Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 21(3): e3002076, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36996252

RESUMO

While heritable symbionts are common in insects, strains that act as male-killers are considered rare. A new study in PLOS Biology identifies a novel male-killer hidden by coinfection and host resistance, highlighting the complexity of host-microbial interactions in natural systems.


Assuntos
Wolbachia , Animais , Masculino , Insetos , Interações Hospedeiro-Patógeno , Interações entre Hospedeiro e Microrganismos
2.
Environ Microbiol ; 25(12): 3064-3074, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37658745

RESUMO

Symbiotic bacteria can alter host biology by providing protection from natural enemies, or alter reproduction or vectoral competence. Symbiont-linked control of vector-borne disease in Anopheles has been hampered by a lack of symbioses that can establish stable vertical transmission in the host. Previous screening found the symbiont 'Candidatus Tisiphia' in Anopheles plumbeus, an aggressive biter and potential secondary vector of malaria parasites and West Nile virus. We screened samples collected over 10-years across Germany and used climate databases to assess environmental influence on incidence. We observed a 95% infection rate, and that the frequency of infection did not fluctuate with broad environmental factors. Maternal inheritance is indicated by presence in the ovaries through FISH microscopy. Finally, we assembled a high-quality 1.6 Mbp draft genome of 'Ca. Tisiphia' to explore its phylogeny and potential metabolic competence. The infection is closely related to strains found in Culicoides biting midges and shows similar patterns of metabolism, providing no evidence of the capacity to synthesize B-vitamins. This infection offers avenues for onward research in anopheline mosquito symbioses. Additionally, it provides future opportunity to study the impact of 'Ca. Tisiphia' on natural and transinfected hosts, especially in relation to reproductive fitness and vectorial competence and capacity.


Assuntos
Anopheles , Ceratopogonidae , Rickettsiaceae , Animais , Mosquitos Vetores , Ceratopogonidae/microbiologia , Clima
3.
Mol Ecol ; 32(12): 3340-3351, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36946891

RESUMO

The outcome of natural enemy attack in insects is commonly impacted by the presence of defensive microbial symbionts residing within the host. The thermal environment is a factor known to affect symbiont-mediated traits in insects. Lower temperatures, for instance, have been shown to reduce Spiroplasma-mediated protection in Drosophila. Our understanding of protective symbiosis requires a deeper understanding of environment-symbiont-protection links. Here, we dissect the effect of the thermal environment on Spiroplasma-mediated protection against Leptopilina boulardi in Drosophila melanogaster by examining the effect of temperature before, during and after wasp attack on fly survival and wasp success. We observed that the developmental temperature of the mothers of attacked larvae, but not the temperature of the attacked larvae themselves during or after wasp attack, strongly determines the protective influence of Spiroplasma. Cooler maternal environments were associated with weaker Spiroplasma protection of their progeny. The effect of developmental temperature on Spiroplasma-mediated protection is probably mediated by a reduction in Spiroplasma titre. These results indicate that historical thermal environment is a stronger determinant of protection than current environment. Furthermore, protection is a character with transgenerational nongenetic variation probably to produce complex short-term responses to selection. In addition, the cool sensitivity of the Spiroplasma-Drosophila symbioses contrasts with the more common failure of symbioses at elevated temperatures, indicating a need to understand the mechanistic basis of low temperature sensitivity on this symbiosis.


Assuntos
Spiroplasma , Vespas , Animais , Vespas/fisiologia , Drosophila melanogaster/genética , Drosophila , Larva/fisiologia , Temperatura , Simbiose
4.
J Invertebr Pathol ; 199: 107947, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37285901

RESUMO

Heritable microbes that exhibit reproductive parasitism are common in insects. One class of these are the male-killing bacteria, which are found in a broad range of insect hosts. Commonly, our knowledge of the incidence of these microbes is based on one or a few sampling sites, and the degree and causes of spatial variation are unclear. In this paper, we examine the incidence of the son-killer microbe Arsenophonus nasoniae across European populations of its wasp host, Nasonia vitripennis. In preliminary work, we noticed two female N. vitripennis producing highly female biased sex ratios in a field study from the Netherlands and Germany. When tested, the brood from Germany was revealed to be infected with A. nasoniae. We then completed a broad survey in 2012, in which fly pupal hosts of N. vitripennis were collected from vacated birds' nests from four European populations, N. vitripennis wasps allowed to emerge and then tested for A. nasoniae presence through PCR assay. We then developed a new screening methodology based on direct PCR assays of fly pupae and applied this to ethanol-preserved material collected from great tit (Parus major) nests in Portugal. These data show A. nasoniae is found widely in European N. vitripennis, being present in Germany, the UK, Finland, Switzerland and Portugal. Samples varied in the frequency with which they carry A. nasoniae, from being rare to being present in 50% of the pupae parasitised by N. vitripennis. Direct screening of ethanol-preserved fly pupae was an effective method for revealing both wasp and A. nasoniae infection, and will facilitate sample transport across national boundaries. Future research should examine the causes of variation in frequency, in particular testing the hypothesis that N. vitripennis superparasitism rates drive the variation in A. nasoniae frequency through providing opportunities for infectious transmission.


Assuntos
Gammaproteobacteria , Vespas , Feminino , Masculino , Animais , Vespas/microbiologia , Núcleo Familiar , Enterobacteriaceae , Insetos , Europa (Continente)
5.
Microbiology (Reading) ; 168(12)2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36748550

RESUMO

Heritable symbionts represent important components of the biology, ecology and evolution of their arthropod hosts. Particular microbial taxa have become common across arthropods as a consequence of their ability to establish in new host species. For a host shift to occur, the symbiont must be exposed to a novel host and then be compatible: it must not cause excess pathology, must have good vertical transmission and must possess a drive phenotype that enables spread. Here we investigate the lability of compatibility to symbiosis with Spiroplasma. We used transinfection to establish the protective Spiroplasma symbiont from Drosophila hydei in two closely related novel hosts, Drosophila simulans and Drosophila melanogaster. The Spiroplasma had contrasting compatibility in the two species, exhibiting pathology and low vertical transmission but delivering protection from wasp attack in D. melanogaster but being asymptomatic and transmitted with high efficiency but with lower protection in D. simulans. Further work indicated that pathological interactions occurred in two other members of the melanogaster species group, such that D. simulans was unusual in being able to carry the symbiont without damage. The differing compatibility of the symbiont with these closely related host species emphasizes the rapidity with which host-symbiont compatibility evolves, despite compatibility itself not being subject to direct selection. Further, the requirement to fit three independent components of compatibility (pathology, transmission, protection) is probably to be a major feature limiting the rate of host shifts that will likely impact on the utility of Spiroplasma in pest and vector control. Moving forward, the variation between sibling species pairs provides an opportunity to identify the mechanisms behind variable compatibility, which will drive hypotheses as to the evolutionary drivers of compatibility variation.


Assuntos
Drosophila , Spiroplasma , Animais , Drosophila melanogaster/genética , Evolução Biológica , Spiroplasma/genética , Simbiose/genética , Fenótipo
6.
Proc Biol Sci ; 289(1972): 20212781, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35414231

RESUMO

Arthropods host a range of sex-ratio-distorting selfish elements, including diverse maternally inherited endosymbionts that solely kill infected males. Male-killing heritable microbes are common, reach high frequency, but until recently have been poorly understood in terms of the host-microbe interaction. Additionally, while male killing should generate strong selection for host resistance, evidence of this has been scant. The interface of the microbe with host sex determination is integral to the understanding of how death is sex limited and how hosts can evolve evasion of male killing. We first review current knowledge of the mechanisms diverse endosymbionts use to induce male-specific death. We then examine recent evidence that these agents do produce intense selection for host nuclear suppressor elements. We argue, from our understanding of male-killing mechanisms, that suppression will commonly involve evolution of the host sex determination pathways and that the host's response to male-killing microbes thus represents an unrecognized driver of the diversity of arthropod sex determination. Further work is required to identify the genes and mechanisms responsible for male-killing suppression, which will both determine the components of sex determination (or other) systems associated with suppressor evolution, and allow insight into the mechanism of male killing itself.


Assuntos
Artrópodes , Wolbachia , Animais , Artrópodes/microbiologia , Bactérias/genética , Masculino , Razão de Masculinidade , Simbiose , Wolbachia/fisiologia
7.
Heredity (Edinb) ; 129(1): 31-43, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35525886

RESUMO

Most heritable information in eukaryotic cells is encoded in the nuclear genome, with inheritance patterns following classic Mendelian segregation. Genomes residing in the cytoplasm, however, prove to be a peculiar exception to this rule. Cytoplasmic genetic elements are generally maternally inherited, although there are several exceptions where these are paternally, biparentally or doubly-uniparentally inherited. In this review, we examine the diversity and peculiarities of cytoplasmically inherited genomes, and the broad evolutionary consequences that non-Mendelian inheritance brings. We first explore the origins of vertical transmission and uniparental inheritance, before detailing the vast diversity of cytoplasmic inheritance systems across Eukaryota. We then describe the evolution of genomic organisation across lineages, how this process has been shaped by interactions with the nuclear genome and population genetics dynamics. Finally, we discuss how both nuclear and cytoplasmic genomes have evolved to co-inhabit the same host cell via one of the longest symbiotic processes, and all the opportunities for intergenomic conflict that arise due to divergence in inheritance patterns. In sum, we cannot understand the evolution of eukaryotes without understanding hereditary symbiosis.


Assuntos
Eucariotos , Padrões de Herança , Citoplasma/genética , Eucariotos/genética , Genoma , Simbiose
8.
Artigo em Inglês | MEDLINE | ID: mdl-35695864

RESUMO

Bacterial endosymbionts are found in multiple arthropod species, where they play crucial roles as nutritional symbionts, defensive symbionts or reproductive parasites. Recent work has highlighted a new clade of heritable microbes within the gammaproteobacteria that enter into both obligate and facultative symbioses, with an obligately required unculturable symbiont recently given the name Candidatus Symbiopectobacterium. In this study, we describe a culturable rod shaped non-flagellated bacterial symbiont from this clade isolated from the leafhopper Empoasca decipiens. The symbiont is related to the transovarially transmitted 'BEV' bacterium that was first isolated from the leafhopper Euscelidius variegatus by Alexander Purcell, and we therefore name the symbiont Symbiopectobacterium purcellii sp. nov., gen. nov. We further report the closed genome sequence for S. purcellii. The genome is atypical for a heritable microbe, being large in size, without profound AT bias and with little evidence of pseudogenization. The genome is predicted to encode Type II, III and VI secretion systems and associated effectors and a non-ribosomal peptide synthase array likely to produce bioactive small molecules. The predicted metabolism is more complete than for other symbionts in the Symbiopectobacterium clade, and the microbe is predicted to synthesize a range of B vitamins. However, Biolog plate results indicate that the metabolism is depauperate compared to the sister clade, represented by Pectobacterium carotovorum. A quorum-sensing pathway related to that of Pectobacterium species (containing an overlapping expI-expR1 pair in opposite directions and a "solo" expR2) is evidenced, and LC-MS/MS analysis reveals the presence of 3-hydroxy-C10-HSL as the sole N-acylhomoserine lactone (AHL) in our strain. This AHL profile is profoundly divergent from that of other Erwinia and Pectobacterium species which produce mostly 3-oxo-C6- and 3-oxo-C8-HSL and could aid group identification. Thus, this microbe denotes one that has lost certain pathways associated with a saprophytic lifestyle but represents an important baseline against which to compare other members of the genus Symbiopectobacterium that show more profound integration into host biology. The type strain of Symbiopectobacterium purcellii gen. nov., sp. nov. is SyEd1T (LMG 32449T=CECT 30436T).


Assuntos
Hemípteros , Pectobacterium , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , Cromatografia Líquida , DNA Bacteriano/genética , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espectrometria de Massas em Tandem
9.
Artigo em Inglês | MEDLINE | ID: mdl-35930469

RESUMO

The genus Arsenophonus has been traditionally considered to comprise heritable bacterial symbionts of arthropods. Recent work has reported a microbe related to the type species Arsenophonus nasoniae as infecting the honey bee, Apis mellifera. The association was unusual for members of the genus in that the microbe-host interaction arose through environmental and social exposure rather than vertical transmission. In this study, we describe the in vitro culture of ArsBeeUST, a strain of this microbe isolated from A. mellifera in the USA. The 16S rRNA sequence of the isolated strain indicates it falls within the genus Arsenophonus. Biolog analysis indicates the bacterium has a restricted range of nutrients that support growth. In vivo experiments demonstrate the strain proliferates rapidly on injection into A. mellifera hosts. We further report the closed genome sequence for the strain. The genome is 3.3 Mb and the G+C content is 37.6 mol%, which is smaller than A. nasoniae but larger than the genomes reported for non-culturable Arsenophonus symbionts. The genome is complex, with six extrachromosomal elements and 11 predicted intact phage elements, but notably less complex than A. nasoniae. Strain ArsBeeUST is clearly distinct from the type species A. nasoniae on the basis of genome sequence, with 92 % average nucleotide identity. Based on our results, we propose Arsenophonus apicola sp. nov., with the type strain ArsBeeUST (CECT 30499T=DSM113403T=LMG 32504T).


Assuntos
Ácidos Graxos , Simbiose , Animais , Bactérias/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Abelhas , DNA Bacteriano/genética , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Simbiose/genética
10.
Proc Biol Sci ; 288(1959): 20211735, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34583583

RESUMO

Diverse eukaryotic taxa carry facultative heritable symbionts, microbes that are passed from mother to offspring. These symbionts are coinherited with mitochondria, and selection favouring either new symbionts, or new symbiont variants, is known to drive loss of mitochondrial diversity as a correlated response. More recently, evidence has accumulated of episodic directional selection on mitochondria, but with currently unknown consequences for symbiont evolution. We therefore employed a population genetic mean field framework to model the impact of selection on mitochondrial DNA (mtDNA) upon symbiont frequency for three generic scenarios of host-symbiont interaction. Our models predict that direct selection on mtDNA can drive symbionts out of the population where a positively selected mtDNA mutation occurs initially in an individual that is uninfected with the symbiont, and the symbiont is initially at low frequency. When, by contrast, the positively selected mtDNA mutation occurs in a symbiont-infected individual, the mutation becomes fixed and in doing so removes symbiont variation from the population. We conclude that the molecular evolution of symbionts and mitochondria, which has previously been viewed from a perspective of selection on symbionts driving the evolution of a neutral mtDNA marker, should be reappraised in the light of positive selection on mtDNA.


Assuntos
Artrópodes , Animais , Artrópodes/genética , DNA Mitocondrial/genética , Evolução Molecular , Mitocôndrias/genética , Simbiose
11.
Mol Ecol ; 30(5): 1336-1344, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33428287

RESUMO

The outcome of natural enemy attack in insects is commonly influenced by the presence of protective symbionts in the host. The degree to which protection functions in natural populations, however, will depend on the robustness of the phenotype and symbiosis to variation in the abiotic environment. We studied the impact of a key environmental parameter-temperature-on the efficacy of the protective effect of the symbiont Spiroplasma on its host Drosophila hydei, against attack by the parasitoid wasp Leptopilina heterotoma. In addition, we investigated the thermal sensitivity of the symbiont's vertical transmission, which may be a key determinant of the ability of the symbiont to persist. We found that vertical transmission was more robust than previously considered, with Spiroplasma being maintained at 25°C, at 18°C and with 18/15°C diurnal cycles, with rates of segregational loss only increasing at 15°C. Protection against wasp attack was ablated before symbiont transmission was lost, with the symbiont failing to rescue the fly host at 18°C. We conclude that the presence of a protective symbiosis in natural populations cannot be simply inferred from the presence of a symbiont whose protective capacity has been tested under narrow controlled conditions. More broadly, we argue that the thermal environment is likely to represent an important determinant of the evolutionary ecology of defensive symbioses in natural environments, potentially driving seasonal, latitudinal and altitudinal variation in symbiont frequency.


Assuntos
Spiroplasma , Vespas , Animais , Evolução Biológica , Drosophila , Spiroplasma/genética , Simbiose
12.
Microb Ecol ; 81(1): 203-212, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32770272

RESUMO

Heritable microbes are an important component of invertebrate biology, acting both as beneficial symbionts and reproductive parasites. Whilst most previous research has focussed on the 'Wolbachia pandemic', recent work has emphasised the importance of other microbial symbionts. In this study, we present a survey of odonates (dragonflies and damselflies) for torix group Rickettsia, following previous research indicating that this clade can be common in other aquatic insect groups. PCR assays were used to screen a broad range of odonates from two continents and revealed 8 of 76 species tested were infected with Rickettsia. We then conducted further deeper screening of UK representatives of the Coenagrionidae damselfly family, revealing 6 of 8 UK coenagrionid species to be positive for torix Rickettsia. Analysis of Rickettsia gene sequences supported multiple establishments of symbiosis in the group. Some strains were shared between UK coenagrionid species that shared mtDNA barcodes, indicating a likely route for mitochondrial introgression between sister species. There was also evidence of coinfecting Rickettsia strains in two species. FISH analysis indicated Rickettsia were observed in the ovarioles, consistent with heritable symbiosis. We conclude that torix Rickettsia represent an important associate of odonates, being found in a broad range of species from both Europe and South America. There is evidence that coinfection can occur, vertical transmission is likely, and that symbiont movement following hybridisation may underpin the lack of 'barcoding gap' between well-established species pairs in the genus. Future work should establish the biological significance of the symbioses observed.


Assuntos
Odonatos/microbiologia , Infecções por Rickettsia/transmissão , Rickettsia/fisiologia , Simbiose/fisiologia , Animais , Código de Barras de DNA Taxonômico , Feminino , Transmissão Vertical de Doenças Infecciosas , Ovário/microbiologia , Rickettsia/classificação , Rickettsia/genética
13.
Appl Environ Microbiol ; 86(20)2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32801177

RESUMO

Rickettsia is a genus of intracellular bacteria which can manipulate host reproduction and alter sensitivity to natural enemy attack in a diverse range of arthropods. The maintenance of Rickettsia endosymbionts in insect populations can be achieved through both vertical and horizontal transmission routes. For example, the presence of the symbiont in the follicle cells and salivary glands of Bemisia whiteflies allows Belli group Rickettsia transmission via the germ line and plants, respectively. However, the transmission routes of other Rickettsia bacteria, such as those in the Torix group of the genus, remain underexplored. Through fluorescence in situ hybridization (FISH) and transmission electron microscopy (TEM) screening, this study describes the pattern of Torix Rickettsia tissue tropisms in the highland midge, Culicoides impunctatus (Diptera: Ceratopogonidae). Of note is the high intensity of infection of the ovarian suspensory ligament, suggestive of a novel germ line targeting strategy. Additionally, localization of the symbiont in tissues of several developmental stages suggests transstadial transmission is a major route for ensuring maintenance of Rickettsia within C. impunctatus populations. Aside from providing insights into transmission strategies, the presence of Rickettsia bacteria in the fat body of larvae indicates potential host fitness and vector capacity impacts to be investigated in the future.IMPORTANCE Microbial symbionts of disease vectors have garnered recent attention due to their ability to alter vectorial capacity. Their consideration as a means of arbovirus control depends on symbiont vertical transmission, which leads to spread of the bacteria through a population. Previous work has identified a Rickettsia symbiont present in several species of biting midges (Culicoides spp.), which transmit bluetongue and Schmallenberg arboviruses. However, symbiont transmission strategies and host effects remain underexplored. In this study, we describe the presence of Rickettsia in the ovarian suspensory ligament of Culicoides impunctatus Infection of this organ suggests the connective tissue surrounding developing eggs is important for ensuring vertical transmission of the symbiont in midges and possibly other insects. Additionally, our results indicate Rickettsia localization in the fat body of Culicoides impunctatus As the arboviruses spread by midges often replicate in the fat body, this location implies possible symbiont-virus interactions to be further investigated.


Assuntos
Ceratopogonidae/microbiologia , Insetos Vetores/microbiologia , Rickettsia/fisiologia , Simbiose , Animais , Feminino , Hibridização in Situ Fluorescente , Masculino , Filogenia , Tropismo
14.
J Evol Biol ; 33(11): 1625-1633, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32964555

RESUMO

When a parasite attacks an insect, the outcome is commonly modulated by the presence of defensive heritable symbionts residing within the insect host. Previous studies noted markedly different strengths of Spiroplasma-mediated fly survival following attack by the same strain of wasp. One difference between the two studies was the strain of Spiroplasma used. We therefore performed a laboratory experiment to assess whether Spiroplasma-mediated protection depends upon the strain of Spiroplasma. We perform this analysis using the two strains of male-killing Spiroplasma used previously, and examined response to challenge by two strains of Leptopilina boulardi and two strains of Leptopilina heterotoma wasp. We found no evidence Spiroplasma strain affected fly survival following wasp attack. In contrast, analysis of the overall level of protection, including the fecundity of survivors of wasp attack, did indicate the two Spiroplasma strains tested varied in protective efficiency against three of the four wasp strains tested. These data highlight the sensitivity of symbiont-mediated protection phenotypes to laboratory conditions, and the importance of common garden comparison. Our results also indicate that Spiroplasma strains can vary in protective capacity in Drosophila, but these differences may exist in the relative performance of survivors of wasp attack, rather than in survival of attack per se.


Assuntos
Drosophila melanogaster/microbiologia , Drosophila melanogaster/parasitologia , Interações Hospedeiro-Parasita , Spiroplasma/genética , Vespas/fisiologia , Animais , Feminino , Especificidade da Espécie , Simbiose
15.
Environ Microbiol ; 21(8): 3172-3182, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31237728

RESUMO

Maternally heritable symbionts are common in arthropods and represent important partners and antagonists. A major impediment to understanding the mechanistic basis of these symbioses has been lack of genetic manipulation tools, for instance, those enabling transgenic GFP expression systems for in vivo visualization. Here, we transform the 'son-killer' reproductive parasite Arsenophonus nasoniae that infects the parasitic wasp Nasonia vitripennis with the plasmid pOM1-gfp, re-introduce this strain to N. vitripennis and then used this system to track symbiont life history in vivo. These data revealed transfer of the symbiont into the fly pupa by N. vitripennis during oviposition and N. vitripennis larvae developing infection over time through feeding. A strong tropism of A. nasoniae to the N. vitripennis ovipositor developed during wasp pupation, which aids onward transmission. The symbiont was also visualized in diapause larvae. Occasional necrotic diapause larvae were observed which displayed intense systemic infection alongside widespread melanotic nodules indicative of an active but failed immune response. Our results provide the foundation for the study of this symbiosis through in vivo tracking of the fate of symbionts through host development, which is rarely achieved in heritable microbe/insect interactions.


Assuntos
Gammaproteobacteria/metabolismo , Vespas/microbiologia , Animais , Feminino , Gammaproteobacteria/genética , Insetos , Larva , Pupa , Simbiose/genética , Tropismo
16.
PLoS Pathog ; 12(6): e1005629, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27322651

RESUMO

Heritable microbial symbionts have profound impacts upon the biology of their arthropod hosts. Whilst our current understanding of the dynamics of these symbionts is typically cast within a framework of vertical transmission only, horizontal transmission has been observed in a number of cases. For instance, several symbionts can transmit horizontally when their parasitoid hosts share oviposition patches with uninfected conspecifics, a phenomenon called superparasitism. Despite this, horizontal transmission, and the host contact structures that facilitates it, have not been considered in heritable symbiont epidemiology. Here, we tested for the importance of host contact, and resulting horizontal transmission, for the epidemiology of a male-killing heritable symbiont (Arsenophonus nasoniae) in parasitoid wasp hosts. We observed that host contact through superparasitism is necessary for this symbiont's spread in populations of its primary host Nasonia vitripennis, such that when superparasitism rates are high, A. nasoniae almost reaches fixation, causes highly female biased population sex ratios and consequently causes local host extinction. We further tested if natural interspecific variation in superparasitism behaviours predicted symbiont dynamics among parasitoid species. We found that A. nasoniae was maintained in laboratory populations of a closely related set of Nasonia species, but declined in other, more distantly related pteromalid hosts. The natural proclivity of a species to superparasitise was the primary factor determining symbiont persistence. Our results thus indicate that host contact behaviour is a key factor for heritable microbe dynamics when horizontal transmission is possible, and that 'reproductive parasite' phenotypes, such as male-killing, may be of secondary importance in the dynamics of such symbiont infections.


Assuntos
Transmissão de Doença Infecciosa/veterinária , Proteobactérias/patogenicidade , Simbiose/fisiologia , Vespas/parasitologia , Animais , Feminino , Masculino , Razão de Masculinidade
17.
Environ Microbiol ; 19(10): 4238-4255, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28805302

RESUMO

There is increasing interest in the heritable bacteria of invertebrate vectors of disease as they present novel targets for control initiatives. Previous studies on biting midges (Culicoides spp.), known to transmit several RNA viruses of veterinary importance, have revealed infections with the endosymbiotic bacteria, Wolbachia and Cardinium. However, rickettsial symbionts in these vectors are underexplored. Here, we present the genome of a previously uncharacterized Rickettsia endosymbiont from Culicoides newsteadi (RiCNE). This genome presents unique features potentially associated with host invasion and adaptation, including genes for the complete non-oxidative phase of the pentose phosphate pathway, and others predicted to mediate lipopolysaccharides and cell wall modification. Screening of 414 Culicoides individuals from 29 Palearctic or Afrotropical species revealed that Rickettsia represent a widespread but previously overlooked association, reaching high frequencies in midge populations and present in 38% of the species tested. Sequence typing clusters the Rickettsia within the Torix group of the genus, a group known to infect several aquatic and hematophagous taxa. FISH analysis indicated the presence of Rickettsia bacteria in ovary tissue, indicating their maternal inheritance. Given the importance of biting midges as vectors, a key area of future research is to establish the impact of this endosymbiont on vector competence.


Assuntos
Ceratopogonidae/microbiologia , Genoma Bacteriano/genética , Insetos Vetores/microbiologia , Rickettsia/classificação , Rickettsia/genética , Animais , Sequência de Bases , Parede Celular/metabolismo , Feminino , Genômica , Lipopolissacarídeos/genética , Via de Pentose Fosfato/genética , Filogenia , Rickettsia/isolamento & purificação , Análise de Sequência de DNA , Simbiose/genética
18.
J Invertebr Pathol ; 141: 41-44, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27818181

RESUMO

Non-targeted approaches are useful tools to identify new or emerging issues in bee health. Here, we utilise next generation sequencing to highlight bacteria associated with healthy and unhealthy honey bee colonies, and then use targeted methods to screen a wider pool of colonies with known health status. Our results provide the first evidence that bacteria from the genus Arsenophonus are associated with poor health in honey bee colonies. We also discovered Lactobacillus and Leuconostoc spp. were associated with healthier honey bee colonies. Our results highlight the importance of understanding how the wider microbial population relates to honey bee colony health.


Assuntos
Abelhas/microbiologia , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Reação em Cadeia da Polimerase , RNA Bacteriano/análise
19.
Am Nat ; 183(3): E89-104, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24561609

RESUMO

Inherited microbial symbionts can modulate host susceptibility to natural enemy attack. A wider range of symbionts influence host population demography without altering individual susceptibility, and it has been suggested that these may modify host disease risk through altering the rate of exposure to natural enemies. We present the first test of this thesis, specifically testing whether male-killing symbionts alter the epidemiology of a sexually transmitted infection (STI) carried by its host. STIs are typically expected to show female-biased epidemics, and we first present a simple model which indicates that male-biased STI epidemics may occur where symbionts create female-biased population sex ratios. We then examined the dynamics of a STI in the ladybird beetle Adalia bipunctata, which is also host to a male-killing bacterium. We present evidence that male-biased epidemics of the STI are observed in natural populations when the male-killer is common. Laboratory experiments did not support a role for differential susceptibility of male and female hosts to the STI, nor a protective role for the symbiont, in creating this bias. We conclude that the range of symbionts likely to alter parasite epidemiology will be much wider than previously envisaged, because it will additionally include those that impact host demography alone.


Assuntos
Besouros/microbiologia , Besouros/parasitologia , Ácaros/fisiologia , Spiroplasma/fisiologia , Simbiose , Animais , Meio Ambiente , Feminino , Masculino , Modelos Biológicos , Fatores Sexuais
20.
Proc Biol Sci ; 281(1797)2014 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-25355473

RESUMO

What are the causes of natural selection? Over 40 years ago, Van Valen proposed the Red Queen hypothesis, which emphasized the primacy of biotic conflict over abiotic forces in driving selection. Species must continually evolve to survive in the face of their evolving enemies, yet on average their fitness remains unchanged. We define three modes of Red Queen coevolution to unify both fluctuating and directional selection within the Red Queen framework. Empirical evidence from natural interspecific antagonisms provides support for each of these modes of coevolution and suggests that they often operate simultaneously. We argue that understanding the evolutionary forces associated with interspecific interactions requires incorporation of a community framework, in which new interactions occur frequently. During their early phases, these newly established interactions are likely to drive fast evolution of both parties. We further argue that a more complete synthesis of Red Queen forces requires incorporation of the evolutionary conflicts within species that arise from sexual reproduction. Reciprocally, taking the Red Queen's perspective advances our understanding of the evolution of these intraspecific conflicts.


Assuntos
Evolução Biológica , Modelos Biológicos , Animais , Conflito Psicológico , Interações Hospedeiro-Parasita , Reprodução , Seleção Genética , Caracteres Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA