Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 39(12): 344, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37843698

RESUMO

Bifidobacterium is a major probiotic of intestinal gut flora and exerts many physiological activities, and it is widely applied in the fields of food and medicine. As an important part of Bifidobacterium, glycoside hydrolase plays a role in its physiological activity. With the continuous development and improvement of genetic engineering technology, research on this type of enzyme will play a crucial role in promoting the further development of Bifidobacterium in the field of probiotics. In this review, the preparation methods, enzymatic properties, and functions of glycoside hydrolase extracted from Bifidobacterium are described and summarized. The common method for preparing glycoside hydrolase derived from Bifidobacterium is heterologous expression in Escherichia coli BL21. The optimal pH range for these glycoside hydrolase enzymes is between 4.5 and 7.5; the optimal temperature is between 30 and 50 °C, which is close to the optimal growth condition of Bifidobacterium. Based on substrate specificity, these glycoside hydrolase could hydrolyze synthetic substrates and natural oligosaccharides, including a series of pNP artificial substrates, disaccharide, and trisaccharides, while they have little ability to hydrolyze polysaccharide substrates. This review will be expected to provide a basis for the development of Bifidobacterium as a probiotic element.


Assuntos
Bifidobacterium , Glicosídeo Hidrolases , Bifidobacterium/genética , Glicosídeo Hidrolases/metabolismo , Dissacarídeos , Oligossacarídeos/química , Especificidade por Substrato
2.
Physiol Plant ; 172(1): 188-200, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33368302

RESUMO

Acid rain, which has negative impacts on the vegetation of ecological systems, is widespread in Northern and Southern China. However, relatively little is known about the effects of acid rain on the growth and yield of economically important tree species in China. To address this issue, we studied the responses of mulberry seedlings to simulated acid rain (SAR) at different pH values. At pH 4.5, SAR induced increased antioxidant activities, total antioxidant capacity, and the accumulation of reactive oxygen species (OFR) relative to controls. However, the growth of the seedlings under SAR treatments at pH 4.5 and pH 5.6 was greater than controls. No significant differences in photosynthesis and chlorophyll a fluorescence quenching parameters were observed between the SAR treatments at pH 4.5 and pH 5.6 and controls. However, the SAR treatment at pH 3.5 resulted in altered leaf surface characteristics and changes to chloroplast ultrastructure, together with an increase in membrane electrical conductivity and an accumulation of OFR and malondialdehyde. In contrast, leaf antioxidant enzyme activities were decreased, together with electron transport parameters and photosynthesis. Taken together, these results show that the effects of acid rain on the growth and leaf physiology of mulberry seedling are dependent on pH. Moreover, mulberry seedlings had a high tolerance to acid rain at pH 4.5.


Assuntos
Chuva Ácida , Morus , Antioxidantes , China , Clorofila , Clorofila A , Fotossíntese , Plântula
3.
Int J Mol Sci ; 22(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34830294

RESUMO

The NAC (NAM, ATAF and CUC) gene family plays a crucial role in the transcriptional regulation of various biological processes and has been identified and characterized in multiple plant species. However, genome-wide identification of this gene family has not been implemented in Juglans mandshurica, and specific functions of these genes in the development of fruits remain unknown. In this study, we performed genome-wide identification and functional analysis of the NAC gene family during fruit development and identified a total of 114 JmNAC genes in the J. mandshurica genome. Chromosomal location analysis revealed that JmNAC genes were unevenly distributed in 16 chromosomes; the highest numbers were found in chromosomes 2 and 4. Furthermore, according to the homologues of JmNAC genes in Arabidopsis thaliana, a phylogenetic tree was constructed, and the results demonstrated 114 JmNAC genes, which were divided into eight subgroups. Four JmNAC gene pairs were identified as the result of tandem duplicates. Tissue-specific analysis of JmNAC genes during different developmental stages revealed that 39 and 25 JmNAC genes exhibited upregulation during the mature stage in walnut exocarp and embryos, indicating that they may serve key functions in fruit development. Furthermore, 12 upregulated JmNAC genes were common in fruit ripening stage in walnut exocarp and embryos, which demonstrated that these genes were positively correlated with fruit development in J. mandshurica. This study provides new insights into the regulatory functions of JmNAC genes during fruit development in J. mandshurica, thereby improving the understanding of characteristics and evolution of the JmNAC gene family.


Assuntos
Frutas/crescimento & desenvolvimento , Frutas/genética , Genes de Plantas , Juglans/crescimento & desenvolvimento , Juglans/genética , Família Multigênica , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Transcriptoma/genética , Cromossomos de Plantas/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Filogenia , Desenvolvimento Vegetal/genética , Regulação para Cima/genética
4.
Int J Mol Sci ; 22(19)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34639038

RESUMO

Chokecherry (Padus virginiana L.) is an important landscaping tree with high ornamental value because of its colorful purplish-red leaves (PRL). The quantifications of anthocyanins and the mechanisms of leaf color change in this species remain unknown. The potential biosynthetic and regulatory mechanisms and the accumulation patterns of anthocyanins in P. virginiana that determine three leaf colors were investigated by combined analysis of the transcriptome and the metabolome. The difference of chlorophyll, carotenoid and anthocyanin content correlated with the formation of P. virginiana leaf color. Using enrichment and correlation network analysis, we found that anthocyanin accumulation differed in different colored leaves and that the accumulation of malvidin 3-O-glucoside (violet) and pelargonidin 3-O-glucoside (orange-red) significantly correlated with the leaf color change from green to purple-red. The flavonoid biosynthesis genes (PAL, CHS and CHI) and their transcriptional regulators (MYB, HD-Zip and bHLH) exhibited specific increased expression during the purple-red periods. Two genes encoding enzymes in the anthocyanin biosynthetic pathway, UDP glucose-flavonoid 3-O-glucosyl-transferase (UFGT) and anthocyanidin 3-O-glucosyltransferase (BZ1), seem to be critical for suppressing the formation of the aforesaid anthocyanins. In PRL, the expression of the genes encoding for UGFT and BZ1 enzymes was substantially higher than in leaves of other colors and may be related with the purple-red color change. These results may facilitate genetic modification or selection for further improvement in ornamental qualities of P. virginiana.


Assuntos
Antocianinas/biossíntese , Pigmentação , Folhas de Planta/metabolismo , Prunus/fisiologia , Vias Biossintéticas , Clorofila/biossíntese , Cor , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Metaboloma , Metabolômica/métodos , Pigmentação/genética , Folhas de Planta/genética , Transcriptoma
5.
Mycorrhiza ; 30(2-3): 329-339, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32253571

RESUMO

Water shortage limits plant growth and development by inducing physiological and metabolic disorders, while arbuscular mycorrhizal (AM) symbiosis can improve plant adaptation to drought stress by altering some metabolic and signaling pathways. In this study, root growth and levels of some metabolites (polyamines, amino acids, and malic acid [MA]) and key enzymes were examined in AM-inoculated and non-inoculated (NM) maize seedlings under different water conditions. The results showed that AM symbiosis stimulated root growth and the accumulation of putrescine (Put) during initial plant growth. Root Put concentration significantly decreased in AM compared with NM plants under water stress; correspondingly, Put degradation via diamine oxidase into γ-aminobutyric acid (GABA) occurred. Moreover, glutamine concentration and the activity of N assimilation enzymes (nitrate reductase and glutamine synthetase) were higher in roots of AM than NM plants under moderate water stress. The activity of GABA transaminase and malic enzyme, and MA concentration were also higher in roots of AM than NM plants under moderate water stress. Our results indicated that Put catabolism along with improved N assimilation and the accumulation of GABA and MA were the key metabolic processes in roots of AM maize plants in response to water stress.


Assuntos
Micorrizas , Desidratação , Humanos , Malatos , Nitrogênio , Raízes de Plantas , Putrescina , Simbiose , Zea mays , Ácido gama-Aminobutírico
6.
BMC Microbiol ; 19(1): 218, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31519147

RESUMO

BACKGROUND: The broad-leaved Korean pine mixed forest is an important and typical component of a global temperate forest. Soil microbes are the main driver of biogeochemical cycling in this forest ecosystem and have complex interactions with carbon (C) and nitrogen (N) components in the soil. RESULTS: We investigated the vertical soil microbial community structure in a primary Korean pine-broadleaved mixed forest in Changbai Mountain (from 699 to 1177 m) and analyzed the relationship between the microbial community and both C and N components in the soil. The results showed that the total phospholipid fatty acid (PLFA) of soil microbes and Gram-negative bacteria (G-), Gram-positive bacteria (G+), fungi (F), arbuscular mycorrhizal fungi (AMF), and Actinomycetes varied significantly (p < 0.05) at different sites (elevations). The ratio of fungal PLFAs to bacterial PLFAs (F/B) was higher at site H1, and H2. The relationship between microbial community composition and geographic distance did not show a distance-decay pattern. The coefficients of variation for bacteria were maximum among different sites (elevations). Total soil organic carbon (TOC), total nitrogen (TN), soil water content (W), and the ratio of breast-height basal area of coniferous trees to that of broad-leaved tree species (RBA) were the main contributors to the variation observed in each subgroup of microbial PLFAs. The structure equation model showed that TOC had a significant direct effect on bacterial biomass and an indirect effect upon bacterial and fungal biomass via soil readily oxidized organic carbon (ROC). No significant relationship was observed between soil N fraction and the biomass of fungi and bacteria. CONCLUSION: The total PLFAs (tPLFA) and PLFAs of soil microbes, including G-, G+, F, AMF, and Actinomycetes, were significantly affected by elevation. Bacteria were more sensitive to changes in elevation than other microbes. Environmental heterogeneity was the main factor affecting the geographical distribution pattern of microbial community structure. TOC, TN, W and RBA were the main driving factors for the change in soil microbial biomass. C fraction was the main factor affecting the biomass of fungi and bacteria and ROC was one of the main sources of the microbial-derived C pool.


Assuntos
Carbono/análise , Nitrogênio/análise , Microbiologia do Solo , Solo/química , Altitude , Bactérias/química , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biomassa , China , Ácidos Graxos/análise , Florestas , Fungos/química , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Fosfolipídeos/análise , Pinus/crescimento & desenvolvimento , Água/análise
7.
CNS Spectr ; 24(5): 544-556, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30968814

RESUMO

OBJECTIVES: Internet gaming disorder (IGD) is becoming a matter of concern around the world. However, the neural mechanism underlying IGD remains unclear. The purpose of this paper is to explore the differences between the neuronal network of IGD participants and that of recreational Internet game users (RGU). METHODS: Imaging and behavioral data were collected from 18 IGD participants and 20 RGU under a probability discounting task. The independent component analysis (ICA) and graph theoretical analysis (GTA) were used to analyze the data. RESULTS: Behavioral results showed the IGD participants, compared to RGU, prefer risky options to the fixed ones and spent less time in making risky decisions. In imaging results, the ICA analysis revealed that the IGD participants showed stronger functional connectivity (FC) in reward circuits and executive control network, as well as lower FC in anterior salience network (ASN) than RGU; for the GTA results, the IGD participants showed impaired FC in reward circuits and ASN when compared with RGU. CONCLUSIONS: These results suggest that IGD participants were more sensitive to rewards, and they were more impulsive in decision-making as they could not control their impulsivity effectively. This might explain why IGD participants cannot stop their gaming behaviors even when facing severe negative consequences.


Assuntos
Conectoma , Jogo de Azar/diagnóstico por imagem , Encéfalo/fisiopatologia , Interpretação Estatística de Dados , Desvalorização pelo Atraso , Feminino , Jogo de Azar/fisiopatologia , Humanos , Comportamento Impulsivo , Internet , Imageamento por Ressonância Magnética/métodos , Masculino , Análise de Componente Principal , Recompensa , Adulto Jovem
8.
Eur J Neurosci ; 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29883011

RESUMO

Although online gaming may lead to Internet gaming disorder (IGD), most players are recreational game users (RGUs) who do not develop IGD. Thus far, little is known about brain structural abnormalities in IGD subjects relative to RGUs. The inclusion of RGUs as a control group could minimize the potential effects of gaming experience and gaming-related cue familiarity on the neural mechanism of IGD subjects. In this study, structural magnetic resonance imaging data were acquired from 38 IGD subjects and 66 RGUs with comparable age, gender, and educational level. Group differences in cortical thickness and volume were analyzed using the FreeSurfer software. Correlations between cortical changes and addiction severity were calculated for both groups. Compared with the RGU group, the IGD group showed significantly decreased cortical thickness in the left lateral orbitofrontal cortex, inferior parietal lobule, bilateral cuneus, precentral gyrus, and right middle temporal gyrus. Moreover, significantly reduced cortical volume was observed in the left superior temporal gyrus and right supramarginal gyrus in the IGD group. Whole-brain correlational analysis indicated different correlations between the two groups. The brain regions that showed group differences were considered to be involved in cognitive control, decision making, and reward/loss processing. These functions may serve as potential mechanisms that explain why IGD individuals experience negative outcomes in frequent game playing.

9.
World J Microbiol Biotechnol ; 33(1): 12, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27885566

RESUMO

Changbai Mountain, with intact montane vertical vegetation belts, is located at a sensitive area of global climate change and a central distribution area of Korean pine forest. Broad-leaved Korean pine mixed forest (Pinus koraiensis as an edificator) is the most representative zonal climax vegetation in the humid region of northeastern China; their vertical zonation is the most intact and representative on Changbai Mountain. In this study, we analyzed the composition and diversity of soil fungal communities in the Korean pine forest on Changbai Mountain at elevations ranging from 699 to 1177 m using Illumina High-throughput sequencing. We obtained a total 186,663 optimized sequences, with an average length of 268.81 bp. We found soil fungal diversity index was decreased with increasing elevation from 699 to 937 m and began to rise after reaching 1044 m; the richness and evenness indices were decreased with an increase in elevation. Soil fungal compositions at the phylum, class and genus levels varied significantly at different elevations, but with the same dominant fungi. Beta-diversity analysis indicated that the similarity of fungal communities decreased with an increased vertical distance between the sample plots, showing a distance-decay relationship. Variation partition analysis showed that geographic distance (mainly elevation gradient) only explained 20.53 % of the total variation of fungal community structure, while soil physicochemical factors explained 69.78 %.


Assuntos
Fungos/classificação , Fungos/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Pinus/microbiologia , Análise de Sequência de DNA/métodos , Adaptação Fisiológica , Altitude , Biodiversidade , Florestas , Fungos/genética , Filogenia , Solo/química , Microbiologia do Solo
10.
Behav Brain Funct ; 10: 4, 2014 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-24524597

RESUMO

BACKGROUND: Previous studies have found that the processing of repeated targets are easier than that of non-repetition. Although several theories attempt to explain this issue, the underlying mechanism still remains uncovered. In this study, we tried to address this issue by exploring the underlying brain responses during this process. METHODS: Brain activities were recorded while thirty participants performing a Stroop task (Chinese version) in the MRI scanner. Using pseudo-random strategies, we created two types of switching conditions (easy-to-difficult; difficult-to-easy) and relevant repeating conditions. RESULTS: The results show that, in difficult-to-easy switching situation, higher brain activations are found in left precuneus than repeating ones (the precuneus is thought related with attention demands). In easy-to-difficult switching conditions, higher brain activations are found in precuneus, superior temporal gyrus, posterior cingulate cortex, and inferior frontal gyrus than repeating trials (most of these regions are thought related with executive function). No overlapping brain regions are observed in con_CON and incon_INCON conditions. Beta figures of the survived clusters in different conditions, correlations between brain activations and switch cost were calculated. CONCLUSIONS: The present study suggests that the feature that response time in switching trials are longer than that in repeating trials are caused by the extra endeavors engaged in the switching processes.


Assuntos
Atenção/fisiologia , Encéfalo/fisiologia , Cognição/fisiologia , Função Executiva/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Neuroimagem Funcional , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Tempo de Reação/fisiologia , Teste de Stroop , Adulto Jovem
11.
J Biotechnol ; 392: 78-89, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38945483

RESUMO

Ginsenoside, the principal active constituent of ginseng, exhibits enhanced bioavailability and medicinal efficacy in rare ginsenosides compared to major ginsenosides. Current research is focused on efficiently and selectively removing sugar groups attached to the major ginsenoside sugar chains to convert them into rare ginsenosides that meet the demands of medical industry and functional foods. The methods for preparing rare ginsenosides encompass chemical, microbial, and enzymatic approaches. Among these, the enzyme conversion method is highly favored by researchers due to its exceptional specificity and robust efficiency. This review summarizes the biological activities of different rare ginsenosides, explores the various glycosidases used in the biotransformation of different major ginsenosides as substrates, and elucidates their respective corresponding biotransformation pathways. These findings will provide valuable references for the development, utilization, and industrial production of ginsenosides.


Assuntos
Biotransformação , Ginsenosídeos , Ginsenosídeos/metabolismo , Ginsenosídeos/química , Glicosídeo Hidrolases/metabolismo , Panax/química , Panax/metabolismo
12.
Carbohydr Polym ; 313: 120889, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37182975

RESUMO

Commercially-supplied potato galactan (PG) is widely used as a model polysaccharide in various bioactivity studies. However, results using this galactan are not always consistent with the stated composition. Here, we assessed its composition by fractionating this commercial PG and purified its primary components: PG-A, PG-B and PG-Cp with weight-averaged molecular weights of 430, 93, and 11.3 kDa, respectively. PG-Cp consists of free ß-1,4-galactan chains, whereas PG-A and PG-B are type I rhamnogalacturonans with long ß-1,4-galactan side chains of up to 80 Gal residues and short ß-1,4-galactan side chains of 0 to 3 Gal residues that display a "trees in lawn" pattern. Structures of these polysaccharides correlate well with their activities in terms of galectin-3 binding and gut bacterial growth assays. Our study clarifies the confusion related to commercial PG, with purified fractions serving as better model polysaccharides in bioactivity investigations.


Assuntos
Galactanos , Solanum tuberosum , Galactanos/química , Solanum tuberosum/química , Pectinas/química , Polissacarídeos/química , Galectina 3/metabolismo
13.
Psychoradiology ; 3: kkad015, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38666126

RESUMO

Background: Impulsivity and decision-making are key factors in addiction. However, little is known about how gender and time sensitivity affect impulsivity in internet gaming disorder (IGD). Objective: To investigate the gender difference of impulsive decision-making and relevant brain responses in IGD. Methods: We conducted a functional magnetic resonance imaging (fMRI) study with 123 participants, including 59 IGD individuals (26 females) and 64 matched recreational game users (RGUs, 23 females). Participants performed a delay-discounting task during fMRI scanning. We examined gender-by-group effects on behavioral and neural measures to explore the preference for immediate over delayed rewards and the associated brain activity. We also investigated the network correlations between addiction severity and behavioral and neural measures, and analyzed the mediating role of brain activity in the link between delay discounting parameters and IGD severity. Results: We found significant gender-by-group interactions. The imaging results revealed gender-by-group interactions in the dorsolateral prefrontal cortex, medial frontal gyrus, and inferior frontal gyrus (IFG). Post hoc analysis indicated that, for females, RGUs showed higher activity than IGD individuals in these brain regions, while for males IGD individuals exhibited higher activity than RGUs. The activation in the left IFG mediated the relation between Internet Addiction Test score and discount rate in females. In males, the activation in the right dlPFC mediated the relation between IAT score and time sensitivity. Discussion: Our findings imply that male IGD participants demonstrate impaired intertemporal decisions associated with neural dysfunction. Influencing factors for impulsive decision-making in IGD diverge between males (time sensitivity) and females (discount rate). These findings augment our comprehension of the neural underpinnings of gender differences in IGD and bear significant implications for devising effective intervention strategies for treating people with IGD.

14.
Artigo em Inglês | MEDLINE | ID: mdl-35627552

RESUMO

Previous studies have suggested that physical activity may decrease academic procrastination; however, few studies have explored the underlying mechanisms of how physical activity exerts an effect on academic procrastination. This study aimed to examine the mediating effects of self-control and self-efficacy in the relationship between physical activity and academic procrastination among Chinese university students. METHODS: A cross-sectional design was used in this study. The sample comprised 564 university students from a university in Zhejiang, China. The physical activity rating scale-3 (PARS-3), self-control scale (SCS), generalized self-efficacy scale (GSES), and procrastination assessment scale-students (PASS) were used to investigate university students' physical activity, self-control, self-efficacy, and academic procrastination respectively. The Percentile-Bootstrap technique was performed to examine the mediating effects of self-control and self-efficacy on the association between physical activity and academic procrastination. RESULTS: Physical activity significantly predicted higher levels of self-control and self-efficacy, as well as lower levels of academic procrastination. Self-control and self-efficacy were significant mediators between physical activity and academic procrastination. CONCLUSION: This study indicated that physical activity interventions targeting the improvement of self-control and self-efficacy may reduce academic procrastination in university students.


Assuntos
Procrastinação , Autocontrole , China , Estudos Transversais , Exercício Físico , Humanos , Autoeficácia , Estudantes , Universidades
15.
Front Microbiol ; 13: 860014, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464910

RESUMO

Three ß-glucosidases from Bifidobacterium adolescentis ATCC15703, namely, BaBgl1A, BaBgl3A, and BaBgl3B, were overexpressed in Escherichia coli. The recombinant ß-glucosidases were sufficiently purified using Ni2+ affinity chromatography, and BaBgl1A exhibited the best purification efficiency with a purification factor of 2.3-fold and specific activity of 71.2 U/mg. Three recombinant ß-glucosidases acted on p-nitrophenyl-ß-glucopyranoside (pNPßGlc) at around pH 7.0 and 30-50°C. The results of the substrate specificity assay suggested that BaBgl1A acted exclusively as ß-1,2-glucosidase, while BaBgl3A and BaBgl3B acted mostly as ß-1,3-glucosidase and ß-1,4-glucosidase, respectively. The substrate specificity of the three recombinant enzymes was further studied using the ginsenosides Rb1 and Rd as substrates. The results of thin-layer chromatography and high-performance liquid chromatography analyses showed that BaBgl1A exhibited the highest bioconversion ability on Rb1 and Rd, where it hydrolyzed the outer C-3 glucose moieties of Rb1 and Rd into the rare ginsenosides Gypenoside XVII and F2; BaBgl3A exhibited medium bioconversion ability on Rb1, where it hydrolyzed both the outer C-3 and C-20 glucose moieties of Rb1 into Gyp XVII and Rd; and BaBgl3B was not active on Rb1 and Rd. These ß-glucosidases will act as new biocatalytic tools for transforming ginsenosides and preparing active glycosides and aglycone.

16.
J Microbiol Biotechnol ; 32(8): 1064-1071, 2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-35879293

RESUMO

Arabinogalactans have diverse biological properties and can be used as pharmaceutical agents. Most arabinogalactans are composed of ß-(1→3)-galactan, so it is particularly important to identify ß-1,3-galactanases that can selectively degrade them. In this study, a novel exo-ß-1,3-galactanase, named PoGal3, was screened from Penicillium oxalicum sp. 68, and hetero-expressed in P. pastoris GS115 as a soluble protein. PoGal3 belongs to glycoside hydrolase family 43 (GH43) and has a 1,356-bp gene length that encodes 451 amino acids residues. To study the enzymatic properties and substrate selectivity of PoGal3, ß-1,3-galactan (AG-P-I) from larch wood arabinogalactan (LWAG) was prepared and characterized by HPLC and NMR. Using AG-P-I as substrate, purified PoGal3 exhibited an optimal pH of 5.0 and temperature of 40°C. We also discovered that Zn2+ had the strongest promoting effect on enzyme activity, increasing it by 28.6%. Substrate specificity suggests that PoGal3 functions as an exo-ß-1,3-galactanase, with its greatest catalytic activity observed on AG-P-I. Hydrolytic products of AG-P-I are mainly composed of galactose and ß-1,6-galactobiose. In addition, PoGal3 can catalyze hydrolysis of LWAG to produce galacto-oligomers. PoGal3 is the first enzyme identified as an exo-ß-1,3-galactanase that can be used in building glycan blocks of crucial glycoconjugates to assess their biological functions.


Assuntos
Glicosídeo Hidrolases , Penicillium , Clonagem Molecular , Galactanos , Especificidade por Substrato
17.
Pharmaceuticals (Basel) ; 15(12)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36558996

RESUMO

We extracted, purified, and characterized three neutral and three acidic polysaccharides from the roots, stems, and leaves of Aralia continentalis Kitigawa. The results of the analysis of monosaccharide composition indicated that the polysaccharides from the roots and stems were more similar to each other than they were to the polysaccharides from the leaves. The in vitro antioxidant results demonstrated that the acidic polysaccharides had stronger antioxidant activity than the neutral fractions. Therefore, we investigated the primary purified acidic polysaccharide fractions (WACP(R)-A-c, WACP(S)-A-c, and WACP(L)-A-d) by NMR and enzymatic analysis. The structural analytical results indicated that WACP(R)-A-c contained homogalacturonan (HG); WACP(S)-A-c contained HG and rhamnogalacturonan II (RG-II), and WACP(L)-A-d contained HG, RG-II, and rhamnogalacturonan I (RG-I) domains. Our findings offer insights into the screening of natural polysaccharide-based antioxidants and provide a theoretical basis for the application of A. continentalis.

18.
J Cogn Neurosci ; 23(11): 3669-80, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21563883

RESUMO

The neural basis of parallel saccade programming was examined in an event-related fMRI study using a variation of the double-step saccade paradigm. Two double-step conditions were used: one enabled the second saccade to be partially programmed in parallel with the first saccade while in a second condition both saccades had to be prepared serially. The intersaccadic interval, observed in the parallel programming (PP) condition, was significantly reduced compared with latency in the serial programming (SP) condition and also to the latency of single saccades in control conditions. The fMRI analysis revealed greater activity (BOLD response) in the frontal and parietal eye fields for the PP condition compared with the SP double-step condition and when compared with the single-saccade control conditions. By contrast, activity in the supplementary eye fields was greater for the double-step condition than the single-step condition but did not distinguish between the PP and SP requirements. The role of the frontal eye fields in PP may be related to the advanced temporal preparation and increased salience of the second saccade goal that may mediate activity in other downstream structures, such as the superior colliculus. The parietal lobes may be involved in the preparation for spatial remapping, which is required in double-step conditions. The supplementary eye fields appear to have a more general role in planning saccade sequences that may be related to error monitoring and the control over the execution of the correct sequence of responses.


Assuntos
Mapeamento Encefálico , Lobo Frontal/irrigação sanguínea , Lobo Parietal/irrigação sanguínea , Movimentos Sacádicos/fisiologia , Campos Visuais/fisiologia , Adulto , Feminino , Lobo Frontal/fisiologia , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Oxigênio/sangue , Lobo Parietal/fisiologia , Estimulação Luminosa , Tempo de Reação/fisiologia , Percepção Espacial , Fatores de Tempo , Adulto Jovem
19.
Front Physiol ; 12: 784803, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34880782

RESUMO

Heat shock proteins (HSPs) are a large class of highly conserved chaperons, which play important roles in response to elevated temperature and other environmental stressors. In the present study, 5 HSP90 genes and 17 HSP70 genes were systematically characterized in spotted seabass (Lateolabrax maculatus). The evolutionary footprint of HSP genes was revealed via the analysis of phylogeny, chromosome location, and gene copy numbers. In addition, the gene structure features and the putative distribution of heat shock elements (HSEs) and hypoxia response elements (HREs) in the promoter regions were analyzed. The protein-protein interaction (PPI) network analyses results indicated the potential transcriptional regulation between the heat shock factor 1 (HSF1) and HSPs and a wide range of interactions among HSPs. Furthermore, quantitative (q)PCR was performed to detect the expression profiles of HSP90 and HSP70 genes in gill, liver, and muscle tissues after heat stress, meanwhile, the expression patterns in gills under alkalinity and hypoxia stresses were determined by analyzing RNA-Seq datasets. Results showed that after heat stress, most of the examined HSP genes were significantly upregulated in a tissue-specific and time-dependent manners, and hsp90aa1.1, hsp90aa1.2, hsp70.1, and hsp70.2 were the most intense responsive genes in all three tissues. In response to alkalinity stress, 11 out of 13 significantly regulated HSP genes exhibited suppressed expression patterns. Alternatively, among the 12 hypoxia-responsive-expressed HSP genes, 7 genes showed induced expressions, while hsp90aa1.2, hsp70.1, and hsp70.2 had more significant upregulated changes after hypoxic challenge. Our findings provide the essential basis for further functional studies of HSP genes in response to abiotic stresses in spotted seabass.

20.
Front Plant Sci ; 12: 620499, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249029

RESUMO

Various environmental stresses strongly influence plant development. Among these stresses is drought, which is a serious threat that can reduce agricultural productivity and obstruct plant growth. Although the mechanism of plants in response to drought has been studied extensively, the adaptive strategies of Amygdalus mira (Koehne) Yü et Lu grown in drought and rewatered habitats remain undefined. Amygdalus mira from the Tibetan Plateau has outstanding nutritional and medicinal values and can thrive in extreme drought. In this study, the physiological and proteomic responses in leaves of A. mira were investigated during drought and recovery period. The changes in plant growth, photosynthesis, enzymes, and non-enzymatic antioxidant under drought and rewatering were also analyzed in leaves. Compared with controls, A. mira showed stronger adaptive and resistant characteristics to drought. In addition, the proteomic technique was also used to study drought tolerance mechanisms in A. mira leaves. Differentially expressed proteins were identified using mass spectrometry. Accordingly, 103 proteins involved in 10 functional categories: cytoskeleton dynamics, energy metabolism, carbohydrate metabolism, photosynthesis, transcription and translation, transport, stress and defense, molecular chaperones, other materials metabolism, and unknown function were identified. These results showed that an increase of stress-defense-related proteins in leaves after drought treatment contributed to coping with drought. Importantly, A. mira developed an adaptive mechanism to scavenge reactive oxygen species (ROS), including enhancing antioxidant enzyme activities and non-enzymatic antioxidant contents, reducing energy, and adjusting the efficiency of gas exchanges. These results may help to understand the acclimation of A. mira to drought.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA