruiting sorting nexin 9 (SNX9), a central multifunctional endocytic scaffold protein. We show here that the strongly amphipathic N-terminal helix of CPn0678 mediates binding to phospholipids in both the plasma membrane and synthetic membranes, and is sufficient to induce extensive membrane tubulations. CPn0678 interacts via its conserved C-terminal polyproline sequence with the Src homology 3 domain of SNX9. Thus, SNX9 is found at bacterial entry sites, where C. pneumoniae is internalized via EGFR-mediated endocytosis. Moreover, depletion of human SNX9 significantly reduces internalization, whereas ectopic overexpression of CPn0678-GFP results in a dominant-negative effect on endocytotic processes in general, leading to the uptake of fewer chlamydial elementary bodies and diminished turnover of EGFR. Thus, CPn0678 is an early effector involved in regulating the endocytosis of C. pneumoniae in an EGFR- and SNX9-dependent manner.


Assuntos
Membrana Celular/química , Infecções por Chlamydia/microbiologia , Chlamydia/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/microbiologia , Infecções por Chlamydia/genética , Infecções por Chlamydia/metabolismo , Infecções por Chlamydia/fisiopatologia , Endocitose , Interações Hospedeiro-Patógeno , Humanos , Nexinas de Classificação/genética , Nexinas de Classificação/metabolismo
2.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37108781

RESUMO

Bacterial pathogens have evolved intricate ways to manipulate the host to support infection. Here, we systematically assessed the importance of the microtubule cytoskeleton for infection by Chlamydiae, which are obligate intracellular bacteria that are of great importance for human health. The elimination of microtubules in human HEp-2 cells prior to C. pneumoniae infection profoundly attenuated the infection efficiency, demonstrating the need for microtubules for the early infection processes. To identify microtubule-modulating C. pneumoniae proteins, a screen in the model yeast Schizosaccharomyces pombe was performed. Unexpectedly, among 116 selected chlamydial proteins, more than 10%, namely, 13 proteins, massively altered the yeast interphase microtubule cytoskeleton. With two exceptions, these proteins were predicted to be inclusion membrane proteins. As proof of principle, we selected the conserved CPn0443 protein, which caused massive microtubule instability in yeast, for further analysis. CPn0443 bound and bundled microtubules in vitro and co-localized partially with microtubules in vivo in yeast and human cells. Furthermore, CPn0443-transfected U2OS cells had a significantly reduced infection rate by C. pneumoniae EBs. Thus, our yeast screen identified numerous proteins encoded using the highly reduced C. pneumoniae genome that modulated microtubule dynamics. Hijacking of the host microtubule cytoskeleton must be a vital part of chlamydial infection.


Assuntos
Chlamydophila pneumoniae , Schizosaccharomyces , Humanos , Chlamydophila pneumoniae/metabolismo , Saccharomyces cerevisiae/metabolismo , Chlamydia trachomatis/metabolismo , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo
3.
Avian Pathol ; 49(3): 251-260, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31951466

RESUMO

Chlamydia psittaci is an important zoonotic pathogen and its oral route of infection plays an important role in the transmission and persistence. Bacillus cereus (B. cereus) strain, a common contaminant of animal feed and feedstuffs, can cause severe diarrhoea and malnutrition in poultry. In our previous study, a B. cereus strain (Dawu C), isolated from the haemorrhagic lungs of infected chickens, was shown to harbour two virulence genes (hblC and cytk) and was able to induce haemorrhagic lesions in the lungs, as well as gizzard erosion and ulceration (GEU) syndrome in broilers. In the present study, we tested the hypothesis that B. cereus-induced GEU would aggravate C. psittaci infection. Our results showed that SPF chickens exposed to B. cereus developed a severe GEU syndrome. More interestingly, prior infection with B. cereus facilitated C. psittaci infection, and aggravated GEU and respiratory distress, which were accompanied by high chlamydial loads in the lungs and severe lesions in respiratory organs. Moreover, levels of local inflammatory cytokines were elevated and T cell responses were impaired in the infected birds. In conclusion, GEU caused by B. cereus may facilitate chlamydial transmission from the ventriculus to the lungs.RESEARCH HIGHLIGHTS Bacillus cereus contributes to the gizzard erosion and ulceration syndrome in chickens.Exposure to Bacillus cereus exacerbates pneumonia in birds following chlamydial infection.Bacillus cereus facilitates persistent chlamydial infection and exacerbates immune responses.


Assuntos
Bacillus cereus , Infecções por Chlamydia/veterinária , Chlamydophila psittaci , Microbiologia de Alimentos , Hemorragia/veterinária , Pneumonia/microbiologia , Ração Animal/análise , Animais , Anticorpos Antibacterianos/sangue , Especificidade de Anticorpos , Galinhas , Infecções por Chlamydia/complicações , Infecções por Chlamydia/patologia , Citocinas , Moela das Aves/microbiologia , Moela das Aves/patologia , Hemorragia/microbiologia , Imunoglobulina G/sangue , Pneumonia/patologia , Organismos Livres de Patógenos Específicos , Gastropatias/microbiologia , Gastropatias/patologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-30373805

RESUMO

The transmission of the urogenital serovars of Chlamydia trachomatis can be significantly influenced by vaginal gels. Hydroxyethyl cellulose is a commonly used gelling agent that can be found in vaginal gels. Hydroxyethyl cellulose showed a concentration-dependent growth-enhancing effect on C. trachomatis serovars D and E, with a 26.1-fold maximal increase in vitro and a 2.57-fold increase in vivo.


Assuntos
Celulose/análogos & derivados , Chlamydia trachomatis/efeitos dos fármacos , Vagina/efeitos dos fármacos , Cremes, Espumas e Géis Vaginais/química , Animais , Celulose/farmacologia , Chlamydia trachomatis/classificação , Chlamydia trachomatis/crescimento & desenvolvimento , Chlamydia trachomatis/patogenicidade , Contagem de Colônia Microbiana , Meios de Cultura/química , Meios de Cultura/farmacologia , Feminino , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos BALB C , Sorogrupo , Vagina/microbiologia , Virulência/efeitos dos fármacos
5.
Biol Chem ; 400(10): 1323-1334, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31408428

RESUMO

The eukaryotic plasma membrane (PM) consists largely of phospholipids and proteins, and separates the intracellular compartments from the extracellular space. It also serves as a signaling platform for cell-to-cell communication and an interaction platform for the molecular crosstalk between pathogens and their target cells. Much research has been done to elucidate the interactions between pathogens and host membrane proteins. However, little is known about the interactions between pathogens and membrane phospholipids, although reports have described a contribution of phospholipids to cell recognition and/or invasion during early infection by diverse pathogens. Thus, during adhesion to the host cell, the obligate intracellular bacterial pathogens Chlamydia spp., the facultative intracellular pathogen Helicobacter pylori and the facultative aerobic pathogen Vibrio parahaemolyticus, interact with exofacial phospholipids. This review focuses on several prominent instances of pathogen interaction with host-cell phospholipids.


Assuntos
Interações Hospedeiro-Patógeno , Lipídeos de Membrana/metabolismo , Fosfolipídeos/metabolismo , Animais , Bactérias/metabolismo , Infecções Bacterianas/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Humanos
6.
PLoS Pathog ; 13(8): e1006556, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28787457

RESUMO

The initial steps in chlamydial infection involve adhesion and internalization into host cells and, most importantly, modification of the nascent inclusion to establish the intracellular niche. Here, we show that Chlamydia pneumoniae enters host cells via EGFR-dependent endocytosis into an early endosome with a phosphatidylinositol 3-phosphate (PI3P) membrane identity. Immediately after entry, the early chlamydial inclusion acquires early endosomal Rab GTPases including Rab4, Rab5, Rab7, as well as the two recycling-specific Rabs Rab11 and Rab14. While Rab5, Rab11 and Rab14 are retained in the vesicular membrane, Rab4 and Rab7 soon disappear. Loss of Rab7 enables the C. pneumoniae inclusion to escape delivery to, and degradation in lysosomes. Loss of Rab4 and retention of Rab11/ Rab14 designates the inclusion as a slowly recycling endosome-that is protected from degradation. Furthermore, we show that the Rab11/ Rab14 adaptor protein Rab11-Fip2 (Fip2) is recruited to the nascent inclusion upon internalization and retained in the membrane throughout infection. siRNA knockdown of Fip2 demonstrated that the protein is essential for internalization and infection, and expression of various deletion variants revealed that Fip2 regulates the intracellular positioning of the inclusion. Additionally, we show that binding to Rab11 and Fip2 recruits the unconventional actin motor protein myosin Vb to the early inclusion and that together they regulate the relocation of the nascent inclusion from the cell periphery to the perinuclear region, its final destination. Here, we characterize for the first time inclusion identity and inclusion-associated proteins to delineate how C. pneumoniae establishes the intracellular niche essential for its survival.


Assuntos
Proteínas de Transporte/metabolismo , Infecções por Chlamydia/metabolismo , Chlamydophila pneumoniae/metabolismo , Proteínas de Membrana/metabolismo , Internalização do Vírus , Proteínas rab de Ligação ao GTP/metabolismo , Linhagem Celular , Endocitose/fisiologia , Imunofluorescência , Humanos , Imunoprecipitação
7.
J Biol Chem ; 291(43): 22806-22818, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27551038

RESUMO

Chlamydiae sp. are obligate intracellular pathogens that cause a variety of diseases in humans. The adhesion of Chlamydiae to the eukaryotic host cell is a pivotal step in pathogenesis. The adhesin family of polymorphic membrane proteins (Pmp) in Chlamydia pneumoniae consists of 21 members. Pmp21 binds to the epidermal growth factor receptor (EGFR). Pmps contain large numbers of FXXN (where X is any amino acid) and GGA(I/L/V) motifs. At least two of these motifs are crucial for adhesion by certain Pmp21 fragments. Here we describe how the two FXXN motifs in Pmp21-D (D-Wt), a domain of Pmp21, influence its self-interaction, folding, and adhesive capacities. Refolded D-Wt molecules form oligomers with high sedimentation values (8-85 S). These oligomers take the form of elongated protofibrils, which exhibit Thioflavin T fluorescence, like the amyloid protein fragment ß42. A mutant version of Pmp21-D (D-Mt), with FXXN motifs replaced by SXXV, shows a markedly reduced capacity to form oligomers. Secondary-structure assays revealed that monomers of both variants exist predominantly as random coils, whereas the oligomers form predominantly ß-sheets. Adhesion studies revealed that oligomers of D-Wt (D-Wt-O) mediate significantly enhanced binding to human epithelial cells relative to D-Mt-O and monomeric protein species. Moreover, D-Wt-O binds EGFR more efficiently than D-Wt monomers. Importantly, pretreatment of human cells with D-Wt-O reduces infectivity upon subsequent challenge with C. pneumoniae more effectively than all other protein species. Hence, the FXXN motif in D-Wt induces the formation of ß-sheet-rich oligomeric protofibrils, which are important for adhesion to, and subsequent infection of human cells.


Assuntos
Adesinas Bacterianas/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Chlamydophila pneumoniae/metabolismo , Multimerização Proteica/fisiologia , Adesinas Bacterianas/genética , Motivos de Aminoácidos , Substituição de Aminoácidos , Proteínas da Membrana Bacteriana Externa/genética , Chlamydophila pneumoniae/genética , Receptores ErbB/genética , Humanos , Mutação de Sentido Incorreto , Ligação Proteica
8.
Cell Microbiol ; 18(5): 761-75, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26597572

RESUMO

Infection of human cells by the obligate intracellular bacterium Chlamydia trachomatis requires adhesion and internalization of the infectious elementary body (EB). This highly complex process is poorly understood. Here, we characterize Ctad1 (CT017) as a new adhesin and invasin from C. trachomatis serovar E. Recombinant Ctad1 (rCtad1) binds to human cells via two bacterial SH3 domains located in its N-terminal half. Pre-incubation of host cells with rCtad1 reduces subsequent adhesion and infectivity of bacteria. Interestingly, protein-coated latex beads revealed Ctad1 being an invasin. rCtad1 interacts with the integrin ß1 subunit on human epithelial cells, and induces clustering of integrins at EB attachment sites. Receptor activation induces ERK1/2 phosphorylation. Accordingly, rCtad1 binding to integrin ß1-negative cells is significantly impaired, as is the chlamydial infection. Thus interaction of C. trachomatis Ctad1 with integrin ß1 mediates EB adhesion and induces signaling processes that promote host-cell invasion.


Assuntos
Adesinas Bacterianas/metabolismo , Infecções por Chlamydia/genética , Chlamydia trachomatis/genética , Cadeias beta de Integrinas/metabolismo , Adesinas Bacterianas/química , Adesinas Bacterianas/genética , Sequência de Aminoácidos , Aderência Bacteriana/genética , Linhagem Celular , Infecções por Chlamydia/microbiologia , Infecções por Chlamydia/patologia , Chlamydia trachomatis/metabolismo , Chlamydia trachomatis/patogenicidade , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Interações Hospedeiro-Parasita/genética , Humanos , Cadeias beta de Integrinas/genética
9.
Cell Microbiol ; 18(8): 1094-105, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26780295

RESUMO

Chlamydiae are Gram-negative, obligate intracellular pathogens that pose a serious threat to public health worldwide. Chlamydial surface molecules are essential for host cell invasion. The first interaction with the host cell is thereby accomplished by the Outer membrane complex protein B (OmcB) binding to heparan sulfate moieties on the host cell surface, followed by the interaction of the chlamydial polymorphic membrane proteins (Pmps) with host cell receptors. Specifically, the interaction of the Pmp21 adhesin and invasin with its human interaction partner, the epidermal growth factor receptor, results in receptor activation, down-stream signalling and finally internalization of the bacteria. Blocking both, the OmcB and Pmp21 adhesion pathways, did not completely abolish infection, suggesting the presence of additional factors relevant for host cell invasion. Here, we show that the novel surface protein CPn0473 of Chlamydia pneumoniae contributes to the binding and invasion of infectious chlamydial particles. CPn0473 is expressed late in the infection cycle and located on the infectious chlamydial cell surface. Soluble recombinant CPn0473 as well as rCPn0473-coupled fluorescent latex beads adhere to human epithelial HEp-2 cells. Interestingly, in classical infection blocking experiments pretreatment of HEp-2 cells with rCPn0473 does not attenuate adhesion but promotes dose-dependently internalization by C. pneumoniae suggesting an unusual mode of action for this adhesin. This CPn0473-dependent promotion of infection by C. pneumoniae depends on two different domains within the protein and requires intact lipid rafts. Thus, inhibition of the interaction of CPn0473 with the host cell could provide a way to reduce the virulence of C. pneumoniae.


Assuntos
Adesinas Bacterianas/fisiologia , Infecções por Chlamydia/microbiologia , Chlamydophila pneumoniae/fisiologia , Microdomínios da Membrana/microbiologia , Linhagem Celular Tumoral , Células Epiteliais/microbiologia , Humanos , Ligação Proteica , Transporte Proteico
10.
PLoS Pathog ; 9(4): e1003325, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23633955

RESUMO

Infection of mammalian cells by the strictly intracellular pathogens Chlamydiae requires adhesion and internalization of the infectious Elementary Bodies (EBs). The components of the latter step were unknown. Here, we identify Chlamydia pneumoniae Pmp21 as an invasin and EGFR as its receptor. Modulation of EGFR surface expression evokes correlated changes in EB adhesion, internalization and infectivity. Ectopic expression of EGFR in EGFR-negative hamster cells leads to binding of Pmp21 beads and EBs, thus boosting the infection. EB/Pmp21 binding and invasion of epithelial cells results in activation of EGFR, recruitment of adaptors Grb2 and c-Cbl and activation of ERK1/2, while inhibition of EGFR or MEK kinase activity abrogates EB entry, but not attachment. Binding of Grb2 and c-Cbl by EGFR is essential for infection. This is the first report of an invasin-receptor interaction involved in host-cell invasion by any chlamydial species.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Chlamydophila pneumoniae/patogenicidade , Receptores ErbB/metabolismo , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Animais , Células CHO , Adesão Celular , Linhagem Celular , Infecções por Chlamydophila/metabolismo , Chlamydophila pneumoniae/metabolismo , Cricetinae , Cricetulus , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína Adaptadora GRB2/metabolismo , Células HeLa , Células Hep G2 , Humanos , MAP Quinase Quinase Quinases/antagonistas & inibidores , Microesferas , Ligação Proteica , Interferência de RNA
11.
J Bacteriol ; 195(23): 5323-33, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24056107

RESUMO

In a previous study, we reported that the OmcB protein from Chlamydia pneumoniae mediates adhesion of the infectious elementary body to human HEp-2 cells by interacting with heparin/heparan sulfate-like glycosaminoglycans (GAGs) via basic amino acids located in the first of a pair of XBBXBX heparin-binding motifs (K. Moelleken and J. H. Hegemann, Mol. Microbiol. 67:403-419, 2008). In the present study, we show that the basic amino acid at position 57 (arginine) in the first XBBXBX motif, the basic amino acid at position 61 (arginine) in the second motif, and another amino acid (lysine 69) C terminal to it play key roles in the interaction. In addition, we show that discrimination between heparin-dependent and -independent adhesion by C. trachomatis OmcBs is entirely dependent on three variable amino acids in the so-called variable domain C terminal to the conserved XBBXBX motif. Here, the predicted conformational change in the secondary structure induced by the proline at position 66 seems to be crucial for heparin recognition. Finally, we performed neutralization experiments using different anti-heparan sulfate antibodies to gain insight into the nature of the GAGs recognized by OmcB. The results suggest that C. trachomatis serovar L2 OmcB interacts with 6-O-sulfated domains of heparan sulfate, while C. pneumoniae OmcB apparently interacts with domains of heparan sulfate harboring a diverse subset of O-sulfations.


Assuntos
Aderência Bacteriana/fisiologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Chlamydophila pneumoniae/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Adesinas Bacterianas , Animais , Proteínas da Membrana Bacteriana Externa/genética , Chlamydophila pneumoniae/genética , Variação Genética , Células Hep G2 , Humanos , Ligação Proteica , Estrutura Terciária de Proteína
12.
Commun Biol ; 6(1): 520, 2023 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-37179401

RESUMO

Uptake of obligate intracellular bacterial pathogens into mammalian epithelial cells is critically dependent on modulation of the host's endocytic machinery. It is an open question how the invading pathogens generate a membrane-bound vesicle appropriate to their size. This requires extensive deformation of the host plasma membrane itself by pathogen-derived membrane-binding proteins, accompanied by substantial F-actin-based forces to further expand and finally pinch off the vesicle. Here we show that upon adhesion to the host cell, the human pathogenic bacterium Chlamydia pneumoniae secretes the scaffolding effector protein CPn0677, which binds to the inner leaflet of the invaginating host's PM, induces inwardly directed, negative membrane curvature, and forms a recruiting platform for the membrane-deforming BAR-domain containing proteins Pacsin and SNX9. In addition, while bound to the membrane, CPn0677 recruits monomeric G-actin, and its C-terminal region binds and activates N-WASP, which initiates branching actin polymerization via the Arp2/3 complex. Together, these membrane-bound processes enable the developing endocytic vesicle to engulf the infectious elementary body, while the associated actin network generates the forces required to reshape and detach the nascent vesicle from the PM. Thus, Cpn0677 (now renamed SemD) acts as recruiting platform for central components of the endocytic machinery during uptake of chlamydia.


Assuntos
Actinas , Chlamydia , Animais , Humanos , Actinas/metabolismo , Chlamydia/metabolismo , Membrana Celular/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Mamíferos
13.
Sci Rep ; 12(1): 17825, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36280777

RESUMO

Many proteins of the Repeats in Toxins (RTX) protein family are toxins of Gram-negative pathogens including hemolysin A (HlyA) of uropathogenic E. coli. RTX proteins are secreted via Type I secretion systems (T1SS) and adopt their native conformation in the Ca2+-rich extracellular environment. Here we employed the E. coli HlyA T1SS as a heterologous surrogate system for the RTX toxin MbxA from the bovine pathogen Moraxella bovis. In E. coli the HlyA system successfully activates the heterologous MbxA substrate by acylation and secretes the precursor proMbxA and active MbxA allowing purification of both species in quantities sufficient for a variety of investigations. The activating E. coli acyltransferase HlyC recognizes the acylation sites in MbxA, but unexpectedly in a different acylation pattern as for its endogenous substrate HlyA. HlyC-activated MbxA shows host species-independent activity including a so-far unknown toxicity against human lymphocytes and epithelial cells. Using live-cell imaging, we show an immediate MbxA-mediated permeabilization and a rapidly developing blebbing of the plasma membrane in epithelial cells, which is associated with immediate cell death.


Assuntos
Proteínas de Bactérias , Moraxella bovis , Humanos , Aciltransferases , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas Hemolisinas/metabolismo , Moraxella bovis/metabolismo , Sistemas de Secreção Tipo I
14.
Mol Microbiol ; 78(4): 1004-17, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21062373

RESUMO

Chlamydiae sp. are obligate intracellular pathogens that cause a variety of diseases in humans. Adhesion of the infectious elementary body to the eukaryotic host cell is a pivotal step in chlamydial pathogenesis. Here we describe the characterization of members of the polymorphic membrane protein family (Pmp), the largest protein family (with up to 21 members) unique to Chlamydiaceae. We show that yeast cells displaying Pmp6, Pmp20 or Pmp21 on their surfaces, or beads coated with the recombinant proteins, adhere to human epithelial cells. A hallmark of the Pmp protein family is the presence of multiple repeats of the tetrapeptide motifs FxxN and GGA(I, L, V) and deletion analysis shows that at least two copies of these motifs are needed for adhesion. Importantly, pre-treatment of human cells with recombinant Pmp6, Pmp20 or Pmp21 protein reduces infectivity upon subsequent challenge with Chlamydia pneumoniae and correlates with diminished attachment of Chlamydiae to target cells. Antibodies specific for Pmp21 can neutralize infection in vitro. Finally, a combination of two different Pmp proteins in infection blockage experiments shows additive effects, possibly suggesting similar functions. Our findings imply that Pmp6, Pmp20 and Pmp21 act as adhesins, are vital during infection and thus represent promising vaccine candidates.


Assuntos
Adesinas Bacterianas/metabolismo , Aderência Bacteriana , Chlamydophila pneumoniae/patogenicidade , Células Epiteliais/microbiologia , Adesinas Bacterianas/genética , Motivos de Aminoácidos , Linhagem Celular , Chlamydophila pneumoniae/genética , Análise Mutacional de DNA , Humanos , Sequências Repetitivas de Aminoácidos , Deleção de Sequência
15.
Front Microbiol ; 12: 709724, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34349750

RESUMO

Chlamydiae are Gram-negative, obligate intracellular bacteria, which infect animals and humans. Adhesion to host cells, the first step in the infection process, is mediated by polymorphic membrane proteins (Pmps). Pmps constitute the largest chlamydial protein family, with 9 members (subdivided into six subtypes) in C. trachomatis and 21 in C. pneumoniae, and are characterized by the presence of multiple copies of GGA(I,L,V) and FxxN motifs. Motif-rich fragments of all nine C. trachomatis Pmps act as adhesins and are essential for infection. As autotransporters, most Pmp proteins are secreted through their ß-barrel domain and localize on the surface of the chlamydial cell, where most of them are proteolytically processed. Classical autotransporters are monomeric proteins, which can function as toxins, proteases, lipases and monoadhesive adhesins. Here we show that selected recombinant C. trachomatis Pmp fragments form functional adhesion-competent multimers. They assemble into homomeric and heteromeric filaments, as revealed by non-denaturing gel electrophoresis, size-exclusion chromatography and electron microscopy. Heteromeric filaments reach 2 µm in length, significantly longer than homomeric structures. Filament formation was independent of the number of motifs present in the fragment(s) concerned and their relative affinity for host cells. Our functional studies demonstrated that only adhesion-competent oligomers were able to block a subsequent infection. Pre-loading of infectious chlamydial cells with adhesion-competent Pmp oligomers maintained the subsequent infection, while adhesion-incompetent structures reduced infectivity, presumably by blocking the function of endogenous Pmps. The very large number of possible heteromeric and homomeric Pmp complexes represents a novel mechanism to ensure stable adhesion and possibly host cell immune escape.

16.
Front Microbiol ; 12: 656209, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33854490

RESUMO

Chlamydia psittaci is the etiological agent of chlamydiosis in birds and can be transmitted to humans, causing severe systemic disease. C. psittaci infects a broad range of hosts; strains are isolated not only from birds but also from mammals, where they seem to have a reduced infectious and zoonotic potential. Comparative analysis of chlamydial genomes revealed the coding sequences of polymorphic membrane proteins (Pmps) to be highly variable regions. Pmps are characterized as adhesins in C. trachomatis and C. pneumoniae and are immunoreactive proteins in several Chlamydia species. Thus, Pmps are considered to be associated with tissue tropism and pathogenicity. C. psittaci harbors 21 Pmps. We hypothesize that the different infectious potential and host tropism of avian and mammalian C. psittaci strains is dependent on differences in their Pmp repertoires. In this study, we experimentally confirmed the different virulence of avian and mammalian strains, by testing the survival rate of infected embryonated eggs and chlamydiae dissemination in the embryos. Further, we investigated the possible involvement of Pmps in host tropism. Analysis of pmp sequences from 10 C. psittaci strains confirmed a high degree of variation, but no correlation with host tropism was identified. However, comparison of Pmp expression profiles from different strains showed that Pmps of the G group are the most variably expressed, also among avian and mammalian strains. To investigate their functions, selected Pmps were recombinantly produced from one avian and one mammalian representative strain and their adhesion abilities and relevance for the infection of C. psittaci strains in avian and mammalian cells were tested. For the first time, we identified Pmp22D, Pmp8G, and OmcB as relevant adhesins, essential during infection of C. psittaci strains in general. Moreover, we propose Pmp17G as a possible key player for host adaptation, as it could only bind to and influence the infection in avian cells, but it had no relevant impact towards infection in mammalian cells. These data support the hypothesis that distinct Pmp repertoires in combination with specific host factors may contribute to host tropism of C. psittaci strains.

17.
Front Immunol ; 12: 818487, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35173712

RESUMO

Chlamydia psittaci (C. psittaci) is an obligate intracellular, gram-negative bacterium, and mainly causes systemic disease in psittacine birds, domestic poultry, and wild fowl. The pathogen is threating to human beings due to closely contacted to employees in poultry industry. The polymorphic membrane proteins (Pmps) enriched in C. psittaci includes six subtypes (A, B/C, D, E/F, G/I and H). Compared to that of the 1 pmpG gene in Chlamydia trachomatis (C. trachomatis), the diverse pmpG gene-coding proteins of C. psittaci remain elusive. In the present study, polymorphic membrane protein 17G (Pmp17G) of C. psittaci mediated adhesion to different host cells. More importantly, expression of Pmp17G in C. trachomatis upregulated infections to host cells. Afterwards, crosstalk between Pmp17G and EGFR was screened and identified by MALDI-MS and Co-IP. Subsequently, EGFR overexpression in CHO-K1 cells and EGFR knockout in HeLa 229 cells were assessed to determine whether Pmp17G directly correlated with EGFR during Chlamydial adhesion. Finally, the EGFR phosphorylation was recognized by Grb2, triggering chlamydial invasion. Based on above evidence, Pmp17G possesses adhesive property that serves as an adhesin and activate intracellular bacterial internalization by recognizing EGFR during C. psittaci infection.


Assuntos
Chlamydophila psittaci/fisiologia , Receptores ErbB/metabolismo , Interações Hospedeiro-Patógeno , Proteínas de Membrana/metabolismo , Psitacose/metabolismo , Psitacose/microbiologia , Adesão Celular , Linhagem Celular , Receptores ErbB/agonistas , Humanos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Fosforilação , Ligação Proteica
18.
Vaccines (Basel) ; 9(6)2021 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-34204170

RESUMO

Chlamydia trachomatis is the most frequent sexually-transmitted disease-causing bacterium. Urogenital serovars of this intracellular pathogen lead to urethritis and cervicitis. Ascending infections result in pelvic inflammatory disease, salpingitis, and oophoritis. One of 200 urogenital infections leads to tubal infertility. Serovars A-C cause trachoma with visual impairment. There is an urgent need for a vaccine. We characterized a new five-component subunit vaccine in a mouse vaccination-lung challenge infection model. Four recombinant Pmp family-members and Ctad1 from C. trachomatis serovar E, all of which participate in adhesion and binding of chlamydial elementary bodies to host cells, were combined with the mucosal adjuvant cyclic-di-adenosine monophosphate. Intranasal application led to a high degree of cross-serovar protection against urogenital and ocular strains of C. trachomatis, which lasted at least five months. Critical evaluated parameters were body weight, clinical score, chlamydial load, a granulocyte marker and the cytokines IFN-γ/TNF-α in lung homogenate. Vaccine antigen-specific antibodies and a mixed Th1/Th2/Th17 T cell response with multi-functional CD4+ and CD8+ T cells correlate with protection. However, serum-transfer did not protect the recipients suggesting that circulating antibodies play only a minor role. In the long run, our new vaccine might help to prevent the feared consequences of human C. trachomatis infections.

19.
Front Cell Infect Microbiol ; 10: 565808, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194804

RESUMO

Chlamydia pneumoniae is an obligate intracellular pathogen that causes diseases of the upper and lower respiratory tract and is linked to a number of severe and chronic conditions. Here, we describe a large, C. pneumoniae-specific cluster of 13 genes (termed mbp1-13) that encode highly homologous chlamydial proteins sharing the capacity to bind to membranes. The gene cluster is localized on the chromosome between the highly diverse adhesin-encoding pmp genes pmp15 and pmp14. Comparison of human clinical isolates to the predicted ancestral koala isolate indicates that the cluster was acquired in the ancestor and was adapted / modified during evolution. SNPs and IN/DELs within the cluster are specific to isolates taken from different human tissues and show an ongoing adaptation. Most of the cluster proteins harbor one or two domains of unknown function (DUF575 and DUF562). During ectopic expression in human cells these DUF domains are crucial for the association of cluster proteins to the endo-membrane system. Especially DUF575 which harbors a predicted transmembrane domain is important for binding to the membrane, while presence of the DUF562 seems to be of regulatory function. For Mbp1, founding member of the cluster that exhibits a very limited sequence identity to the human Rab36 protein, we found a specific binding to vesicles carrying the early endosomal marker PtdIns(3)P and the endosomal Rab GTPases Rab11 and Rab14. This binding is dependent on a predicted transmembrane domain with an α-helical / ß-strand secondary structure, as the mutant version Mbp1mut, which lacks the ß-strand secondary structure, shows a reduced association to PtdIns(3)P-positive membranes carrying Rab11 and Rab14. Furthermore, we could not only show that Mbp1 associates with Rab36, but found this specific Rab protein to be recruited to the early C. pneumoniae inclusion. Detection of endogenous Mbp1 and Mbp4 reveal a colocalization to the chlamydial outer membrane protein Momp on EBs. The same colocalization pattern with Momp was observed when we ectopically expressed Mbp4 in C. trachomatis. Thus, we identified a C. pneumoniae-specific cluster of 13 membrane binding proteins (Mbps) localizing to the bacterial outer membrane system.


Assuntos
Chlamydophila pneumoniae , Proteínas da Membrana Bacteriana Externa/genética , Chlamydia trachomatis/genética , Chlamydophila pneumoniae/genética , Chlamydophila pneumoniae/metabolismo , Humanos , Corpos de Inclusão/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Família Multigênica , Proteínas rab de Ligação ao GTP
20.
Nat Commun ; 10(1): 4644, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31604911

RESUMO

In mammalian cells, the internal and external leaflets of the plasma membrane (PM) possess different phospholipids. Phosphatidylserine (PS) is normally confined to the inner (cytoplasmic) membrane leaflet. Here we report that the adhesin CPn0473 of the human pathogenic bacterium Chlamydia pneumoniae (Cpn) binds to the PM of human cells and induces PS externalization but unexpectedly not apoptosis. PS externalization is increased in human cells exposed to infectious Cpn cells expressing increased CPn0473 and reduced in exposure to Cpn expressing decreased CPn0473. CPn0473 binds specifically to synthetic membranes carrying PS and stimulates pore formation. Asymmetric giant unilamellar vesicles (GUVs) in which PS is restricted to the inner leaflet reveal that CPn0473 induces PS externalization in the absence of other proteins. Thus our identification of CPn0473 as a bacterial PS translocator capable of specific and apoptosis-independent PS externalization during infection extends the spectrum of mechanisms intracellular pathogens use to enter host cells.


Assuntos
Adesinas Bacterianas/fisiologia , Chlamydophila pneumoniae/fisiologia , Fosfatidilserinas/metabolismo , Adesinas Bacterianas/metabolismo , Interações entre Hospedeiro e Microrganismos , Humanos , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA